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1. Introduction

Recently [1, 2], the notation of branch duplication in a tree has been intro-
duced and become a key tool in determining the possible lists of multipli-
cietes for the eigenvalues of symmetric matrices, whose graph is a tree. It
has long been known [3] that the diameter (measured in vertices) is a lower
bound for the minimum number of distinct eigenvalues.

Here we investigate a class of trees called seeds, and an analogous class
of rooted trees called rooted seeds. Seeds are the elemental trees with no
repeated structure, i. e. no branches have been duplicated. All trees may
be constructed from seeds via combinatorial branch duplication, so that
seeds capture the most basic structure of a tree.

Definition 1. Given a tree T' and a branch B emanating from vertex v,
(combinatorial) branch duplication (of branch B) is the process of produc-
ing a new tree T" from T by attaching a new branch identical to B at v; we
require that introducing this new branch does not increase the diameter of
the tree. A seed is a tree that cannot be produced from another tree by
branch duplication.

The requirement that diameter is not increased is an important feature
of the application of seeds to inverse eigenvalue problems, which we review
shortly. Rooted branch duplication and rooted seeds are defined analo-
gously for rooted trees, with the requirement that a ”branch duplication
does not increase the diameter” replaced by the requirement that ”the root
node does not lie in the branch to be duplicated”.

It will be shown (section 2) that each tree comes from a unique seed;
that is, no tree exists that can be produced by branch duplication from two
non-isomorphic seeds. Since this is the case, we may refer to the notion of
a tree being in the family of the seed from which it was produced, so that
families of distinct seeds do not intersect. Since all trees are in the family of
some seed, and the families do not intersect, these families partition trees
of a given diameter.

Example 2. The following tree is a seed, as at no vertex are there two
isomorphic branches.
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We may duplicate one of this tree’s branches in a way that does not
increase the diameter of the tree to obtain a tree in the seed’s family.

Figure 1: A seed of diameter 7.

Figure 2: A tree produced from the previous tree by branch duplication.

Seeds and branch duplication were originally defined in [1] for the pur-
pose of studying inverse eigenvalue problems. We will briefly describe this
important application.

Given a labeled graph G on n vertices, an n X n real symmetric matrix A
is said to have graph G if the off-diagonal entry a;; is nonzero precisely when
G has an edge between vertices i and j (diagonal entries are unrestricted).
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The inverse eigenvalue problem for a graph G asks: what are the spectra
of symmetric matrices with graph G? For this problem it is very useful
to know the possible lists of multiplicities of eigenvalues for a symmetric
matrix with graph G. A key element is the minimum number of distinct
eigenvalues that such a matrix must have.

Seeds are applied to the problem in the following way. When a tree
undergoes (combinatorial) branch duplication, it is possible to carry out
a similar process on a matrix corresponding to that tree called algebraic
branch duplication. The following theorem describes a key formula that
gives the result of performing branch duplication on a given graph, and
performing the corresponding algebraic branch duplication on its matrix.

Theorem 3 ([1], Theorem 1). Let T be a tree and A a matrix with
graph T. Let T" be a tree obtained from T by the (combinatorial) dupli-
cation of a branch B whose vertex labels are the row and column indices
of the principal submatrix C of A; let A’ be the matrix obtained from A
by the corresponding algebraic branch duplication. Then the matrix of T’
is A" and pa(x) = pa(x)pc(z), in which py(x) denotes the characteristic
polynomial of matrix M.

If we are able to construct a matrix A corresponding to a seed S with
the property that the eigenvalues of each branch (i.e. the eigenvalues of
the principal submatrix corresponding to the branch, as in Theorem 3) are
all eigenvalues of the whole matrix, then we may apply Theorem 3 to show
that any tree that can be obtained from S by branch duplication is the
graph of a matrix with no more distinct eigenvalues than A.

Since the minimum number of distinct eigenvalues among matrices
whose graph is a tree is bounded below by one plus the diameter of the
tree [3], by carrying out the process described in the previous paragraph
for all seeds of diameter less than 6, it is shown in [1] that every tree of
diameter less than 6 achieves this bound. (Note that [1, 2, 3] define diam-
eter in terms of vertices, which is convenient in the multiplicity literature.
Here, we measure diameter in terms of edges, which is common in graph
theory literature.)

More applications of seeds to inverse eigenvalue problems may be found
in [1, 2].

For these applications and possible others it is important to understand
the combinatorial aspects of seeds and branch duplication, and this is our
present purpose. In Section 2 we discuss the correspondence between trees
and seeds. In particular, we show that every tree has exactly one seed,
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from which it can be produced by branch duplication. In section 3, we
give an algorithm that determines the seed of a given tree. In Section 4
we enumerate the rooted seeds of a given height, and then use this result
to enumerate the seeds of a given diameter. Though it begins slowly, the
number of seeds of a given diameter eventually grows very rapidly

For clarity, we now record the basic definitions necessary for this paper.

By a tree we mean a simple undirected graph with no cycles and only
finitely many vertices. We will always use the modifier rooted when speak-
ing of rooted trees and seeds, i.e. trees with a distinguished vertex called
the root.

A branch of a tree is a subtree whose deletion leaves the resulting graph
connected. A branch may be defined by identifying a vertex and a direction
from that vertex, i. e. a neighbor.

The diameter of a tree is the number of edges in a longest path. Sim-
ilarly, the height of a rooted tree is the number of edges in a longest path
beginning at the root.

2. Seeds and Their Uniqueness for a Tree

In this section we show that every tree has a unique seed.

To prove that every tree has a unique seed it is useful to introduce
coloring. Consider the following process: begin with a seed whose vertices
are colored white, and perform a branch duplication, but color the vertices
of the new branch black. Repeat as desired. The result is a tree with black
and white vertices, whose subtree of white vertices is the seed from which
the tree was produced. Any tree produced in this way we call a colored
tree. For any tree T', there is at least one colored tree with underlying graph
T (by underlying graph we mean the same graph with coloring forgotten).
For ease of bookkeeping we denote colored trees and branches in the same
way as their underlying graphs, with a tilde added.

We also find it useful to recognize duplicates. A duplicate branch of a
tree T is a branch B such that upon deleting B to obtain a tree T”, the
trees T and T have the same diameter and T' may be produced from T’
by a single branch duplication. Note that in this case there is a duplicate
pair of identical branches B, B’ emanating from the same vertex of 7', and
there is an automorphism of T" which sends vertices of B to vertices of B’,
vertices of B’ to vertices of B, and fixes all other vertices.

There may be more than two identical branches attached to a vertex, i.e.
a branch may belong to more than one set of duplicate pairs. In this case
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it is convenient to recognize the full duplicate set of all identical branches
attached to that vertex. A minimal duplicate branch is a duplicate branch
which does not contain any duplicate branches, and we define similarly a
minimal duplicate pair.

Any tree can be obtained from a seed by a sequence of branch duplica-
tions, and the length of such a sequence (i.e. number of branch duplications)
for a particular tree is bounded e.g. by the number of vertices of the tree.
Define the duplicate branch number of a tree (or colored tree) to be the
length of a longest sequence of branch duplications that produces the tree
from a seed. A tree is a seed exactly when it has duplicate branch number
0.

To prove that every tree has a unique seed, we prove that colored trees
whose underlying graphs are isomorphic must have isomorphic white sub-
trees; this shows that the seed depends only on the underlying graph, not
the sequence of branch duplications used to produce it. We use induction
on duplicate branch number, and the following lemma ensures that we may
apply the induciton hypothesis after deleting an appropriate branch.

Lemma 1. Let T be a colored tree, andﬂN” a tree obtained by deleting a
black minimal duplicate branch B from T'. Then T’ is a colored tree with
duplicate branch number strictly less than T.

Proof. Toshow 1" is a colored tree we must show that it can be produced
from its white subtree by branch duplication.

A sequence of branch duplications may always be modified (without
changing the resulting tree) so that each duplication creates a minimal du-
plicate pair. First, if a branch of a seed contains a duplicate pair, then it
must be that deleting one of the duplicates would decrease the diameter of
the seed; but then duplicating the whole branch would increase the diam-
eter, since the diameter includes subpaths of the two duplicates. That is
why every branch duplication from a seed must produce a minimal dupli-
cate pair. Also, if a branch is duplicated and then a branch containing those
duplicates is duplicated, we may instead duplicate the larger branch first
and then in each of the resulting branches duplicate the sub-branch. By
repeatedly performing such replacements we obtain a sequence of branch
duplications producing T from its seed such that every duplication produces
a minimal pair. Note that these replacements do not affect the resulting
colored tree.

Now since B is minimal and black it must be that B was the result of
a single branch duplication. To produce T’ from its white subtree we may
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use the same sequence that produces T, leaving off the duplication that
produces B.

Also, by taking a longest sequence of branch duplications by which T”
can be produced, and extending by one branch duplication to produce T,
we see that the duplicate branch number of 7' must be strictly greater than
the duplicate branch number of 7. O

The next lemma is used to find an appropriate branch to delete before
applying the induction hypothesis.

Lemma 2. Ifa colored tree T which is not a seed has a full set of duplicate
branches colored white, then there is a pair of duplicate branches with
strictly fewer vertices.

Proof. If 7" has a full set of duplicate branches colored white, then
there must be exactly two such branches, for the white subtree (being a
seed) cannot contain three copies of a branch: any diameter of the seed may
touch at most two of the branches, so deleting the third cannot decrease
its diameter. Call these duplicate branches B, B/, and their shared parent
vertex v.

Since B and B’ are not duplicates in the seed, despite being identical
branches on the same vertex, it must be that deleting one of them reduces
the diameter of the seed. Thus every diameter of the seed passes through
B and B (and no other branch at v). However, B and B’ are duplicates
in T, so there is a diameter that does not pass through one of them.

No branch of the seed containing v can be duplicated, for this would
increase the diameter of the tree. Thus any branch duplication in the
sequence used to produce T must duplicate a branch at v or a sub-branch
of a branch at v. A new diameter cannot have been created by duplicating
a branch at v other than B or B'; if it was, then before the duplication
there must have been a diameter passing through this branch. For the
same reason a new diameter also cannot have been created by duplicating
a sub-branch of a branch at v.

It must be that in producing T from its white subtree one of B, B’
was duplicated; call the duplicate B”. By hypothesis B and B’ form a
full duplicate set, so B” is not a branch of T, and the only way this can
happen is if a proper sub-branch of B” was duplicated. This creates a
duplicate pair with strictly fewer vertices than B, B'. If these branches are
a duplicate pair in T, then we are done; if not, then it must be that a proper
sub-branch of one of them was duplicated, which creates a duplicate pair
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with still fewer vertices. Repeating, we must eventually find the desired
duplicate pair. O
We are now prepared to prove the main theorem of this section.

Theorem 3. Every tree has a unique seed from which it can be produced
by branch duplication.

Proof. Let 7,7’ be any two colored trees with isomorphic underlying
graphs T,T’; we seek to show that T,T' have isomorphic white subtrees.
We proceed by induction on the duplicate branch number of T' ~ T".

Suppose the duplicate branch number of 7'~ T" is 0, i.e. they are seeds.
Then T, T’ must be completely white, and any isomorphism between T', 7"
gives an isomorphism of the white subtrees of T,T.

Now suppose the duplicate branch number of T' ~ T” is greater than
0, and suppose the claim (that colored trees with isomorphic underlying
graphs have isomorphic white subtrees) is true for colored trees of smaller
duplicate branch number. Choose a full set of duplicate branches in T which
have the fewest vertices (per branch) of any set of duplicate branches, and
note that these are minimal duplicate branches; call them By, ..., By and
their colored analogues Bi,...,By. By choosing an isomorphism 7' — T’
we obtain a matching set of duplicates Bj, ..., B}, in T’ and B, ..., B% in
T'.

Since By, ..., By contain no duplicate branches each must be all white
or all black; also not all of them can be white for this would contradict
Lemma 5. The same argument applies to Bj,..., B;. Without loss of
generality Bl,éi are black, for we may reorder the indices to make B
black and choose an appropriate isomorphism to make Bi black.

By Lemma 4 deleting By, B} from T, T" results in a pair of colored trees
with duplicate branch number strictly less than that of T, 7". Also, the pair
have isomorphic underlying graphs, since there is an isomorphism 7" — T’
that identifies By with Bj. Thus we may apply the induction hypothesis
to see that the pair have isomorphic white subtrees. But since the deleted
branches B, Bi had no white vertices, it must be the case that T, T" have
isomorphic white subtrees. This completes the induction.

Since any seed from which a tree can be produced is realized as the
white subtree of some colored tree with that underlying graph, it follows
that any tree can only be produced from a single seed. O

A directly analogous proof gives Theorem 6 in the case that branch
duplication is allowed to increase the diameter of the tree; in fact, Lemma
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5 is no longer needed in this case, as duplicate branches can never be all
white if deleting branches may reduce the diameter.

3. Algorithm that Determines the Seed of a Tree

We know that each tree comes from a unique seed with given diameter.
We would like to have an algorithm that enables us to produce the seed
for a given tree. There are two main approaches for trimming a tree.
The first involves looking for the biggest branches that are duplicated,
trimming them, and repeating the search for the biggest branches. In
the other approach the focus is put on the smallest branches. If the tree
contains a small number of big duplicated branches the first algorithm
would be preferable. However in the general case this approach would
involve rechecking bigger branches after trimming smaller ones. In the
second approach we need to check each vertex only once. The algorithm
described here is based on the second approach.

Note that trees of odd diameter may have many longest paths that
achieve the tree’s diameter, but they all must share a single edge at the
midpoint of this path. We will call this edge the central edge of the tree.
Trees of even diameter may also have many longest paths, and all of these
paths must share a central vertex, which we will call the central vertex of
the tree.

For a tree with even diameter let us consider a rooted tree, for which the
central vertex is declared as a root. In the case of tree with odd diameter
let us consider two trees that are the result of removal of central edge
and the two vertices of this edge declared as roots in obtained trees. In
both cases each vertex can be labeled based on length of the shortest path
to the root. For trees with odd diameter the same colors are used for
labeling in both trees. Thus if the diameter is denoted as d, we have n
colors to choose with d = 2n for even diameter and d = 2n + 1 for odd
diameter. At each step of the algorithm the duplicated branches of vertices
of a particular color are trimmed, starting from the deletion of duplicated
pendent vertices. At each next step we focus on branches of a new particular
height, that is sequentially increasing, since all the duplicated branches of
smaller height were trimmed at the previous steps of the algorithm. The
final step considers the branches from the root. It differs for trees with odd
and even diameter. The algorithm can be described in detail as follows:

1. Let k denotes the length of a path to the root. Set k =n — 1.
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2. Let V,. denotes the root of tree or the two roots in subtrees for tree
with even diameter and odd diameter, respectively. Search for all the
vertices at distance k from V., i.e. Cyp = {v : min,d(v,V;) = k}.
For each vertex v in set Cj check if any of the branches of v are
duplicated. Trim duplicates, that appear.

3. Check if £ = 0. If yes go to step (4). If no, set k = k — 1 and go to

step (2).

4. a) If the diameter is odd, V, consists of two vertices. For each of
them check separately if any of its branches are duplicated. If

yes, trim duplicates.

b) If diameter is even, V, consists of only one vertex. Count the
number of branches of height n attached to V.. If all of these
branches are duplications of the same branch, then leave two

of them and trim the rest.

If there are at least two different

branches, then trim all the duplicates.

Note that reducing the number of branches of a tree with even diameter
will not decrease the diameter, since for each vertex in the root, at least

two branches of height n will remain.

An example of usage of the algorithm can be found in Figure 3
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Figure 3: Result of the algorithm for 50 vertices and diameter 9.
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The computational complexity of the algorithm can be tested by sim-
ulations. For this purpose trees with given numbers of vertices (namely
200, 400, 600 vertices) and different diameter were generated using the R
platform, version 3.1.3 [4]. For every tree produced the time of running the
algorithm was measured. The results of the tests are presented in Figure
4.
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Figure 4 Computational complexity of the algorithm for trees with chosen
number of vertices and diameter.

4. Enumeration of Seeds of a Given Diameter

Using some helpful facts about seeds, we are able to construct a function
that returns the number of different seeds of a given diameter. To do this,
we will show that unrooted seeds may be decomposed into a set of rooted
seeds. Then we will enumerate the rooted seeds of a given height. The
problem is then reduced to counting the number of decompositions.

4.1. Breaking Down Seeds Using Rooted Seeds
We use again the notations of ”central edge” and ”central vertex” of a tree.
Lemma 1. A tree of diameter 2n+1 is a seed if and only if the removal of

its central edge and declaring the two vertices of this edge as roots in the
two resulting tree, results in two rooted seeds.
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Proof. Since rooted seeds are free of branch duplication, two height
n rooted seeds can be attached by their roots, and the resulting tree will
also be free of branch duplication. To see the reverse, notice that cutting a
seed at its middle edge must result in two rooted seeds that do not feature
rooted branch duplication, for if such a duplicate existed the original tree
would not have been a seed. O

Lemma 2. A tree of diameter 2n is a seed if and only if the removal of its
central vertex, then declaring all its neighbors as roots in their branches,
results in either a forest of different rooted seeds with at least two rooted
seeds of height n—1, or a forest of different rooted seeds of height less than
n — 1 together with exactly two identical rooted seeds of height n — 1.

Proof. Since rooted seeds are free of branch duplication, any set of
unique rooted seeds of height < n — 1 may be added to the central vertex
to create a seed, so long as at least 2 height n — 1 rooted seeds are added to
ensure the desired diameter. If no more than 2 height n—1 rooted seeds are
added, those two seeds are permitted to be identical; they cannot be the
result of branch duplication because the removal of either would decrease
the diameter of the tree. This process must result in the creation of a seed
because the rooted seeds themselves are free of branch duplication, and the
restrictions on their uniqueness prevent them from being duplicates of each
other.

For the converse, removal of the central vertex must result in rooted
seeds, since the seed itself has no occurrences of branch duplication. These
rooted seeds must be unique to avoid branch duplication, with the one
exception being the possibility of the only two height n — 1 rooted seeds
being identical. In either case, there must be at least two components of
height n — 1, since the diameter of the original seed was 2n. O

Since all odd diameter trees have a unique central edge, and all even
ones have a unique central vertex, a set of rooted seeds conforming to the
conditions of the above lemmas must produce a seed once connected by
the central component of the tree. Any such “gluing” of rooted seeds is
unique; seeds can be characterized precisely by the collection of rooted
seeds connected to their central vertex or edge. Thus, counting seeds of
diameter n simply amounts to counting the number of valid sets of rooted
constituent seeds.
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4.2. The Number of Rooted Seeds

Since seeds are just rooted seeds glued together, it will be helpful to count
the number of rooted seeds of a given height. Fortunately, a lemma can
reduce counting rooted seeds to a decomposition problem similar to that
for unrooted seeds.

Lemma 3. A rooted tree of height k is a rooted seed if and only if the
removal of its root, together with the marking of each of its neighbors as a
root in its own branch, results in a forest of distinct rooted seeds, among
which the maximum height is k — 1.

Proof. Since at no vertex of a rooted seeds do duplicate branches occur,
a collection of distinct rooted seeds, whose maximum height is & — 1 may
be attached at their roots to a designated new vertex to form a new rooted
seed of height k, when the new vertex is designated as the root in a new
tree.

For the converse, removal of the root from the rooted seed must a) leave
only rooted seeds, since there are no duplicated branches at any vertex of
the seed, and b) the resulting forest of rooted trees can include no dupli-
cates, else the original rooted seed would have been the result of branch
duplication in a smaller tree. Removal of the root must decrease the height
of the remaining rooted trees, with any one in whose direction the height
k was attained now being height k-1. O

Thus, a set of rooted seeds conforming to the conditions of the above
lemma must produce a new seed when attached by their former roots to
a new vertex designated as a root. Any such “gluing” of rooted seeds to
form a new one is unique, so that rooted seeds are characterized by the list
of smaller rooted seeds attached to their root. Thus, the number of rooted
seeds of height k is precisely the number of sets of different rooted seeds,
among which the maximum height is £ — 1. We will call such a set the
component set of a given rooted seed.

We may now give a recursive formula fora,,, the number of rooted seeds
of height < n. Clearly ag = 1, for the only rooted tree of height 0 is a lone
root. To find a,, we just have to count the number of component sets of
height < n. Since there are a,,_1 rooted seeds of height < n, a, is simply
the number of ways of choosing a subset of a set of cardinality a,_1 things.
Thus, a, = 2%-1. Recall that the notation
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(4.1) ab= a®
~—
btimes

represents a being raised to its own power b times. Since each term is 2 to
the power of the previous term, we have a,, = 2n.
Thus, writing r, for the number of rooted seeds of height n, we see that

(4.2) Tn =ap — ap—1 =2n—2(n —1).

4.3. The Number of Seeds

Now that we know the number of rooted seeds of height n, we can count
the number s,, of seeds of diameter n in a similar manner. Since any seed
of diameter 2n + 1 is just two rooted seeds of height n connected by an
edge joining their roots, sa,,41 is simply the number of ways of pairing any
two such rooted seeds together. Repeats are allowed, so we find that

(4.3) Soni1 = (g”) 4, = (Tn)(gn +1)

_ [(2n) = (2= 1))][(20) = (20— 1)) +1] |

2

Counting the number of seeds of diameter 2n is similar to counting the
number of rooted seeds of height n. In fact, the two are the same. To count
the number b,, of seeds of even diameter no more than 2n, all we need to
do is count the number of valid sets of rooted seeds that compose a seed of
even diameter < 2n. This is simply the number of collections of different
rooted seeds of height no more than n — 1, minus the number of such sets
in which there is exactly one rooted seed of height n — 1, plus the number
of sets that are different except for their containment of exactly two rooted
seeds of height n — 1 that are identical. However, the number of sets that is
being subtracted from the set of different rooted seeds is the number of sets
that are being added to it, since the sets in the second category are simply
those in the first category with a copy of the unique rooted seed of height
n — 1 added a second time. Thus, the number of seeds of even diameter no
more than 2n is simply the number of collections of different rooted seeds
of height <n — 1, and

(4.4) by = 2071 = 22001 — 9y
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So the number of seeds of diameter exactly 2n is

(4.5) son = bn = bp1 = (20) = (2(n— 1)),
Thus, the function
(4.6) so0 = (2n) = (2(n - 1))
W) s [(2n) = (200 - 1)] [(22n) - (2(n = 1)) +1] s
(4.8) s =1

gives the number of seeds of a given diameter.
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