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706 Parama Dutta and Rajat Kanti Nath

1. Introduction

Let G be a finite group and Aut(G) be its automorphism group. The
relative autocommutativity degree Pr(K,Aut(G)) of a subgroup K of G
is the probability that a randomly chosen element of K is fixed by an
automorphism of G. In other words

Pr(K,Aut(G)) =
|{(a, ν) ∈ K ×Aut(G) : ν(a) = a}|

|K||Aut(G)| .(1.1)

The notion of Pr(K,Aut(G)) was introduced in [6] and studied in [6, 10].
A generalization of Pr(K,Aut(G)) can also be found in [2, 11]. Note that
Pr(G,Aut(G)) is the probability that an automorphism of G fixes an ele-
ment of it. The ratio Pr(G,Aut(G)) is also known as the autocommutativ-
ity degree of G. It is worth mentioning that autocommutativity degree of
G was initially studied by Sherman [12] in 1975.

In this paper, we obtain several bounds for Pr(K,Aut(G)). We remark
that some of these bounds are better than some existing bounds. We also
characterize some finite groups with respect to Pr(K,Aut(G)). We shall
conclude this paper showing that the bounds for Pr(K,Aut(G)) are also
applicable for Pr(K1, Aut(G1)) if (K1, G1) and (K,G) are autoisoclinic.

For any element a ∈ G and ν ∈ Aut(G) we write [a, ν] := a−1ν(a),
the autocommutator of a and ν. We also write S(K,Aut(G)) := {[a, ν] :
a ∈ K and ν ∈ Aut(G)}, L(K,Aut(G)) := {a ∈ K : ν(a) = a for all ν ∈
Aut(G)} and [K,Aut(G)] := hS(K,Aut(G))i. Note that L(K,Aut(G))
is a normal subgroup of K contained in K ∩ Z(G) and L(K,Aut(G)) =T
ν∈Aut(G)

CK (ν), where Z(G) is the center of G and CK(ν) := {a ∈ K :

ν(a) = a} is a subgroup of K. If K = G then L(K,Aut(G)) = L(G), the
absolute centre of G (see [5]). It is also not difficult to see that K is abelian
if K

L(K,Aut(G)) is cyclic. Let CAut(G)(a) := {ν ∈ Aut(G) : ν(a) = a} for
a ∈ K and CAut(G)(K) := {ν ∈ Aut(G) : ν(a) = a for all a ∈ K}. Then
CAut(G)(a) is a subgroup of Aut(G) and CAut(G)(K) =

T
a∈K

CAut(G) (a).

It is easy to see that

{(a, ν) ∈ K ×Aut(G) : ν(a) = a} =
G
a∈K

({a} × CAut(G)(a))

=
G

ν∈Aut(G)
(CK(ν)× {ν}),

where t stands for union of disjoint sets. Hence
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Some bounds for relative autocommutativity degree 707

|K||Aut(G)|Pr(K,Aut(G)) =
X
a∈K

|CAut(G)(a)| =
X

ν∈Aut(G)
|CK (ν)| .

(1.2)

Also, for ν ∈ Aut(G) and a ∈ G, (ν, a) 7→ ν(a) is an action of Aut(G)
on G. The orbit of a ∈ G is given by orb(a) := {ν(a) : ν ∈ Aut(G)} and
|orb(a)| = |Aut(G)|/|CAut(G)(a)|.

Hence, (1.2) gives the following generalization of [1, Proposition 2]

Pr(K,Aut(G)) =
1

|K|
X
a∈K

1

|orb(a)| .(1.3)

Note that Pr(K,Aut(G)) = 1 if and only if K = L(K,Aut(G)). There-
fore, throughout the paper we consider K 6= L(K,Aut(G)).

2. Some upper bounds

We begin with the following upper bound for Pr(K,Aut(G)).

Theorem 2.1. If K is a subgroup of G then

Pr(K,Aut(G)) ≤ 1
2

µ
1 +

1

|K : L(K,Aut(G))|

¶
with equality if and only if |orb(a)| = 2 for all a ∈ K \ L(K,Aut(G)).

Proof. By (1.3), we get

Pr(K,Aut(G)) =
1

|K|

⎛⎝|L(K,Aut(G))|+
X

a∈K\L(K,Aut(G))

1

|orb(a)|

⎞⎠ .

(2.1)

Since |orb(a)| ≥ 2 for all a ∈ K \ L(K,Aut(G)), the result follows from
(2.1). 2
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708 Parama Dutta and Rajat Kanti Nath

Corollary 2.2. If K is a non-abelian subgroup of G, then Pr(K,Aut(G))
≤ 5

8 . Further, Pr(K,Aut(G)) = 5
8 if and only if |orb(a)| = 2 for all a ∈

K \ L(K,Aut(G)) and K
L(K,Aut(G))

∼= Z2 × Z2.

Proof. The inequality follows from Theorem 2.1 noting that
|K|

|L(K,Aut(G))| ≥ 4 if K is non-abelian.

Note that Pr(K,Aut(G)) = 5
8 if and only if

|K|
|L(K,Aut(G))| = 4 and equality

holds in Theorem 2.1. Hence, the result follows. 2

Theorem 2.3. If K is a subgroup of G and p the smallest prime dividing
|Aut(G)|, then

Pr(K,Aut(G)) ≤ (p− 1)|L(K,Aut(G))|+ |K|
p|K| − |XK |(|Aut(G)|− p)

p|K||Aut(G)|

where XK = {a ∈ K : CAut(G)(a) = {I}} and I is the identity of Aut(G).

Proof. Note that XK ∩ L(K,Aut(G)) = ∅. ThereforeP
a∈K

|CAut(G)(a)| = |XK |+ |Aut(G)||L(K,Aut(G))|

+
P

a∈K\(XK∪L(K,Aut(G)))
|CAut(G)(a)|.

For a ∈ K \ (XK ∪ L(K,Aut(G))) we have CAut(G) (a) < Aut(G) which

implies |CAut(G)(a)| ≤ |Aut(G)|
p . ThereforeP

a∈K
|CAut(G)(a)| ≤ |XK |+ |Aut(G)||L(K,Aut(G))|

+ |Aut(G)|(|K|−|XK |−|L(K,Aut(G))|)
p .

(2.2)

Hence, the result follows from (1.2) and (2.2). 2
We would like to mention here that Theorem 2.3 gives better upper

bound than the upper bound given by [6, Theorem 2.3 (i)]. We also have
the following improvement of [6, Corollary 2.2].

Corollary 2.4. Let K be a subgroup of G. Then

Pr(K,Aut(G)) ≤ p+ q − 1
pq

where p and q are the smallest prime divisors of |Aut(G)| and |K| respec-
tively. Further, if q ≥ p then Pr(K,Aut(G)) ≤ 2p−1

p2 ≤
3
4 .
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Some bounds for relative autocommutativity degree 709

Proof. We have |K : L(K,Aut(G))| ≥ q since K 6= L(K,Aut(G)).
Therefore, by Theorem 2.3, we get

Pr(K,Aut(G)) ≤ 1
p

µ
1 +

p− 1
|K : L(K,Aut(G))|

¶
≤ p+ q − 1

pq
.

2

Corollary 2.5. If K is a non-abelian subgroup of G then

Pr(K,Aut(G)) ≤ q2 + p− 1
pq2

where p and q denote respectively the smallest prime divisors of |Aut(G)|
and |K|. Further, if q ≥ p then Pr(K,Aut(G)) ≤ p2+p−1

p3 ≤ 5
8 .

Proof. The fact that K is a non-abelian subgroup of G implies |K :
L(K,Aut(G))| ≥ q2. Hence

Pr(K,Aut(G)) ≤ 1
p

µ
1 +

p− 1
|K : L(K,Aut(G))|

¶
≤ q2 + p− 1

pq2

by Theorem 2.3. 2

Now we obtain some characterizations of a subgroup K of G if equality
holds in Corollaries 2.4 and 2.5.

Theorem 2.6. IfK is a subgroup of G and Pr(K,Aut(G)) = p+q−1
pq , where

p, q are the smallest prime divisors of |Aut(G)| and |K|, respectively, then

K

L(K,Aut(G))
∼= Zq.

Proof. If p and q denote respectively the smallest prime divisors of
|Aut(G)| and |K| then, by Theorem 2.3, we get

p+ q − 1
pq

≤ 1
p

µ
1 +

p− 1
|K : L(K,Aut(G))|

¶

which gives |K : L(K,Aut(G))| ≤ q. Hence, K
L(K,Aut(G))

∼= Zq. 2
It is worth mentioning here that Theorem 2.6 generalizes [6, Theorem 2.4].
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710 Parama Dutta and Rajat Kanti Nath

Theorem 2.7. If K is a subgroup of G and Pr(K,Aut(G)) = q2+p−1
pq2 ,

where p, q are the smallest prime divisors of |Aut(G)| and |K|, respectively,
then

K

L(K,Aut(G))
∼= Zq × Zq.

Further, if |K| and |Aut(G)| are even and Pr(K,Aut(G)) = 5
8 , then

K
L(K,Aut(G))

∼= Z2 × Z2.

Proof. If p and q denote respectively the smallest prime divisors of
|Aut(G)| and |K| then, by Theorem 2.3, we get

q2 + p− 1
pq2

≤ 1
p

µ
1 +

p− 1
|K : L(K,Aut(G))|

¶
.

This gives |K : L(K,Aut(G))| ≤ q2. Since K is non-abelian, |K :
L(K,Aut(G))| 6= 1, q. Hence, K

L(K,Aut(G))
∼= Zq × Zq. 2

The following result gives partial converses of Theorems 2.6 and 2.7, re-
spectively.

Proposition 2.8. Let K be a subgroup of G. Let p, q be the smallest
primes dividing |Aut(G)|, |K|, respectively, and |Aut(G) : CAut(G)(a)| = p
for all a ∈ K \ L(K,Aut(G)).

(a) If K
L(K,Aut(G))

∼= Zq, then Pr(K,Aut(G)) = p+q−1
pq .

(b) If K
L(K,Aut(G))

∼= Zq × Zq, then Pr(K,Aut(G)) = q2+p−1
pq2 .

Proof. Since |Aut(G) : CAut(G)(a)| = p for all a ∈ K \ L(K,Aut(G)),

we have |CAut(G)(a)| = |Aut(G)|
p for all a ∈ K \L(K,Aut(G)). Therefore, by

(1.2), we get

Pr(K,Aut(G)) = |L(K,Aut(G))|
|K| + 1

|K||Aut(G)|
P

a∈K\L(K,Aut(G))
|CAut(G)(a)|

= |L(K,Aut(G))|
|K| + |K|−|L(K,Aut(G))|

p|K| .

Thus

Pr(K,Aut(G)) =
1

p

µ
1 +

p− 1
|K : L(K,Aut(G))|

¶
.(2.3)

Hence, the results follow from (2.3). 2
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Some bounds for relative autocommutativity degree 711

For any subgroup K of G, let mK = min{|orb(a)| : a ∈ K \L(K,Aut(G))}.
The following theorem gives an upper bound for Pr(K,Aut(G)) involving
mK .

Theorem 2.9. If K is a subgroup of G, then

Pr(K,Aut(G)) ≤ 1

mK

µ
1 +

mK − 1
|K : L(K,Aut(G))|

¶
with equality if and only if mK = |orb(a)| for all a ∈ K \ L(K,Aut(G)).

Proof. Since |orb(a)| ≥ mK for all a ∈ K \ L(K,Aut(G)), we have

X
a∈K\L(K,Aut(G))

1

|orb(a)| ≤
|K|− |L(K,Aut(G))|

mK
.

Hence, the result follows from (2.1). 2
For any two integers r ≥ s, we have

1

s

µ
1 +

s− 1
|K : L(K,Aut(G))|

¶
≥ 1

r

µ
1 +

r − 1
|K : L(K,Aut(G))|

¶
.(2.4)

Therefore, if p is the smallest prime dividing |Aut(G)| then 2 ≤ p ≤ mK

and hence, by (2.4), we have
1

mK

³
1 + mK−1

|K:L(K,Aut(G))|

´
≤ 1

p

³
1 + p−1

|K:L(K,Aut(G))|

´
≤ 1

2

³
1 + 1

|K:L(K,Aut(G))|

´
.

This shows that Theorem 2.9 gives better upper bound than the upper
bounds obtained in [6, Theorem 2.3 (i)] and Theorem 2.1.

Note that if we replaceAut(G) by the inner automorphism group Inn(G)
of G, then from (2.1), we get Pr(K, Inn(G)) = Pr(K,G) where

Pr(K,G) =
|{(u, v) ∈ K ×G : uv = vu}|

|K||G| .

Various properties of the ratio Pr(K,G) are studied in [3] and [9]. We
conclude this section showing that Pr(K,Aut(G)) is bounded by Pr(K,G).

Proposition 2.10. If K is a subgroup of G then

Pr(K,Aut(G)) ≤ Pr(K,G).
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712 Parama Dutta and Rajat Kanti Nath

Proof. From [9, Lemma 1], we get

Pr(K,G) =
1

|K|
X
a∈K

1

|ClG(a)|
(2.5)

where ClG(a) = {ν(a) : ν ∈ Inn(G)}. Since ClG(a) ⊆ orb(a) for all a ∈ K,
the result follows from (1.3) and (2.5). 2

3. Some lower bounds

We begin this section with the following bound.

Theorem 3.1. If K a subgroup of G, then

Pr(K,Aut(G)) ≥ |L(K,Aut(G))|
|K| +

p(|K|− |XK |− |L(K,Aut(G))|) + |XK |
|K||Aut(G)|

where p is the smallest prime dividing |Aut(G)|,
XK = {a ∈ K : CAut(G)(a) = {I}} and I is the identity of Aut(G).

Proof. Note that XK ∩ L(K,Aut(G)) = ∅. ThereforeP
a∈K

|CAut(G)(a)| = |XK |+ |Aut(G)||L(K,Aut(G))|

+
P

a∈K\(XK∪L(K,Aut(G)))
|CAut(G)(a)|.

If a ∈ K \ (XK ∪ L(K,Aut(G))) then {I} < CAut(G)(a) which implies
|CAut(G)(a)| ≥ p. ThereforeP

a∈K
|CAut(G)(a)| ≥ |XK |+ |Aut(G)||L(K,Aut(G))|

+p(|K|− |XK |− |L(K,Aut(G))|).
(3.1)

Hence, the result follows from (1.2) and (3.1). 2

Now we obtain two lower bounds analogous to the lower bounds ob-
tained in [9, Theorem A] and [8, Theorem 1].

Theorem 3.2. If K is a subgroup of G, then

Pr(K,Aut(G)) ≥ 1

|S(K,Aut(G))|

µ
1 +

|S(K,Aut(G))|− 1
|K : L(K,Aut(G))|

¶
with equality if and only if orb(a) = aS(K,Aut(G)) for all a ∈ K\L(K,Aut(G)).
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Some bounds for relative autocommutativity degree 713

Proof. For all a ∈ K \ L(K,Aut(G)) and ν ∈ Aut(G) we get ν(a) =
a[a, ν] ∈ aS(K,Aut(G)). It follows that orb(a) ⊆ aS(K,Aut(G)) and hence

|orb(a)| ≤ |S(K,Aut(G))|

for all a ∈ K \ L(K,Aut(G)). By (1.3), we have

Pr(K,Aut(G)) = 1
|K|

Ã P
a∈L(K,Aut(G))

1
|orb(a)| +

P
a∈K\L(K,Aut(G))

1
|orb(a)|

!
≥ |L(K,Aut(G))|

|K| + 1
|K|

P
a∈K\L(K,Aut(G))

1
|S(K,Aut(G))| .

Hence, the result follows. 2
The following corollary is a generalization of [1, Equation (3)].

Corollary 3.3. If Kis a subgroup of G, then

Pr(K,Aut(G)) ≥ 1

|[K,Aut(G)]|

µ
1 +

|[K,Aut(G)]|− 1
|K : L(K,Aut(G))|

¶
.

Proof. The result follows from Theorem 3.2 and (2.4) noting that

|[K,Aut(G)]| ≥ |S(K, Aut(G))|.

2

It is clear from the above proof that Theorem 3.2 gives better lower bound
than Corollary 3.3.

Also
1

|[K,Aut(G)]|

³
1 + |[K,Aut(G)]|−1

|K:L(K,Aut(G))|

´
≥ |L(K,Aut(G))|

|K|
+p(|K|−|L(K,Aut(G))|)

|K||Aut(G)| .

Hence, the lower bound given by Corollary 3.3 is better than that in [6,
Theorem 2.3 (i)].

The following result is a generalization of [1, Proposition 3] which gives
several equivalent conditions for equality in Corollary 3.3.

Proposition 3.4. If K is a subgroup of G then the following statements
are equivalent.

(a) Pr(K,Aut(G)) = 1
|[K,Aut(G)]|

³
1 + |[K,Aut(G)]|−1

|K:L(K,Aut(G))|

´
.

(b) |orb(a)| = |[K,Aut(G)]| for all a ∈ K \ L(K,Aut(G)).

(c) orb(a) = a[K,Aut(G)] for all a ∈ K\L(K,Aut(G)), and so [K,Aut(G)]
⊆ L(K,Aut(G)).
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714 Parama Dutta and Rajat Kanti Nath

(d) CAut(G)(a) < Aut(G) and Aut(G)
CAut(G)(a)

∼= [K,Aut(G)] for all a ∈ K \
L(K,Aut(G)).

(e) [K,Aut(G)] = {a−1ν(a) : ν ∈ Aut(G)} for all a ∈ K \ L(K,Aut(G)).

Proof. First note that for all a ∈ K

orb(a) ⊆ a[K,Aut(G)].(3.2)

Suppose that (a) holds. Then, by (1.3), we have

X
a∈K\L(K,Aut(G))

µ
1

|orb(a)| −
1

|[K,Aut(G)]|

¶
= 0.

Now using (3.2), we get (b). Also, if (b) holds then from (1.3), we have
(a). Thus (a) and (b) are equivalent.

Suppose that (b) holds. Then for all a ∈ K \ L(K,Aut(G)) we have
|orb(a)| = |a[K,Aut(G)]|. Hence, using (3.2) we get (c). If
[K,Aut(G)] 6⊆ L(K,Aut(G)) then there exist z ∈ [K,Aut(G)]\L(K,Aut(G)).
Therefore orb(z) = z[K,Aut(G)] = [K,Aut(G)], a contradiction. Hence
[K,Aut(G)] ⊆ L(K,Aut(G)). It can be seen that the mapping f : Aut(G)→
[K,Aut(G)] given by ν 7→ a−1ν(a), where a is a fixed element of K \
L(K,Aut(G)), is a surjective homomorphism with kernel CAut(G)(a). There-
fore (d) follows.

Since |Aut(G)|/|CAut(G)(a)| = |orb(a)| for all a ∈ K \L(K, Aut(G)) we
have (b).

Thus (b), (c), and (d) are equivalent.

Also orb(a) = a[K,Aut(G)] if and only if a−1orb(a) = [K,Aut(G)] for
all a ∈ K \ L(K,Aut(G)), which gives the equivalence of (c) and (e). This
completes the proof. 2

Let MK = max{|orb(a)| : a ∈ K \ L(K,Aut(G))}. The following theo-
rem gives a lower bound for Pr(K,Aut(G)) involving MK .

Theorem 3.5. If K is a subgroup of G then

Pr(K,Aut(G)) ≥ 1

MK

µ
1 +

MK − 1
|K : L(K,Aut(G))|

¶

with equality if and only if MK = |orb(a)| for all a ∈ K \ L(K,Aut(G)).
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Some bounds for relative autocommutativity degree 715

Proof. Since |orb(a)| ≤MK for all a ∈ K \ L(K,Aut(G)), we have

X
a∈K\L(K,Aut(G))

1

|orb(a)| ≥
|K|− |L(K,Aut(G))|

MK
.

Hence, the result follows from (2.1). 2
For any a ∈ K \ L(K,Aut(G)) we have orb(a) ⊆ aS(K,Aut(G)) where
aS(K,Aut(G)) = {ak : k ∈ S(K,Aut(G))}. Therefore |S(K,Aut(G))| ≥
MK and hence, by (2.4), we have

1

MK

µ
1 +

MK − 1
|K : L(K,Aut(G))|

¶
≥ 1

|S(K,Aut(G))|

µ
1 +

|S(K,Aut(G))|− 1
|K : L(K,Aut(G))|

¶
.

This shows that Theorem 3.5 gives better lower bound than Theorem
3.2.

4. Autoisoclinism between pairs of groups

Hall [4], in the year 1940, introduced isoclinism between two groups. After
many years, autoisoclinism between two groups was introduced by Moghad-
dam et al. [7] in 2013. Let G1 and G2 be two groups. Suppose there
exist isomorphisms φ : G1

L(G1)
→ G2

L(G2)
, γ : Aut(G1) → Aut(G2) and

β : [G1, Aut(G1)]→ [G2, Aut(G2)] such that the diagram

G1
L(G1)

×Aut (G1) φ× γ
−−−→

G2
L(G2)

×Aut (G2)⏐⏐ya(G1,Aut(G1)) ⏐⏐ya(G2,Aut(G2))
[G1, Aut (G1)] β

−−−−−→
[G2, Aut (G2)]

commutes, where the maps a(Gi,Aut(Gi)) :
Gi

L(Gi)
×Aut(Gi)→ [Gi, Aut(Gi)]

for i = 1, 2 are given by

a(Gi,Aut(Gi))(xiL(Gi), νi) = [xi, νi].

Then the groups G1 and G2 are called autoisoclinic and the triple
(φ, γ, β) is an autoisoclinism between them. A generalization of this notion
of autoisoclinism between two groups is given below.

Definition 4.1. Let K1 and K2 be two subgroups of the groups G1 and
G2 respectively. A pair of groups (K1, G1) is said to be autoisoclinic to an-
other pair of groups (K2, G2) if there exist isomorphisms φ :

K1
L(K1,Aut(G1))

→
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716 Parama Dutta and Rajat Kanti Nath

K2
L(K2,Aut(G2))

, γ : Aut(G1)→ Aut(G2) and β : [K1, Aut(G1)]→ [K2, Aut(G2)]
such that the diagram

K1
L(K1,Aut(G1))

×Aut (G1) φ× γ
−−−→

K2
L(K2,Aut(G2))

×Aut (G2)⏐⏐ya(K1,Aut(G1))

⏐⏐ya(K2,Aut(G2))

[K1, Aut (G1)] β
−−−−−→

[K2, Aut (G2)]

commutes, where the maps a(Ki,Aut(Gi)) :
Ki

L(Ki,Aut(Gi))
×Aut(Gi)→ [Ki, Aut(Gi)]

for i = 1, 2 are given by

a(Ki,Aut(Gi))(xiL(Ki, Aut(Gi)), νi) = [xi, νi].

Such a triple (φ, γ, β) is said to be an autoisoclinism between the pairs
(K1, G1) and (K2, G2).

Theorem 4.2. Let G1 and G2 be two finite groups with subgroups K1 and
K2, respectively. If the pairs (K1,G1) and (K2, G2) are autoisoclinic, then

Pr(K1, Aut(G1)) = Pr(K2, Aut(G2)).

Proof. Consider the sets S = {(x1L(K1, Aut(G1)), ν1) ∈ K1
L(K1,Aut(G1))

×
Aut(G1) : ν1(x1) = x1} and T = {(x2L(K2, Aut(G2)), ν2) ∈ K2

L(K2,Aut(G2))
×

Aut(G2) : ν2(x2) = x2}. Since (K1,G1) is autoisoclinic to (K2, G2) we have
|S| = |T |. Again, it is clear that

|{(x1, ν1) ∈ K1 ×Aut(G1) : ν1(x1) = x1}| = |L(K1, Aut(G1))||S|(4.1)

and

|{(x2, ν2) ∈ K2 ×Aut(G2) : ν2(x2) = x2}| = |L(K2, Aut(G2))||T |.(4.2)

Hence, the result follows from (1.1), (4.1), and (4.2). 2

Note that Theorem 4.2 is a generalization of [10, Lemma 2.5]. We con-
clude the paper by noting that the bounds obtained in Section 2 and Section
3 for Pr(K,Aut(G)) are also applicable for Pr(K1, Aut(G1)) if (K1,G1) is
autoisoclinic to (K,G).
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