doi 10.22199/issn.0717-6279-2020-03-0042 PROYECCIONES Journal of Mathematics

ISSN 0717-6279 (On line)

Some bounds for relative autocommutativity degree

Parama Dutta ${ }^{1}$ © orcid.org/0000-0002-6984-9817
Rajat Kanti Nath ${ }^{2}$ © orcid.org/0000-0003-4766-6523
Tezpur University, Dept. of Mathematical Sciences, Tezpur, AS, India.
1® parama@gonitsora.com ; ${ }^{2=}$ rajatkantinath@yahoo.com

Received: July 2019 | Accepted: November 2019

Abstract

: We consider the probability that a randomly chosen element of a subgroup of a finite group G is fixed by an automorphism of G. We obtain several bounds for this probability and characterize some finite groups with respect to this probability.

Keywords: Autocommutativity degree; Automorphism group; Autoisoclinism.

MSC (2010): 20P05, 20D60, 20F28.

Cite this article as (IEEE citation style)

P. Dutta and R. K. Nath, "Some bounds for relative autocommutativity degree", Proyecciones (Antofagasta, On line), vol. 39, no. 3, pp. 679-691, Jun. 2020, doi: 10.22199/issn.0717-6279-2020-03-0042.

1. Introduction

Let G be a finite group and $\operatorname{Aut}(G)$ be its automorphism group. The relative autocommutativity degree $\operatorname{Pr}(K, \operatorname{Aut}(G))$ of a subgroup K of G is the probability that a randomly chosen element of K is fixed by an automorphism of G. In other words

$$
\begin{equation*}
\operatorname{Pr}(K, \operatorname{Aut}(G))=\frac{|\{(a, \nu) \in K \times \operatorname{Aut}(G): \nu(a)=a\}|}{|K||\operatorname{Aut}(G)|} . \tag{1.1}
\end{equation*}
$$

The notion of $\operatorname{Pr}(K, \operatorname{Aut}(G))$ was introduced in [6] and studied in $[6,10]$. A generalization of $\operatorname{Pr}(K, \operatorname{Aut}(G))$ can also be found in $[2,11]$. Note that $\operatorname{Pr}(G, \operatorname{Aut}(G))$ is the probability that an automorphism of G fixes an element of it. The ratio $\operatorname{Pr}(G, \operatorname{Aut}(G))$ is also known as the autocommutativity degree of G. It is worth mentioning that autocommutativity degree of G was initially studied by Sherman [12] in 1975.

In this paper, we obtain several bounds for $\operatorname{Pr}(K, \operatorname{Aut}(G))$. We remark that some of these bounds are better than some existing bounds. We also characterize some finite groups with respect to $\operatorname{Pr}(K, \operatorname{Aut}(G))$. We shall conclude this paper showing that the bounds for $\operatorname{Pr}(K, \operatorname{Aut}(G))$ are also applicable for $\operatorname{Pr}\left(K_{1}, \operatorname{Aut}\left(G_{1}\right)\right)$ if $\left(K_{1}, G_{1}\right)$ and (K, G) are autoisoclinic.

For any element $a \in G$ and $\nu \in \operatorname{Aut}(G)$ we write $[a, \nu]:=a^{-1} \nu(a)$, the autocommutator of a and ν. We also write $S(K, \operatorname{Aut}(G)):=\{[a, \nu]$: $a \in K$ and $\nu \in \operatorname{Aut}(G)\}, L(K, \operatorname{Aut}(G)):=\{a \in K: \nu(a)=a$ for all $\nu \in$ $\operatorname{Aut}(G)\}$ and $[K, \operatorname{Aut}(G)]:=\langle S(K, \operatorname{Aut}(G))\rangle$. Note that $L(K, \operatorname{Aut}(G))$ is a normal subgroup of K contained in $K \cap Z(G)$ and $L(K, \operatorname{Aut}(G))=$ $\bigcap_{\nu \in \operatorname{Aut}(G)} C_{K}(\nu)$, where $Z(G)$ is the center of G and $C_{K}(\nu):=\{a \in K:$ $\nu(a)=a\}$ is a subgroup of K. If $K=G$ then $L(K, \operatorname{Aut}(G))=L(G)$, the absolute centre of G (see [5]). It is also not difficult to see that K is abelian if $\frac{K}{L(K, \operatorname{Aut}(G))}$ is cyclic. Let $C_{\operatorname{Aut}(G)}(a):=\{\nu \in \operatorname{Aut}(G): \nu(a)=a\}$ for $a \in K$ and $C_{\operatorname{Aut}(G)}(K):=\{\nu \in \operatorname{Aut}(G): \nu(a)=a$ for all $a \in K\}$. Then $C_{A u t(G)}(a)$ is a subgroup of $\operatorname{Aut}(G)$ and $C_{A u t(G)}(K)=\bigcap_{a \in K} C_{A u t(G)}(a)$.

It is easy to see that

$$
\begin{gathered}
\{(a, \nu) \in K \times \operatorname{Aut}(G): \nu(a)=a\}=\bigsqcup_{a \in K}\left(\{a\} \times C_{\operatorname{Aut}(G)}(a)\right) \\
=\bigsqcup_{\nu \in \operatorname{Aut}(G)}\left(C_{K}(\nu) \times\{\nu\}\right),
\end{gathered}
$$

where \sqcup stands for union of disjoint sets. Hence

$$
\begin{equation*}
|K||A u t(G)| \operatorname{Pr}(K, A u t(G))=\sum_{a \in K}\left|C_{A u t(G)}(a)\right|=\sum_{\nu \in \operatorname{Aut}(G)}\left|C_{K}(\nu)\right| . \tag{1.2}
\end{equation*}
$$

Also, for $\nu \in \operatorname{Aut}(G)$ and $a \in G,(\nu, a) \mapsto \nu(a)$ is an action of $A u t(G)$ on G. The orbit of $a \in G$ is given by $\operatorname{orb}(a):=\{\nu(a): \nu \in \operatorname{Aut}(G)\}$ and $|\operatorname{orb}(a)|=|A u t(G)| /\left|C_{A u t(G)}(a)\right|$.

Hence, (1.2) gives the following generalization of [1, Proposition 2]

$$
\begin{equation*}
\operatorname{Pr}(K, A u t(G))=\frac{1}{|K|} \sum_{a \in K} \frac{1}{|\operatorname{orb}(a)|} \tag{1.3}
\end{equation*}
$$

Note that $\operatorname{Pr}(K, \operatorname{Aut}(G))=1$ if and only if $K=L(K, A u t(G))$. Therefore, throughout the paper we consider $K \neq L(K, A u t(G))$.

2. Some upper bounds

We begin with the following upper bound for $\operatorname{Pr}(K, A u t(G))$.
Theorem 2.1. If K is a subgroup of G then

$$
\operatorname{Pr}(K, A u t(G)) \leq \frac{1}{2}\left(1+\frac{1}{|K: L(K, A u t(G))|}\right)
$$

with equality if and only if $|\operatorname{orb}(a)|=2$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$.

Proof. By (1.3), we get

$$
\begin{equation*}
\operatorname{Pr}(K, \operatorname{Aut}(G))=\frac{1}{|K|}\left(|L(K, A u t(G))|+\sum_{a \in K \backslash L(K, \operatorname{Aut}(G))} \frac{1}{|\operatorname{orb}(a)|}\right) \tag{2.1}
\end{equation*}
$$

Since $|\operatorname{orb}(a)| \geq 2$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$, the result follows from (2.1).

Corollary 2.2. If K is a non-abelian subgroup of G, then $\operatorname{Pr}(K, A u t(G))$ $\leq \frac{5}{8}$. Further, $\operatorname{Pr}(K, \operatorname{Aut}(G))=\frac{5}{8}$ if and only if $|\operatorname{orb}(a)|=2$ for all $a \in$ $K \backslash L(K, \operatorname{Aut}(G))$ and $\frac{K}{L(K, \operatorname{Aut}(G))} \cong \mathbf{Z}_{2} \times \mathbf{Z}_{2}$.

Proof. The inequality follows from Theorem 2.1 noting that $\frac{|K|}{|L(K, \operatorname{Aut}(G))|} \geq 4$ if K is non-abelian.
Note that $\operatorname{Pr}(K, \operatorname{Aut}(G))=\frac{5}{8}$ if and only if $\frac{|K|}{|L(K, A u t(G))|}=4$ and equality holds in Theorem 2.1. Hence, the result follows.

Theorem 2.3. If K is a subgroup of G and p the smallest prime dividing $|\operatorname{Aut}(G)|$, then

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \leq \frac{(p-1)|L(K, \operatorname{Aut}(G))|+|K|}{p|K|}-\frac{\left|X_{K}\right|(|\operatorname{Aut}(G)|-p)}{p|K||\operatorname{Aut}(G)|}
$$

where $X_{K}=\left\{a \in K: C_{\operatorname{Aut}(G)}(a)=\{I\}\right\}$ and I is the identity of $\operatorname{Aut}(G)$.
Proof. Note that $X_{K} \cap L(K, A u t(G))=\emptyset$. Therefore

$$
\begin{aligned}
\sum_{a \in K}\left|C_{A u t(G)}(a)\right|= & \left|X_{K}\right|+|\operatorname{Aut}(G)||L(K, \operatorname{Aut}(G))| \\
& +\sum_{a \in K \backslash\left(X_{K} \cup L(K, \operatorname{Aut}(G))\right)}\left|C_{A u t(G)}(a)\right| .
\end{aligned}
$$

For $a \in K \backslash\left(X_{K} \cup L(K, \operatorname{Aut}(G))\right)$ we have $C_{\operatorname{Aut}(G)}(a)<\operatorname{Aut}(G)$ which implies $\left|C_{A u t(G)}(a)\right| \leq \frac{|\operatorname{Aut}(G)|}{p}$. Therefore

$$
\begin{align*}
\sum_{a \in K}\left|C_{A u t(G)}(a)\right| \leq & \left|X_{K}\right|+|\operatorname{Aut}(G)||L(K, \operatorname{Aut}(G))| \tag{2.2}\\
& +\frac{|\operatorname{Aut}(G)|\left(|K|-\left|X_{K}\right|-|L(K, \operatorname{Aut}(G))|\right)}{p} .
\end{align*}
$$

Hence, the result follows from (1.2) and (2.2).
We would like to mention here that Theorem 2.3 gives better upper bound than the upper bound given by [6, Theorem 2.3 (i)]. We also have the following improvement of [6, Corollary 2.2].

Corollary 2.4. Let K be a subgroup of G. Then

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \leq \frac{p+q-1}{p q}
$$

where p and q are the smallest prime divisors of $|\operatorname{Aut}(G)|$ and $|K|$ respectively. Further, if $q \geq p$ then $\operatorname{Pr}(K, \operatorname{Aut}(G)) \leq \frac{2 p-1}{p^{2}} \leq \frac{3}{4}$.

Proof. We have $|K: L(K, \operatorname{Aut}(G))| \geq q$ since $K \neq L(K, \operatorname{Aut}(G))$. Therefore, by Theorem 2.3, we get

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \leq \frac{1}{p}\left(1+\frac{p-1}{|K: L(K, A u t(G))|}\right) \leq \frac{p+q-1}{p q}
$$

Corollary 2.5. If K is a non-abelian subgroup of G then

$$
\operatorname{Pr}(K, A u t(G)) \leq \frac{q^{2}+p-1}{p q^{2}}
$$

where p and q denote respectively the smallest prime divisors of $|A u t(G)|$ and $|K|$. Further, if $q \geq p$ then $\operatorname{Pr}(K, A u t(G)) \leq \frac{p^{2}+p-1}{p^{3}} \leq \frac{5}{8}$.

Proof. The fact that K is a non-abelian subgroup of G implies $\mid K$: $L(K, \operatorname{Aut}(G)) \mid \geq q^{2}$. Hence

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \leq \frac{1}{p}\left(1+\frac{p-1}{|K: L(K, A u t(G))|}\right) \leq \frac{q^{2}+p-1}{p q^{2}}
$$

by Theorem 2.3.
Now we obtain some characterizations of a subgroup K of G if equality holds in Corollaries 2.4 and 2.5.

Theorem 2.6. If K is a subgroup of G and $\operatorname{Pr}(K, A u t(G))=\frac{p+q-1}{p q}$, where p, q are the smallest prime divisors of $|A u t(G)|$ and $|K|$, respectively, then

$$
\frac{K}{L(K, A u t(G))} \cong \mathbf{Z}_{\mathbf{q}}
$$

Proof. If p and q denote respectively the smallest prime divisors of $|A u t(G)|$ and $|K|$ then, by Theorem 2.3, we get

$$
\frac{p+q-1}{p q} \leq \frac{1}{p}\left(1+\frac{p-1}{|K: L(K, A u t(G))|}\right)
$$

which gives $|K: L(K, \operatorname{Aut}(G))| \leq q$. Hence, $\frac{K}{L(K, \operatorname{Aut}(G))} \cong \mathbf{Z}_{\mathbf{q}}$.
It is worth mentioning here that Theorem 2.6 generalizes [6, Theorem 2.4].

Theorem 2.7. If K is a subgroup of G and $\operatorname{Pr}(K, A u t(G))=\frac{q^{2}+p-1}{p q^{2}}$, where p, q are the smallest prime divisors of $|A u t(G)|$ and $|K|$, respectively, then

$$
\frac{K}{L(K, A u t(G))} \cong \mathbf{Z}_{\mathbf{q}} \times \mathbf{Z}_{\mathbf{q}}
$$

Further, if $|K|$ and $|\operatorname{Aut}(G)|$ are even and $\operatorname{Pr}(K, \operatorname{Aut}(G))=\frac{5}{8}$, then $\frac{K}{L(K, A u t(G))} \cong \mathbf{Z}_{\mathbf{2}} \times \mathbf{Z}_{\mathbf{2}}$.

Proof. If p and q denote respectively the smallest prime divisors of $|A u t(G)|$ and $|K|$ then, by Theorem 2.3, we get

$$
\frac{q^{2}+p-1}{p q^{2}} \leq \frac{1}{p}\left(1+\frac{p-1}{|K: L(K, A u t(G))|}\right)
$$

This gives $|K: L(K, A u t(G))| \leq q^{2}$. Since K is non-abelian, $\mid K$: $L(K, \operatorname{Aut}(G)) \mid \neq 1, q$. Hence, $\frac{K}{L(K, A u t(G))} \cong \mathbf{Z}_{\mathbf{q}} \times \mathbf{Z}_{\mathbf{q}}$.
The following result gives partial converses of Theorems 2.6 and 2.7, respectively.

Proposition 2.8. Let K be a subgroup of G. Let p, q be the smallest primes dividing $|\operatorname{Aut}(G)|,|K|$, respectively, and $\left|A u t(G): C_{A u t(G)}(a)\right|=p$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$.
(a) If $\frac{K}{L(K, A u t(G))} \cong \mathbf{Z}_{\mathbf{q}}$, then $\operatorname{Pr}(K, A u t(G))=\frac{p+q-1}{p q}$.
(b) If $\frac{K}{L(K, A u t(G))} \cong \mathbf{Z}_{\mathbf{q}} \times \mathbf{Z}_{\mathbf{q}}$, then $\operatorname{Pr}(K, A u t(G))=\frac{q^{2}+p-1}{p q^{2}}$.

Proof. \quad Since $\left|\operatorname{Aut}(G): C_{A u t(G)}(a)\right|=p$ for all $a \in K \backslash L(K, A u t(G))$, we have $\left|C_{\operatorname{Aut}(G)}(a)\right|=\frac{|\operatorname{Aut}(G)|}{p}$ for all $a \in K \backslash L(K, A u t(G))$. Therefore, by (1.2), we get

$$
\begin{aligned}
\operatorname{Pr}(K, A u t(G)) & =\frac{|L(K, A u t(G))|}{|K|}+\frac{1}{|K| \operatorname{Aut}(G) \mid} \sum_{a \in K \backslash L(K, A u t(G))}\left|C_{A u t(G)}(a)\right| \\
& =\frac{|L(K, A u t(G))|}{|K|}+\frac{|K|-|L(K, A u t(G))|}{|K|} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\operatorname{Pr}(K, \operatorname{Aut}(G))=\frac{1}{p}\left(1+\frac{p-1}{|K: L(K, \operatorname{Aut}(G))|}\right) \tag{2.3}
\end{equation*}
$$

Hence, the results follow from (2.3).

For any subgroup K of G, let $m_{K}=\min \{|\operatorname{orb}(a)|: a \in K \backslash L(K, \operatorname{Aut}(G))\}$. The following theorem gives an upper bound for $\operatorname{Pr}(K, \operatorname{Aut}(G))$ involving m_{K}.

Theorem 2.9. If K is a subgroup of G, then

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \leq \frac{1}{m_{K}}\left(1+\frac{m_{K}-1}{|K: L(K, \operatorname{Aut}(G))|}\right)
$$

with equality if and only if $m_{K}=|\operatorname{orb}(a)|$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$.
Proof. Since $|\operatorname{orb}(a)| \geq m_{K}$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$, we have

$$
\sum_{a \in K \backslash L(K, A u t(G))} \frac{1}{|\operatorname{orb}(a)|} \leq \frac{|K|-|L(K, \operatorname{Aut}(G))|}{m_{K}} .
$$

Hence, the result follows from (2.1).
For any two integers $r \geq s$, we have

$$
\begin{equation*}
\frac{1}{s}\left(1+\frac{s-1}{|K: L(K, \operatorname{Aut}(G))|}\right) \geq \frac{1}{r}\left(1+\frac{r-1}{|K: L(K, \operatorname{Aut}(G))|}\right) . \tag{2.4}
\end{equation*}
$$

Therefore, if p is the smallest prime dividing $|\operatorname{Aut}(G)|$ then $2 \leq p \leq m_{K}$ and hence, by (2.4), we have

$$
\begin{aligned}
\frac{1}{m_{K}}\left(1+\frac{m_{K}-1}{|K: L(K, \operatorname{Aut}(G))|}\right) & \leq \frac{1}{p}\left(1+\frac{p-1}{|K: L(K, \operatorname{Aut}(G))|}\right) \\
& \leq \frac{1}{2}\left(1+\frac{1}{|K: L(K, \operatorname{Aut}(G))|}\right) .
\end{aligned}
$$

This shows that Theorem 2.9 gives better upper bound than the upper bounds obtained in [6, Theorem 2.3 (i)] and Theorem 2.1.

Note that if we replace $\operatorname{Aut}(G)$ by the inner automorphism group $\operatorname{Inn}(G)$ of G, then from (2.1), we get $\operatorname{Pr}(K, \operatorname{Inn}(G))=\operatorname{Pr}(K, G)$ where

$$
\operatorname{Pr}(K, G)=\frac{|\{(u, v) \in K \times G: u v=v u\}|}{|K||G|} .
$$

Various properties of the ratio $\operatorname{Pr}(K, G)$ are studied in [3] and [9]. We conclude this section showing that $\operatorname{Pr}(K, \operatorname{Aut}(G))$ is bounded by $\operatorname{Pr}(K, G)$.

Proposition 2.10. If K is a subgroup of G then

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \leq \operatorname{Pr}(K, G) .
$$

Proof. From [9, Lemma 1], we get

$$
\begin{equation*}
\operatorname{Pr}(K, G)=\frac{1}{|K|} \sum_{a \in K} \frac{1}{\left|C l_{G}(a)\right|} \tag{2.5}
\end{equation*}
$$

where $C l_{G}(a)=\{\nu(a): \nu \in \operatorname{Inn}(G)\}$. Since $C l_{G}(a) \subseteq \operatorname{orb}(a)$ for all $a \in K$, the result follows from (1.3) and (2.5).

3. Some lower bounds

We begin this section with the following bound.
Theorem 3.1. If K a subgroup of G, then
$\operatorname{Pr}(K, \operatorname{Aut}(G)) \geq \frac{|L(K, A u t(G))|}{|K|}+\frac{p\left(|K|-\left|X_{K}\right|-|L(K, A u t(G))|\right)+\left|X_{K}\right|}{|K||A u t(G)|}$
where p is the smallest prime dividing $|\operatorname{Aut}(G)|$,
$X_{K}=\left\{a \in K: C_{\operatorname{Aut}(G)}(a)=\{I\}\right\}$ and I is the identity of $\operatorname{Aut}(G)$.

Proof. Note that $X_{K} \cap L(K, \operatorname{Aut}(G))=\emptyset$. Therefore

$$
\begin{aligned}
\sum_{a \in K}\left|C_{\operatorname{Aut}(G)}(a)\right|= & \left|X_{K}\right|+|\operatorname{Aut}(G)||L(K, \operatorname{Aut}(G))| \\
& +\sum_{a \in K \backslash\left(X_{K} \cup L(K, \operatorname{Aut}(G))\right)}\left|C_{A u t(G)}(a)\right| .
\end{aligned}
$$

If $a \in K \backslash\left(X_{K} \cup L(K, \operatorname{Aut}(G))\right)$ then $\{I\}<C_{A u t(G)}(a)$ which implies $\left|C_{\text {Aut }(G)}(a)\right| \geq p$. Therefore

$$
\begin{align*}
\sum_{a \in K}\left|C_{A u t(G)}(a)\right| \geq & \left|X_{K}\right|+|A u t(G)||L(K, A u t(G))| \tag{3.1}\\
& +p\left(|K|-\left|X_{K}\right|-|L(K, A u t(G))|\right)
\end{align*}
$$

Hence, the result follows from (1.2) and (3.1).
Now we obtain two lower bounds analogous to the lower bounds obtained in $[9$, Theorem A] and $[8$, Theorem 1].

Theorem 3.2. If K is a subgroup of G, then

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \geq \frac{1}{|S(K, \operatorname{Aut}(G))|}\left(1+\frac{|S(K, A u t(G))|-1}{|K: L(K, A u t(G))|}\right)
$$

with equality if and only if $\operatorname{orb}(a)=a S(K, \operatorname{Aut}(G))$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$.

Proof. For all $a \in K \backslash L(K, A u t(G))$ and $\nu \in \operatorname{Aut}(G)$ we get $\nu(a)=$ $a[a, \nu] \in a S(K, \operatorname{Aut}(G))$. It follows that $\operatorname{orb}(a) \subseteq a S(K, A u t(G))$ and hence

$$
|\operatorname{orb}(a)| \leq|S(K, A u t(G))|
$$

for all $a \in K \backslash L(K, \operatorname{Aut}(G))$. By (1.3), we have

$$
\begin{aligned}
\operatorname{Pr}(K, \operatorname{Aut}(G)) & =\frac{1}{|K|}\left(\sum_{a \in L(K, A u t(G))} \frac{1}{|\operatorname{orb}(a)|}+\sum_{a \in K \backslash L(K, \operatorname{Aut}(G))} \frac{1}{|\operatorname{crb}(a)|}\right) \\
& \geq \frac{\mid L(K, \operatorname{Aut(G))|}}{|K|}+\frac{1}{|K|} \sum_{a \in K \backslash L(K, A u t(G))} \frac{1}{|S(K, A u t(G))|} .
\end{aligned}
$$

Hence, the result follows.
The following corollary is a generalization of [1, Equation (3)].
Corollary 3.3. If K is a subgroup of G, then

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \geq \frac{1}{|[K, A u t(G)]|}\left(1+\frac{|[K, A u t(G)]|-1}{|K: L(K, A u t(G))|}\right) .
$$

Proof. The result follows from Theorem 3.2 and (2.4) noting that

$$
|[K, A u t(G)]| \geq|S(K, \operatorname{Aut}(G))| .
$$

It is clear from the above proof that Theorem 3.2 gives better lower bound than Corollary 3.3.

Also

$$
\frac{1}{[K, A u t(G)] \mid}\left(1+\frac{|[K, A u t(G)]|-1}{|K: L(K, A u t(G))|}\right) \geq \frac{|L(K, A u t(G))|}{|K|} .
$$

Hence, the lower bound given by Corollary 3.3 is better than that in [6, Theorem 2.3 (i)].

The following result is a generalization of [1, Proposition 3] which gives several equivalent conditions for equality in Corollary 3.3.

Proposition 3.4. If K is a subgroup of G then the following statements are equivalent.
(a) $\operatorname{Pr}(K, A u t(G))=\frac{1}{\{K, A u t(G)]}\left(1+\frac{|[K, A u t(G)]|-1}{|K: L(K, A u t(G))|}\right)$.
(b) $|\operatorname{orb}(a)|=|[K, A u t(G)]|$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$.
(c) $\operatorname{orb}(a)=a[K, \operatorname{Aut}(G)]$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$, and so $[K, \operatorname{Aut}(G)]$ $\subseteq L(K, A u t(G))$.
(d) $C_{\operatorname{Aut}(G)}(a) \triangleleft \operatorname{Aut}(G)$ and $\frac{\operatorname{Aut}(G)}{C_{\operatorname{Aut}(G)}(a)} \cong[K, \operatorname{Aut}(G)]$ for all $a \in K \backslash$ $L(K, A u t(G))$.
(e) $[K, \operatorname{Aut}(G)]=\left\{a^{-1} \nu(a): \nu \in \operatorname{Aut}(G)\right\}$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$.

Proof. First note that for all $a \in K$

$$
\begin{equation*}
\operatorname{orb}(a) \subseteq a[K, \operatorname{Aut}(G)] . \tag{3.2}
\end{equation*}
$$

Suppose that (a) holds. Then, by (1.3), we have

$$
\sum_{a \in K \backslash L(K, A u t(G))}\left(\frac{1}{|\operatorname{orb}(a)|}-\frac{1}{|[K, A u t(G)]|}\right)=0 .
$$

Now using (3.2), we get (b). Also, if (b) holds then from (1.3), we have (a). Thus (a) and (b) are equivalent.

Suppose that (b) holds. Then for all $a \in K \backslash L(K, \operatorname{Aut}(G))$ we have $|\operatorname{orb}(a)|=|a[K, \operatorname{Aut}(G)]|$. Hence, using (3.2) we get (c). If $[K, \operatorname{Aut}(G)] \nsubseteq L(K, \operatorname{Aut}(G))$ then there exist $z \in[K, \operatorname{Aut}(G)] \backslash L(K, \operatorname{Aut}(G))$. Therefore $\operatorname{orb}(z)=z[K, \operatorname{Aut}(G)]=[K, \operatorname{Aut}(G)]$, a contradiction. Hence $[K, \operatorname{Aut}(G)] \subseteq L(K, \operatorname{Aut}(G))$. It can be seen that the mapping $f: \operatorname{Aut}(G) \rightarrow$ $[K, \operatorname{Aut}(G)]$ given by $\nu \mapsto a^{-1} \nu(a)$, where a is a fixed element of $K \backslash$ $L(K, \operatorname{Aut}(G))$, is a surjective homomorphism with kernel $C_{A u t(G)}(a)$. Therefore (d) follows.

Since $|\operatorname{Aut}(G)| /\left|C_{A u t(G)}(a)\right|=|\operatorname{orb}(a)|$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$ we have (b).

Thus (b), (c), and (d) are equivalent.
Also $\operatorname{orb}(a)=a[K, \operatorname{Aut}(G)]$ if and only if $a^{-1} \operatorname{orb}(a)=[K, \operatorname{Aut}(G)]$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$, which gives the equivalence of (c) and (e). This completes the proof.

Let $M_{K}=\max \{|\operatorname{orb}(a)|: a \in K \backslash L(K, \operatorname{Aut}(G))\}$. The following theorem gives a lower bound for $\operatorname{Pr}(K, \operatorname{Aut}(G))$ involving M_{K}.

Theorem 3.5. If K is a subgroup of G then

$$
\operatorname{Pr}(K, \operatorname{Aut}(G)) \geq \frac{1}{M_{K}}\left(1+\frac{M_{K}-1}{|K: L(K, \operatorname{Aut}(G))|}\right)
$$

with equality if and only if $M_{K}=|\operatorname{orb}(a)|$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$.

Proof. Since $|\operatorname{orb}(a)| \leq M_{K}$ for all $a \in K \backslash L(K, \operatorname{Aut}(G))$, we have

$$
\sum_{a \in K \backslash L(K, \operatorname{Aut}(G))} \frac{1}{|\operatorname{orb}(a)|} \geq \frac{|K|-|L(K, \operatorname{Aut}(G))|}{M_{K}} .
$$

Hence, the result follows from (2.1).
For any $a \in K \backslash L(K, \operatorname{Aut}(G))$ we have $\operatorname{orb}(a) \subseteq a S(K, \operatorname{Aut}(G))$ where $a S(K, \operatorname{Aut}(G))=\{a k: k \in S(K, \operatorname{Aut}(G))\}$. Therefore $|S(K, \operatorname{Aut}(G))| \geq$ M_{K} and hence, by (2.4), we have
$\frac{1}{M_{K}}\left(1+\frac{M_{K}-1}{|K: L(K, \operatorname{Aut}(G))|}\right) \geq \frac{1}{|S(K, \operatorname{Aut}(G))|}\left(1+\frac{|S(K, \operatorname{Aut}(G))|-1}{|K: L(K, \operatorname{Aut}(G))|}\right)$.
This shows that Theorem 3.5 gives better lower bound than Theorem 3.2.

4. Autoisoclinism between pairs of groups

Hall [4], in the year 1940, introduced isoclinism between two groups. After many years, autoisoclinism between two groups was introduced by Moghaddam et al. [7] in 2013. Let G_{1} and G_{2} be two groups. Suppose there exist isomorphisms $\phi: \frac{G_{1}}{L\left(G_{1}\right)} \rightarrow \frac{G_{2}}{L\left(G_{2}\right)}, \gamma: \operatorname{Aut}\left(G_{1}\right) \rightarrow \operatorname{Aut}\left(G_{2}\right)$ and $\beta:\left[G_{1}, \operatorname{Aut}\left(G_{1}\right)\right] \rightarrow\left[G_{2}, \operatorname{Aut}\left(G_{2}\right)\right]$ such that the diagram

commutes, where the maps $a_{\left(G_{i}, \operatorname{Aut}\left(G_{i}\right)\right)}: \frac{G_{i}}{L\left(G_{i}\right)} \times \operatorname{Aut}\left(G_{i}\right) \rightarrow\left[G_{i}, \operatorname{Aut}\left(G_{i}\right)\right]$ for $i=1,2$ are given by

$$
a_{\left(G_{i}, A u t\left(G_{i}\right)\right)}\left(x_{i} L\left(G_{i}\right), \nu_{i}\right)=\left[x_{i}, \nu_{i}\right] .
$$

Then the groups G_{1} and G_{2} are called autoisoclinic and the triple (ϕ, γ, β) is an autoisoclinism between them. A generalization of this notion of autoisoclinism between two groups is given below.

Definition 4.1. Let K_{1} and K_{2} be two subgroups of the groups G_{1} and G_{2} respectively. A pair of groups (K_{1}, G_{1}) is said to be autoisoclinic to another pair of groups (K_{2}, G_{2}) if there exist isomorphisms $\phi: \frac{K_{1}}{L\left(K_{1}, \operatorname{Aut}\left(G_{1}\right)\right)} \rightarrow$
$\frac{K_{2}}{L\left(K_{2}, \operatorname{Aut}\left(G_{2}\right)\right)}, \gamma: \operatorname{Aut}\left(G_{1}\right) \rightarrow \operatorname{Aut}\left(G_{2}\right)$ and $\beta:\left[K_{1}, \operatorname{Aut}\left(G_{1}\right)\right] \rightarrow\left[K_{2}, \operatorname{Aut}\left(G_{2}\right)\right]$
such that the diagram

$$
\begin{array}{ccc}
\frac{K_{1}}{L\left(K_{1}, \text { Aut }\left(G_{1}\right)\right)} \times \text { Aut }\left(G_{1}\right) & \underline{\phi \times \gamma} & \frac{K_{2}}{L\left(K_{2}, \operatorname{Aut}\left(G_{2}\right)\right)} \times \operatorname{Aut}\left(G_{2}\right) \\
\downarrow a_{\left(K_{1}, \text { Aut }\left(G_{1}\right)\right)} & & \downarrow a_{\left(K_{2}, \text { Aut }\left(G_{2}\right)\right)} \\
{\left[K_{1}, \text { Aut }\left(G_{1}\right)\right]} & \beta & {\left[K_{2}, \text { Aut }\left(G_{2}\right)\right]}
\end{array}
$$

commutes, where the maps $a_{\left(K_{i}, \operatorname{Aut}\left(G_{i}\right)\right)}: \frac{K_{i}}{L\left(K_{i}, \operatorname{Aut}\left(G_{i}\right)\right)} \times \operatorname{Aut}\left(G_{i}\right) \rightarrow\left[K_{i}, \operatorname{Aut}\left(G_{i}\right)\right]$ for $i=1,2$ are given by

$$
a_{\left(K_{i}, A u t\left(G_{i}\right)\right)}\left(x_{i} L\left(K_{i}, \operatorname{Aut}\left(G_{i}\right)\right), \nu_{i}\right)=\left[x_{i}, \nu_{i}\right] .
$$

Such a triple (ϕ, γ, β) is said to be an autoisoclinism between the pairs $\left(K_{1}, G_{1}\right)$ and $\left(K_{2}, G_{2}\right)$.

Theorem 4.2. Let G_{1} and G_{2} be two finite groups with subgroups K_{1} and K_{2}, respectively. If the pairs $\left(K_{1}, G_{1}\right)$ and $\left(K_{2}, G_{2}\right)$ are autoisoclinic, then

$$
\operatorname{Pr}\left(K_{1}, \operatorname{Aut}\left(G_{1}\right)\right)=\operatorname{Pr}\left(K_{2}, \operatorname{Aut}\left(G_{2}\right)\right) .
$$

Proof. Consider the sets $\mathcal{S}=\left\{\left(x_{1} L\left(K_{1}, \operatorname{Aut}\left(G_{1}\right)\right), \nu_{1}\right) \in \frac{K_{1}}{L\left(K_{1}, A u t\left(G_{1}\right)\right)} \times\right.$ $\left.\operatorname{Aut}\left(G_{1}\right): \nu_{1}\left(x_{1}\right)=x_{1}\right\}$ and $\mathcal{T}=\left\{\left(x_{2} L\left(K_{2}, \operatorname{Aut}\left(G_{2}\right)\right), \nu_{2}\right) \in \frac{K_{2}}{L\left(K_{2}, \operatorname{Aut}\left(G_{2}\right)\right)} \times\right.$ $\left.\operatorname{Aut}\left(G_{2}\right): \nu_{2}\left(x_{2}\right)=x_{2}\right\}$. Since $\left(K_{1}, G_{1}\right)$ is autoisoclinic to $\left(K_{2}, G_{2}\right)$ we have $|\mathcal{S}|=|\mathcal{T}|$. Again, it is clear that

$$
\begin{equation*}
\left|\left\{\left(x_{1}, \nu_{1}\right) \in K_{1} \times \operatorname{Aut}\left(G_{1}\right): \nu_{1}\left(x_{1}\right)=x_{1}\right\}\right|=\left|L\left(K_{1}, \operatorname{Aut}\left(G_{1}\right)\right)\right||\mathcal{S}| \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\{\left(x_{2}, \nu_{2}\right) \in K_{2} \times \operatorname{Aut}\left(G_{2}\right): \nu_{2}\left(x_{2}\right)=x_{2}\right\}\right|=\left|L\left(K_{2}, \operatorname{Aut}\left(G_{2}\right)\right)\right||\mathcal{T}| . \tag{4.2}
\end{equation*}
$$

Hence, the result follows from (1.1), (4.1), and (4.2).
Note that Theorem 4.2 is a generalization of [10, Lemma 2.5]. We conclude the paper by noting that the bounds obtained in Section 2 and Section 3 for $\operatorname{Pr}(K, \operatorname{Aut}(G))$ are also applicable for $\operatorname{Pr}\left(K_{1}, \operatorname{Aut}\left(G_{1}\right)\right)$ if $\left(K_{1}, G_{1}\right)$ is autoisoclinic to (K, G).

Acknowledgment

The authors would like to thank the referee for his/her valuable comments and suggestions. The first author would like to thank DST for the INSPIRE Fellowship.

References

[1] H. Arora and R. Karan, "What is the probability an automorphism fixes a group element?", Communications in algebra, vol. 45, no. 3, pp. 11411150, Oct. 2016, doi: 10.1080/00927872.2016.1206346
[2] P. Dutta and R. K. Nath, "On generalized autocommutativity degree of fixnite groups", Hacettepe journal of mathematics and statistics, vol. 48, no. 4, pp. 472-478, Dec. 2017, doi: $10.15672 /$ hjms.2017.531
[3] A. Erfanian, R. Rezaei, and P. Lescot, "On the relative commutativity degree of a subgroup of a finite group", Communications in algebra, vol. 35, no. 12, pp. 4183-4197, Nov. 2007, doi: 10.1080/00927870701545044
[4] P. Hall, "The classification of prime-power groups", Journal für die reine und angewandte Mathematik (Crelles journal), vol. 1940, no. 182, pp. 130-141, Jul. 1940, doi: 10.1515/crll.1940.182.130
[5] P. Hegarty, "The absolute center of a group", Journal of algebra, vol. 169, no. 3, pp. 929-935, Nov. 1994., doi: 10.1006/jabr. 1994.1318
[6] M. R. R. Moghaddam, F. Saeedi, and E. Khamseh, "The probability of an automorphism fixing a subgroup element of a finite group", Asian-european journal of mathematics, vol. 04, no. 02, pp. 301-308, Jun. 2011, doi: 10.1142/S1793557111000241
[7] M. R. R. Moghaddam, M. J. Sadeghifard and M. Eshrati, "Some properties of autoisoclinism of groups", Fifth International Group Theory Conference, Islamic Azad University, Mashhad, Iran, 13-15 March, 2013
[8] R. K. Nath and A. K. Das, "On a lower bound of commutativity degree", Rendiconti del circolo matematico di Palermo, vol. 59, no. 1, pp. 137-142, Apr. 2010, doi: 10.1007/s12215-010-0010-6
[9] R. K. Nath and M. K. Yadav, "Some results on relative commutativity degree", Rendiconti del circolo matematico di Palermo, vol. 64, no. 2, pp. 229-239, Mar. 2015, doi: 10.1007/s12215-015-0194-x
[10] M. R. Rismanchian and Z. Sepehrizadeh, "Autoisoclinism classes and autocommutativity degrees of finite groups", Hacettepe journal of mathematics and statistics, vol. 44, no. 4, pp. 893-899, 2015, doi: 10.15672/HJMS. 2015449442
[11] Z. Sepehrizadeh and M. Rismanchian, "Probability that an autocommutator element of a finite group equals to a fixed element", Filomat, vol. 31, no. 20, pp. 6241-6246, 2017, doi: 10.2298/FIL1720241S
[12] G. Sherman, "What is the Probability an Automorphism Fixes a Group Element?", The american mathematical monthly, vol. 82, no. 3, pp. 261264, Mar. 1975, doi: 10.2307/2319852

