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1. Introduction

Throughout this work a space will always mean a topological space in which
no separation axioms is assumed unless explicitly stated. If A is a subset of a
space (X, 7) then the closure of A, the interior of A and the relative topology
on A in (X, 7) will be denoted by CI(A), Int(A) and T4, respectively.

Let A be a subset of a space (X, 7). A subset A is called a regular open
subset of (X, 7) if A= Int(Cl(A)). The family of all regular open subsets
of (X, 7) is denoted by RO(X, 7). The complement of a regular open set
is called regular closed. A subset A is called j—open [14] if and only if for
each x € A there exists a regularly open set G such that x € G C A. It
is well know that the collection of all §—open sets in a topological space
(X, 7) forms a topology 75 weaker than 7 [12]. The space (X, 75) is also
called the semigeneralization topology of (X, 7) [12]. The complement of
a d—open set is called d—closed [14]. A point z € X is called a j—cluster
point of A if and only if Int(CI(V))NA = ¢, for each open set V' containing
x. The set of all §—cluster points of A is called the j—closure of A [14],
which is denoted by Cls(A). A space (X, 7) is said to be semi—regular [12]
if 75 = 7. Any regular space is semi-regular, but the converse is false. A
family {Aq}aca of subsets of a topological space X is locally finite [8] if
for every point x € X there exists a neighbourhood U such that the set
{a e A:UNA, = ¢} is finite.

Let A be any subset of a space (X, 7). Then a point z € X is called a
condensation point [9] of A if for each U € 7 with € U, the set UN A
is uncountable. The set A is called w—closed if it contains all its conden-
sation points. The complement of an w—closed set is called w—open or
equivalently A is w—open [2] if for each x € A, there exists an open set U
containing x such that U — A is countable. The family of all w—open subsets
of a space (X, 1), denoted by 7, forms a topology on X finer that 7. The
w—closure of a subset A of a space (X, 7) is the closure of A in the space
(X, 7Tw), and it is denoted by Cl,(A). A space (X, 1) is called anti—locally
countable [2] if each non-empty open subset of (X, 7) is uncountable.

Let A be a subset of a space (X,7). A subset A is called a regular
w—open [13] subset of (X, 7) if A = Int(Cl,(A)). The family of all regular
w—open subsets of (X, 7) is denoted by RwO(X). The complement of a
regular w—open set is called regular w—closed. The class of Rw—open sets
forms a base for some a topology on X denoted by 75_,. A point z € X
is called a d,—cluster point of A [1] if and only if Int(Cl,(V)) N A = ¢,
for each open set V' containing x. The set of all §,—cluster points of A is
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called the d,—closure of A [1], which is denoted by Cls_ (A). A subset A
of a space X is called d,—closed [1] if and only if A = Cls_ (A) and it is
called 6,—open if and only if it is complement is d,,—closed and the set of
all d,,—open sets form a topology denoted by 75, and equal to 75_. In [1],
we show that a subset A is d,—open if and only if for each = € A there
exists a regularly w—open set G such that z € G C A.

Generalized semiclosed [3]( resp., a—generalized closed [11], §—generalized
closed [6], 0—generalized closed [5]) sets are defined by replacing the clo-
sure operator in Livine’s original [10] by the semiclosure (resp., a—closure,
f—closure, d—closure) operator.

In section 2 of this work, we follows a similar line to introduce §,,—generalized
closed sets by using the d,—closure operator. Also we define generalized
S,—closed and 0% —generalized closed, then we study some of relation-
ship between them. In section 3, we introduce and study some of topo-
logical properties of §,—generalized closed sets. In section 4, we intro-
duce d,—continuity and J,—irresoluteness and study some of its charac-
terizations. We introduce §,,g—continuity and d,,g—irresoluteness by using
d,g—closed sets and study some of their fundamental properties.

In this paper R, Q and N denote, respectively the set of real numbers,
the set of rational numbers and the set of natural numbers.

Now we begin with some notations, definitions, and result will be used
in this work.

Proposition 1.1. [I] A topological space (X, T) is connected if and only
if (X, 75,) is connected.

Theorem 1.2. [I] Let (X, 7) be a topological space. Then:
1. 7sCr7s, C7T.

2. If (X, 1) is regular, then 75 = 15, = T.

Proposition 1.3. [1] Let (X, 1) be a topological space and let A C X.
Then:

1. For each A € 1, Cls,(A) = Cl(A).
2. For each A € 7, Cls(A) = Cls,(A) = Cl(A).

Lemma 1.4. [1] Let (X, 7) be an anti-locally countable space, then (75, )sw =
s -

w



1418 A. Rawshdeh, H.H. Al-Jarrah, E.M. Alsaleh and K. Y. Al-Zoubi

Theorem 1.5. [1] Let (X, 7) and (Y, o) be two topological spaces. Then
(T x0)s, C 75, X 05,

Definition 1.6. [4] A function f : (X,7) — (Y,0) is called g—continuous
if f7Y(V) is g—closed in (X, 7) for every closed set V of (Y, o).

Theorem 1.7. [8] For every locally finite family {As}aca we have the
equality Cl ( U da| = U Cl(Aa).

aEA aEA

Recall that a subset A of a space (X,7) is called generalized closed
[10] (resp. O0—generalized closed [5]) if CI(A) C U (resp. Cls(A) C U)
whenever A C U and U is open in (X, 7) and we will denoted by g—closed
and dg—closed; respectively. A topological space (X, 7) is called T% -space
[10] if every g—closed set is closed, (equivalently, every singleton is either
open or closed [7]).

2. §,—generalized closed sets

Definition 2.1. A subset A of a space (X, ) is called generalized d,,— closed
(reps. 6, —generalized closed, 60 —generalized closed) if CI(A) C U (resp.
Cls,(A) C U, Cls,(A) C U) whenever A C U and U is d,—open (reps.
U is open, U is d,-open). Respectively, we will briefly it by gd,,—closed,
S.,9—closed and 8% g—closed.

We denote the family of all generalized d,,—closed (reps. d,,—generalized
closed, 52‘” —generalized closed, dg—closed, g—closed) subsets of a space
(X, 1) by G6,C(X,7) (resp. 0,GC(X,7), %*GC(X,T), sGC(X,T), GC(X,T)
). It is note that 6%*GC(X,7) = GO(X,75,).

Observe that if (X, 7) is a locally countable space or regular space, then
75, = 7 and so GC(X,7) = G6,C(X,7) = 6,GC(X, 1) = 8% GC(X, 7).

The following implications follows from the definitions and the fact that
for any space (X,7), 75 C 75, C 7.

closed - GC(X, 1) — G6,C(X, 1)

7 7 1
§y—closed — 0,GC(X,7) — 8»GC(X,T)
7 7

d—closed — dGC(X, 1)
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Example 2.2. Let X = {1,2,3} with the topology 7 = {¢,X,{1,2}}
and let A = {1,3}. Since the only open superset of A is X, then A €
doGC(X,T). But A is not ¢,-closed.

Example 2.3. Let X = R with the topology 7 = {¢}U{U C X : R—Q C
U} and let A ={1}. Then U = (R — Q)U{1} is an open set in (X, ) such
that A C U and Cls,(A) =R CU. So Ae GC(X,1) - §,GC(X, ).

Example 2.4. Let X = R with the topology 7 = {¢,R,R — Q} and let
A = {/2}. Then A € G§,C(X,7). On the other hand, A ¢ GC(X,T)
since ACR—-—QéeTand Cl(A) =X CR-Q.

Example 2.5. Let X = R with the topology 7 = {¢} U{U C X : 0 € U}
and let A = R — Q. Note that 7, = 74;s and so 75, = 7. On the other
hand, 75 = Tipg. Thus A € 0,GC(X,T), but A ¢ 6GC(X, 7).

Example 2.6. Let X = R with the topology 7 = {¢,R,{0},[0,00)} and
let A= {1}. Then A € §GC(X, 7). But A is neither g—closed in (X, )
nor 0,9—closed in (X,7). Note that A C [0,00) € 7 and Cls, (A) =
Cl(A) =R — {0} C[0,00).

In the following theorem we will show what the additional conditions
that make the reversal of previous relationships is true.

Theorem 2.7. Let (X, 7) be a space and A be an open subset of X. Then
the following are equivalent:

1. Aeé,GC(X,T).
2. AedGC(X,T).
3. Ae GC(X,1).
Proof. The proof follows from the Proposition 1.3. O
It is note that for an element x € X, the set X — {z} is d,g—closed or

open. To show that suppose X — {z} is not open. Then the only open set
containing X — {z} is X. Hence X — {z} is J,g—closed set in X.

Theorem 2.8. Let (X, 7) be an anti-locally countable space. Then A €
6.GC(X,7s,) if and only if A € 3% GC(X, 7).
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Proof.  The proof follows immediately from Lemma 1.4. O

Theorem 2.9. A space (X, 7) is a T1-space if and only if every §,,—generlized
2
closed set in (X, T) is closed in (X, T).

Proof.  Necessity. Let A C X be §,,—generalized closed. Since (X, 7) is
a T% -space and every §,—generalized closed set is g—closed so A is closed.

Sufficiency. Let z € X. If {z} is not closed, then B = X — {z} is not
open and thus the only superset of B is X. Trivially, B is é,—generlized
closed. By assumption, B is closed or, equivalently, {z} is open. Thus,
every singleton in (X, 7) is open or closed. Hence, (X, 7) is a T% -space. O

Theorem 2.10. Let (X, ) be T% space. Then the collection of §,,g—closed
in (X, 1) coincided with the collection of ¢, —closed sets in (X, T).

Proof. Let z € Cl;s,(A). Since (X, 1) is T%, so either {z} is open or
closed in (X, 7). If {x} is open, then z € A. Now if {z} is closed in (X, 7),
then X — {z} € 75, . Suppose that © ¢ A. Then A C X — {z}. As
A is §yg—closed in (X, 7) so Cls, (A) € X — {x}, which contradicts the
assumption. Therefore, A is §,,—closed set in (X, 7). O

Proposition 2.11. If every {z} is d,— closed in (X, 7) or RwO(X) then
every d,9—closed in (X, T) is closed in (X, 7).

Proof. Let A € §,GC(X,7) and suppose that x € CI(A). If {z} €
RwO(X), then x € A. Suppose that {z} is d,— closed in (X,7), and
x ¢ A. Then z € Cl(A) — A C Cls,(A) — A, which is impossible. Thus
Cl(A)=A. O

Proposition 2.12. If A € 6,GC(X, 1), then Cls_ (A)— A does not contain
a nonempty closed set in (X, 7).

Proof. Assume that F' is a closed subset of (X,7) such that F C
Cls,(A)—Aandso AC (X —F) € 7. Thus Cls, (A) C (X — F). It follows
that FF C X — Cl;_(A). Therefore, F' C (X — Cl;s,(A)) N (Cls,(A)). Thus
F=¢. O

Corollary 2.13. If A € §,GC(X,7) and Cls, (A) — A is closed then A is
0, —closed.
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Proof.  Since Cls,(A) — A is closed and Cls, (A) — A C Cls,(A) — A
so by Proposition 2.12, Cls_ (A) — A = ¢. Thus Cls,(A) = A and so A is
O,—closed. O

Theorem 2.14. Let (X, 7) be an antilocally countable space. Then (X, T)
is a Th—space if and only if every 0,9—closed set in (X, T) is dw—closed in
(X, 7).

Proof. Necessity. Let A C X be d,—generalized closed and let x €
Clsw(A). Since (X, 7) is T1, then {z} is closed and thus by Proposition
212, z ¢ Cls,(A) — A. Since x € Cls,(A), then x € A. This show that A
is d,—closed set in (X, 7).

Sufficiency. Let x € X and suppose that {z} is not closed. Then
B = X — {z} is not open, and thus B is ¢,g—closed in (X, 7). Therefore,
by assumption, B is d,—closed, and thus {z} is d,—open. So there exists
U € 7 such that x € U C Int(Cl,(U)) C {z}. It follows that U ia a
nonempty countable open subset of (X, 7), a contradiction. O

The proof of the following lemma is clear.

Lemma 2.15. Let (X, 7) be any space such that (X, 7s5) is a Th—space.
Then A is 6,,—closed in (X,7) if and only if A € §8%GC(X,T).

3. Some properties of §,—generalized closed sets

In this section we introduce and study some of topological properties of
d,—generalized closed sets.

From the definition of §,—generalized closed sets we can get the follow-
ing definition.

Definition 3.1. A subset A of a space (X, 1) is called d,—generalized
open( briefly §,g—open) if its complement X — A is 0,,—generalized closed.

Proposition 3.2. A subset A of a space (X, 1) is 0,,—generalized open if
and only if ' C Int, (A), whenever F' C A and F is closed in (X,T).

Proof. The proof follows immediately from the definition. O

Theorem 3.3. Let A be d,,—generalized closed in a space (X, 7). If B C X
such that A C B C Cls_(A), then B € 6,GC(X, 7).
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Proof. Let U € 7 such that B C U. Then A C B C U. Since A €
0,GC(X,T), Cls, (A) C Cls,(B) C Cls,(Cls, (A) = Cls,(A) C U. Hence
B € $,GC(X,T). O

The following Theorem and example show that the finite union of
0, —generalized closed sets is §,,—generalized closed but the countable union
of d,,—generalized closed sets need not be J,,—generalized closed.

Theorem 3.4. Union of two é,—generalized closed sets in (X, T) is
0, —generalized closed set.

Proof. Let A and B be two d,,—generalized closed sets in a space (X, 7).
Let U € 7 such that AUB CU. Then A C U and B C U. Since A,B €
0.GC(X,T), Cls, (AU B) = Cls,(A) U Cls,(B) € U. Thus AU B is
d,—generalized closed. O

Corollary 3.5. 1. Finite union of §,,—generalized closed sets in (X, T)
is d,—generalized closed set.

2. Finite intersection of §,,—generalized open sets in (X, T) is §,,—generalized
open set.

To show that a countable union of §,—generalized closed sets need not
be é,—generalized closed set we consider the following example.

Example 3.6. Let X = R with the usual topology. For each n € N, put

A, =[11] and A= |J A,. Then for each n € N, A,, € §,GC(X,7), so
neN
A is a countable union of 6,—generalized closed sets but A ¢ 6,GC(X, )

since U = (0,5) € 7,A C U and Cls,(A) C U. Note that 0 € Cls,(A) but
0¢U.

The following example shows that the intersection of two J,,—generalized
closed sets in (X, 7) may fail to be ¢, —generalized closed set.

Example 3.7. Let X = {1,2,3,4,5} and 7 = {¢, X, {1,2},{3},{1,2,3}}.
Set A = {1,3,4} and B = {2,3,5}. It is easily to proof A and B are two
dw—generalized closed sets. But AN B = {3} ¢ 0,GC(X,T).

Theorem 3.8. The intersection of a ¢, —generalized closed set in (X, )
and 0,,—closed is always d,—generalized closed.
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Proof. Let A € §,GC(X,7) and B be ¢,—closed in (X, 7). Let U be
an open set in (X, 7) such that ANB CU. Then ACUU(X — B) € .
Since A € §,GC(X,T), Cls,(A) C UU (X — B). Now, Cl;,(ANB) C
Cls,(A) NCls,(B) = Cls,(A)nB C (UU(X —B))NB C U. Hence
ANBe,GC(X,T). O

Let {(Xq,7a) : @ € A} be a collection of topological spaces such that
XaNXg = ¢ for each a = B. Let X = aLgJA X, be topologized by 75 =

{GC X :GNX, €71, for each & € A}. Then (X, 75) is called the sum of
the spaces {(Xq4, 7o) : @ € A} and we write X = @A Xa.

ac
Theorem 3.9. [1] For any collection of spaces {(Xq, 7o) : @ € A}, we have

(7s)s, = (Taaw )s-

Theorem 3.10. Let {(X,,7,) : a@ € A} be a collection of spaces and
A= UA A, such that A,, C X,,, then:
ac

1. Cl(‘rao)gw (AOéo) = Cl(Ts)éw (Aao)'
2. U Cl(.,.a) (Aa):Cl(rs) (A).

acA dw S

Proof. (1) Letz € Clir,y)s, (Aq,) and let W € (75)s, such that x € W.
Then by Theorem 3.9, W € (7q,,)s , ie. WNX,, € T(ao)s,, and so
¢ =WnXa, NAq, = WNAg,. Therefore, z € Clir), - (A, ). Conversely,
let = € Cl,), (Aq,) and let W € (7,,)s, such that x € W. So for each
a = ao, WN X, = ¢ and so by Theorem 3.9, W € (745 )s = (75)s,,-
Therefore, W N Aa, = ¢. Thus z € Clr, ), (Aay)-

(2) Since (75)s,, isatopology on X ,s0 U Cl(r,). (Aa) = U Clz,), (Aa) C

acA w a€A w

Clir,),, (QLGJAAQ) = Clr,), (A). Conversely, let x € Cl(.) (A). Then

5
there exists a, € A such that x € A,,. Let W € (74, )5, such that z € W.
Then by Theorem 3.9, W € (75)s,, and since z € Cl(y,), (4), ¢ = ANW =

(agAAa), NW=WnA,,. Thus z € Cl(Tao)aw (As,) C aLeJA Cl(Ta)éw (An)-
g

Theorem 3.11. Let {(Xn, 7o) : @ € A} be a collection of spaces and
A= UA A such that A, C X, for each o € A. Then A, is §,,—generalized
ae

closed in (X, 7,) for each o € A if and only if A is §,—generalized closed
in (X, 75).
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Proof. Let W € 75 such that A C W. For each o« € A, A, = AN X, C
WnX,and WnNX, €7, Since A, is J,—generalized closed in (X, 4),
Cl(Toc)(sw (Aa) C W n X, Hence, CZ(TS)% (A) = UCZ(TQ)% (Aa) - U(W N
Xo) = W. Therefore, A is d,— generalized closed in (X, 7,) . Conversely,
Fix a, € A and let W, € 7,, such that A,, € W,. Then W = W, U

( U Xq) is an open set in (X, 7s) such that A C W. Then Cl() (A) C

a=ao Sw

W. By Theorem 3.10, UCl,)  (Aa) € W. To show that Cl(,, ) (4a,) C

W, let zo € Cl(mo)(g (Aa,). Then x, € W. Since z, € X,,, then z, ¢ X,

for all @ = a, and so ¥, € Wo. Therefore, Cl (Ao,) € W,. Thus A,,

Tao)éw
is d,— generalized closed in (X,,, 7, ). O

Theorem 3.12. Let { Ay }aen be locally finite family in (X, 75,) such that

Ay € 0,GC(X,T) for each a« € A. Then A = |J A, € 0,GC(X, 7).
aEA

Proof. Let A C U and U be an open set in (X, 7). Since A, €
doGC(X,7) and Ay, € A C U for each o € A, Cls,(Ay) € U. Since

{Au}aea islocally finite in (X, 75, ), by using Theorem 1.7, Cls, U (UA,) =
acA
U Cls,(Ax) € U U =U. Therefore, A= |J A, € 0,GC(X, 7). O
e ach aEA

Theorem 3.13. For a topological space (X, ) the following conditions are
equivalent:

1. The open sets in (X, 7) are clopen in (X, T).
2. If AC X, then A € §,GC(X,T).

Proof. (1 —2)Let AC U, where U € 7. Then U is clopen in (X, 7) and
so it is clopen in (X, 75,) by Proposition 1.1. Therefore, Cl;, A C Cls U =
U.
(2 — 1) Let U C X be open. Since U € §,GC(X, 1), Cls, U C U, so
Cls,U =U. Thus U is d,—closed and so it is closed. O

The following is nontrivial example that demonstrate the above theo-
rem.

Example 3.14. Let X = R with topology 7 = {¢,X,Q,R — Q}. Then
75, = 7. Forany A C X, A= HUL where H C Q and L C R - Q.
If H = ¢ and L = ¢, then the only open set containing A is X and so
A € §,GC(X, 7). Now, suppose L = ¢ and let U € T such that A C U.
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Then U = Q or U = X. For U = Q, the Cls,(A) = Cl(A) = Q C Q.
Therefore, A € 6,GC(X,T). By the same way, we show that if H = ¢,
then A € 6,GC(X, ).

Proposition 3.15. [I] Let (X, ) be a topological space. If A € T, then
(75.)4 = (Ta)s,-

The relationship between the é,,—generalized closed sets and the
d,—generalized closed sets of the subspace will be given in the next theorem.

Theorem 3.16. Let (Y,7y) be an open subspace of a space (X,7) and
A CY. Then the following hold:

1. If A € 0,GC(X,T), then A € §,GC(Y,1y).

2. If A€ ,GC(Y,1y) and Y is 6, —closed, then A € 6,GC (X, ).

Proof. (1) Let V € 7y such that A C V. Then V = U NY for some
U e 7. Since A € 0,GC(X,7) and A C U, Cls,(A) C U. Tt follows that
Cls,(A)NY CUNY = V. Since Y is open in X so, by Proposition 3.15,
CZ(TY)% (A) = Cl(6w)ry (A) = Clgw (A) NY CV. Thus A € 5WGC(Y, Ty).
(2) Let U be an open set in (X, 7) such that A CU. Then ACUNY €
Ty. Since A € §,GC(Y,7y) and Y is open in (X, 7), by Proposition 3.15,
Clizy),, (A) = Clis),, (A) = Cls, (A)NY CUNY. As Y is §,—closed in
(X,7) s0 Cls,(A) = Cls,(ANY) C Cls,(A)NCls, (V) =Cls,(A)NY C
UNY CU. Therefore, A € 6,GC(X,7). O

The condition that Y is §,—closed in (X, 7) in Theorem 3.16, can not
be dropped as we see in the following example.

Example 3.17. Let X be an uncountable set and let A be a subset of X
such that A and X — A are uncountable. Let 7 = {¢, A, X}. If Y = A,
then A € 6,GC(Y,1y) — 6,GC (X, T).

Theorem 3.18. Let (X, 7) and (Y, o) be two spaces. If AxB is a §,,g—open
subset of (X x Y, 7 x o), then A is a d,9—open set in (X,7) and B is a
dwg—open in (Y, o).
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Proof. Let F4 be a closed subset of (X,7) and let Fp be a closed
subset of (Y, o) such that Fy C A and Fp C B. Then F4 x Fp is closed
in (X xY,7 x o) such that F4 x Fg C A x B. By assumption, A x B €
dwGCO(X XY, 7 x 0) and so Fa x Fg C Int(;xy), (A x B) C Intr; (A) x
Intss (B) by using Theorem 1.5. Therefore, Fa C Intr; (A) and Fp C
Intss (B). Thus A € §,9—open set in (X,7) and B € d,g—open set in
(Y,0). O

Theorem 3.19. Let (X, 7) be a normal space. If F N A = ¢, where F is
closed and A € §,GC(X, ), then there exist two disjoint open sets G and
H in (X, 7) such that F C G and A C H.

Proof.  Suppose that(X,7) is normal and FNA = ¢. Then, AC X — F
and X — F' is open. Since A € 0,GC(X,7), Cls5,(A) C X — F. That is
Cls,(A) N F = ¢, this implies that Cls, (A) and F are disjoint closed sets
in the normal space (X, 7). Then there exist disjoint open sets G and H
such that F C G and A C Cls,(A) C H. O

4. 0,g—continuous functions and j,g—irresolute functions

In this section we introduce d,g—continuity and ¢, g—irresoluteness by us-
ing d,g9—closed sets and we study some of their fundamental properties.

Definition 4.1. A function f : (X,7) — (Y, 0) is said to be

1. 6,9—continuous if f~*(V) is 6,9—closed in (X, T) for every closed set
V of (Y,0).

2. §,g—irresolute if f~1(V) is§,g—closed in (X, T) for every 6,g—closed
set V of (Y, o).

It follows from the definitions that a function f : (X,7) — (Y,0) is
8,g—continuous (8, g—irresolute) if and only if f~1(V) is d,g—open in
(X, 7) for every open (d,g—open) subset V of (Y, o).

The following two examples show that for any function f : (X,7) —
(Y, o), the §,g—continuous and d,g—irresolute are independent notions.

Example 4.2. Let X = {1, 2,3} with the topologies T = {¢, X, {1}, {3},{1,3}}
and o = {¢, X, {1}}. Let f:(X,7)— (X,0) be the function defined by



On Generalized 6,— Closed Sets 1427

f(x)—{; oy

Then f is d,,g—continuous but it is not d,g—Iirresolute.

Example 4.3. Let (X, 7) and (Y, 0) be spaces that defined in Example 4.2
and define the function f : (X,7) — (Y,0) as

f(z) = { ; ’z i ? 3 Then f is é,,g9—irresolute but it is not d,,g— continuous.

Theorem 4.4. Let f : (X,7) — (Y,0) be a §,9—continuous. Then f is
d,g—Iirresolute, if one of the following holds:

1. f is bijective and open function.

2. f is closed function.

Proof. (1) Let V € 6,GC(Y,0) and let U € 7 such that f~1(V) C U.
Clearly V' C f(U). Since f(U) € o, and V € §,GC(Y,0), then Cls (V)
C f(U) and f~Y(Cls,(V)) C U. Since f is §,,g— continuous and Cls, (V) is
a closed subset of Y, then Cls_(f~*(Cls,(V))) C U and Cls, (f~1(V)) C U.
Thus, f is d,g—irresolute.

(2) Let A be a d,9—open subset of (Y,0) and C C f~1(A), where C is
a closed set in (X,7). Then f(C) is closed in (Y, o) such that f(C) C
A. Since A is d,g—open in (Y,0), f(C) C Int,, (A) and thus C' C
S (Intss (A)). Since f is é,g—continuous and Int,; (A)is openin (Y,0),
then f~!(Inty; (A))is d,g—openin (X, 7). Since C C Inty (f~'(Intss (A))) C
Intr; (f~'(A)), then f is 6,g—irresolute. O

Example 4.2 shows that the condition that f is bijective in part (1) and
closed in part (2) in Theorem 4.4 can not be dropped.

Corollary 4.5. Under the same assumptions of Theorem 4.4 part (1), If
(X,7) is Ty, then (Y,0) is T%.
2

Proof. LetV € §,GC(Y,0). Since f is d,g—irresolute, then f~1(V) €
0,GC(X, 7). But (X,7)is T%, therefore, by Theorem 2.9, f~1(V) is closed
in (X,7). Thus f(f~1(V)) = V is closed in (Y, ) since f is bijective and
open function. O

Let f:(X,7) — (Y,0) be a function. Then a function fg:’ (X, 715,) —
(Y,05,) (vesp., fs, : (X,75,) — (Y,0), fO% : (X,7) — (Y,05,)) associated
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with f is defined as follows: fg: (z) = f(z) (vesp., fs, (x) = f(z), fo(x) =
f(x)) for each = € X.

The proof of the following results follow immediately from the Definition
2.1.

Theorem 4.6. Let f: (X,7) — (Y,0) be a function:
1. If f5, is continuous, then fg: is continuous.
2. If fg+ Is continuous, then fo is §,,g—continuous.
3. If fs, is continuous, then f is 6,g—continuous.

4. If f is d,9—continuous, then f is g—continuous.

5. If f is §,g—irresolute, then f% is 6,g—continuous.

The next examples will show the reverse implications are not necessarily
true.

Example 4.7. (1) Let X = R with the topologies T = {¢, R,R — Q} and
o= {¢,R,{0},[0,00)}. Let f: (X,7) — (Y,0) and g : (X,7) — (X,7)

be the identity functions. Then f% is §,g—continuous but fg;” is not
continuous since 75, = Tipnq. On the other hand g?: is continuous but gs_

is not continuous.

(2) Let X = R, with the topologies 7 = {U : R—Q C U} U {¢} and
o={¢,X,R—{1}}. Let f: (X,7) — (X,0) be the identity function.

One can easily check that 15, = T;nqg and f is g—continuous but it is not
0, g—continuous.

(3) Let X = {1, 2, 3}, with the topologies 7 = {¢, X, {1, 2}} and 0 =

{6, X,{2}}. Let f:(X,7)— (X,0) be the identity function. It is easily
to observe that f is d,, g—continuous but fs_ is not continuous.

(4) Consider the function given in Example 4.2. Then f% is 6,9—continuous
but f is not d,g—irresolute.

The proof of Theorems 4.8 and 4.10 follows directly from definitions and
Theorem 2.10.

Theorem 4.8. Let f : (X,7) — (Y,0) be a function such that (X, 1) is
7.

2
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1. If f is 6,9—continuous, then fs_ is continuous.

2. If f is §,g—irresolute, then fgj is continuous.

The following example shows that the condition that (X,7) is 71 in
2
Theorem 4.8 (2) cannot be drop.

Example 4.9. Let X = R, with the topologies T = {¢,R,R — Q} and
0 = Tina- Let f : (X,7) — (X,0) be the identity function. Then fg* is
continuous but it is not 8,,g—irresolute since {/2} is 6,—gclosed in (X, o)

but {v2} = f~'({v2}) ¢ 6.GO(X, 7).

Theorem 4.10. Let f : (X,7) — (Y,0) be a function such that (Y, o) is
1.

2

1. If f is 6,9—continuous, then f is d,,g—irresolute.

2. If f is 8,,g—continuous, then fg:j is continuous.
3. If fg: is continuous, then f is §,g—irresolute.

The following example shows that the condition that (X, 7) is T% in
Theorem 4.10 (3) is essential.

Example 4.11. Let X = R, with the topologies T = Tjpq and o =
{#,R,{0},[0,00)}. Let f:(X,7) — (X,0) be the identity function. Then
f is dng—irresolute but fg:j is not continuous. Note that {0} € o, but

{0} = F1({0}) ¢ 7o,

Theorem 4.12. If f : (X,7) — (Y, 0) is d,9—continuous, then for each
x € X and each open set V in (Y, o) with f (x) € V, there exists a d,,g—open
set U in (X, 7) such that v € U and f(U) C V.

Proof. Let z € X and let V be any open set in (Y, o) containing f(z).
Put U = f~1(V). Then, by assumption, U is a d,g—open set in (X, 7) such
that z € U and f(U) C V, and the result follows. O

The converse of the above theorem is not true in general as the following
example shows.
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Example 4.13. Let X = R, with the topologies T = {¢, X,R — Q } and
o =1{0,X,R—{V2}}. Let f : (X,7) — (X,0) be the identity function.
Then f is not §,g9—continuous. On the other hand, f satisfies the property
stated in the above theorem because x € U is a é,9—open set in (X, 7) for
each x € X.

Next we offer the following composition theorem and the proof is clear.

Theorem 4.14. Let f : (X,7) — (Y,0) and g : (Y,0) — (Z,v) be two
functions. Then:

1. gof is é,9—continuous, if ¢ is continuous and f is d,,g—continuous.
2. gof is d,g—irresolute, if g is d,,g—irresolute and f is d,g—irresolute.
3. gof is d,g9—continuous, if g is §,,g—continuous and f is §,,g—irresolute.

4. Let (Y,0) beT.. Then gof is d,9g—continuous, if f and g are d,,g— continuous.
2

The following example shows that the composition of two é,,g—continuous
functions need not be d,,g—continuous.

Example 4.15. Let X = R with the topologies T ={U : R—-Q C U} U
(6} 0 = {6 R.R— Q) and v = {6, X, R — {1}}. Let [ : (X,7) — (X.0)
and g : (X,0) — (X,v) be the identity functions. Note that f and g are
dwg— continuous, but the composition function gof:(X,7) — (X,v) is not
d,9— continuous.

Theorem 4.16. Let f : (X,7) — (Y,0) be continuous and suppose that
3 is closed. If A € 6,GC(X,T), then f(A) € 6,GC(Y,0).

Proof. Let A be §,—closed in (X,7). Let f(A) C O, where O is
open in (Y, o). Therefore, f~1(0) is an open set in (X, 7) containing the
Swg—closed set A. Then Cls,(A) C f~1(0). Thus f(Cls,(A)) € O. Hence
Cls, (f(A)) € Cls,(f(Cls,(A))) = f(Cls,(A)) C O, since f3= is closed.
Hence f(A) € §,GC(Y,0). O

The following example shows that the assumption that f is continuous
in the above theorem cannot be dropped.

Example 4.17. Consider the function f as in Example 4.15. Note that
Ts, = 05, = Tind- Put A = {1}. One can easily check that A € §,GC(X, )
but f(A) ¢ 0,GC(Y,0).
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Regarding the restriction of a d,g—continuous function, we have the
following.

Theorem 4.18. Let f : (X,7) — (Y,0) be a d,9—continuous function
and let A be a §,,—closed and open subset of (X, 7). Then, the restriction
fla: (A, 7a) — (Y, 0) is d,9—continuous .

Proof. Let F be a closed subset of (Y, ). Then (f|4) 1 (F) = f~1(F)n
A. Since f is d,g—continuous, f~}(F) € 6,GC(X, ) and so, by Theorem
3.8, fHF)NA € 6,GC(X,7). Therefore, by Theorem 3.16, (f|4) " (F) C
U € 0,GC(A,74) and the result follows. O

The next example shows that we can not drop the condition on A in
the previous theorem.

Example 4.19. Let X = {1,2,3} with the topology 7 = {¢, X,{1}} and
let Y = {a,b} with the topology 0 = {¢,Y,a}. Define f : (X,7) — (Y,0)

as
f(z) = Z ’iilz’g . Put A = {1,2}. Then f is d,9—continuous
but the restriction f|a is not &,g—continuous since (f|4)~({b}) is not

dwg—-closed in (X, T).

Theorem 4.20. Let (X, 7) be a topological space such that X = AU B,
where A and B are both open and ¢, —closed in (X, 7). Let f: (X,7) —
(Y, 0) be given such that the restrictions f|4 and f|p are both ¢,,g—continuous.
Then f is d,,g—continuous.

Proof. Let F be a closed subset of (Y, o). Then, f~1(F) = (f|4)~*(F)uU
(f1B)"Y(F). Since (f|4)"Y(F) € 6,GC(A,74) and A is open and &, —closed
in (X, 7), by Theorem 3.16, (f|4) "' (F) € 6,GC(X, 7). Similarly, (f|g)~'(F)
€ 0,GC(X, ). By Theorem 3.12, f~Y(F) € §,GC(X, 7). Thus f is
d,9—continuous. O

Definition 4.21. A subset A of a space (X, T) is said to be §,,g—compact
relative to X if for every collection {W, : « € A} of d,,g—open subsets of
X such that A C U{W, : « € A} there exists a finite subset A, of A such
that A CU{W, : a € A}

If A = X, then the space (X, 7) is called §,,g—compact. A subset A of a
space (X, 7) is called §,,g—compact if the subspace (A4, 74) is d,g—compact.



1432 A. Rawshdeh, H.H. Al-Jarrah, E.M. Alsaleh and K. Y. Al-Zoubi

Theorem 4.22. For a space (X, T) the following are equivalent:
1. (X, ) is 6,9—compact.

2. If {F, : « € A} is a collection of 0,,g—closed subsets of (X, T) satis-
fying the finite intersection property, then N{F, : o € A} = ¢.

3. If {F, : « € A} is a collection of §,,g—closed subsets of (X, T) such
that N{F, : o € A} = ¢, then there exists a finite subset A, of A
such that N{Fy, : a € As} = ¢.

Proof. (1 — 2) Suppose that (X, 7) is d,g—compact and let {F, : o €
A} be a collection of ,,g—closed subsets of (X, 7) which satisfying the finite
intersection property. Now, suppose by contrary that N{F, : « € A} = ¢.
Then, the collection {X — F,, : @ € A} is a d,9—open cover of the §,g—
compact space (X, 7) and so there exists a finite subset A, of A such that
X =U{X — F, : a« € A;}. Therefore, N{F, : « € A;} = ¢ which is a
contradiction.

(2 — 3) Follows from the definition.

(3 — 1) Suppose by contrary that (X, 7) is not d,g—compact. Then, there
exists a d,g—open cover {W, : & € A} of X which has no finite subcover.
For each a € A, put F, = X — W,. Then {F, : @ € A} is a collection of
dwg— closed subsets of (X, 7) such that N{F, : « € A} = ¢ and so by (3),
there exists a finite subset A, of A such that N{F, : o« € A} = ¢. Thus
X=X-N{Fo:acA}=U{X—-F,:aec A} ={W,:ac A} which
is also a contradiction. O

Proposition 4.23. Every §,g—closed subset of a §,,g—compact space (X, T)
is 0,,g—compact relative to (X, 7).

Proof. Let A be a §,g—closed subset of a d,9— compact space (X, )
and let {W, : @ € A} be a d,9—open cover of A in (X, 7). Then {W, :
a € AYU{X — A} is a §,g—open cover of the é,g—compact space (X, T)
and so there exists a finite subset A, of A such that X = U{W,, : a € A.}.
Thus A is §,,g—compact relative to (X, 7). O

The following two examples show that §,g—compact and d,g—compact
relative are independent notions.

Example 4.24. Let X = AU B with the topology 7 = {U : U C A}U{U :
A C U} where A and B are uncountable disjoint sets. Then 15, = {U :
UC A U{X} (see Example 4.13 [1]).
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(1) (X,7) is d,9—compact space. Let xo € B and let H be a d,9—open
subset of (X, 7) such that o € H. Then H = K U L where K C A and
L C B. Now, L is a closed subset of (X,7) such that . C H and so
L C Int;,(H) = K, a contradiction. Therefore, H must be X and so
(X, 1) is 6,9—compact.

(2) Put H = B. Note that the only open set containing H is X and so H
is d,9—closed set in (X, 7). On the other hand, Ty = 74 and so (H, Tr)
is not d,9— compact.

Example 4.25. Let X = AUB with the topology 0 = {U : U C A}U{X}
where A and B are uncountable sets such that AN B = ¢. Note that 7 =
Tind and so (B, Tg) is d,g—compact. To show that B is not d,9—compact
relative to X, we show that for all v € B, AU {z} is d,9—open set in
(X, 7). Let F be a closed set in (X, 1) such that ' C AU {x}. Therefore,
X —F C A and so B C F. This means that the only closed set in (X, )
such that F' C AU{z} is ¢ and so AU{x} is d,g—open set in (X, 7). Now,
it is clear that B is not J,g—compact relative to X since B is uncountable.

Proposition 4.26. A J,g—continuous image of a J,g—compact space is
compact.

Proof. Let f: (X,7) — (Y,0) be a d,9—continuous function from a
dwg—compact space onto a space (Y,o). Let {V, : « € A} be an open
cover of the space (Y,0). Since f is d,g—continuous, then the collection
{f~Y(Va) : a € A} is a §,,g—open cover of the §,g—compact space (X, 7)
and so there exists a finite subset A, of A such that X = U{f~1(V,) : a €
Ao} Thus, Y = f(X) = U{f(f* (Vo) : @ € As} = U{V, : a € AL
Which means that (Y, o) is compact. O
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