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1. Introduction

Throughout this work a space will always mean a topological space in which
no separation axioms is assumed unless explicitly stated. IfA is a subset of a
space (X, τ) then the closure ofA, the interior ofA and the relative topology
on A in (X, τ) will be denoted by Cl(A), Int(A) and τA, respectively.

Let A be a subset of a space (X, τ). A subset A is called a regular open
subset of (X, τ) if A = Int(Cl(A)). The family of all regular open subsets
of (X, τ) is denoted by RO(X, τ). The complement of a regular open set
is called regular closed. A subset A is called δ−open [14] if and only if for
each x ∈ A there exists a regularly open set G such that x ∈ G ⊆ A. It
is well know that the collection of all δ−open sets in a topological space
(X, τ) forms a topology τδ weaker than τ [12]. The space (X, τδ) is also
called the semigeneralization topology of (X, τ) [12]. The complement of
a δ−open set is called δ−closed [14]. A point x ∈ X is called a δ−cluster
point of A if and only if Int(Cl(V ))∩A = φ, for each open set V containing
x. The set of all δ−cluster points of A is called the δ−closure of A [14],
which is denoted by Clδ(A). A space (X, τ) is said to be semi−regular [12]
if τδ = τ . Any regular space is semi-regular, but the converse is false. A
family {Aα}α∈∆ of subsets of a topological space X is locally finite [8] if
for every point x ∈ X there exists a neighbourhood U such that the set
{α ∈ ∆ : U ∩Aα = φ} is finite.

Let A be any subset of a space (X, τ). Then a point x ∈ X is called a
condensation point [9] of A if for each U ∈ τ with x ∈ U , the set U ∩ A
is uncountable. The set A is called ω−closed if it contains all its conden-
sation points. The complement of an ω−closed set is called ω−open or
equivalently A is ω−open [2] if for each x ∈ A, there exists an open set U
containing x such that U−A is countable. The family of all ω−open subsets
of a space (X, τ), denoted by τω, forms a topology on X finer that τ . The
ω−closure of a subset A of a space (X, τ) is the closure of A in the space
(X, τω), and it is denoted by Clω(A). A space (X, τ) is called anti−locally
countable [2] if each non-empty open subset of (X, τ) is uncountable.

Let A be a subset of a space (X, τ). A subset A is called a regular
ω−open [13] subset of (X, τ) if A = Int(Clω(A)). The family of all regular
ω−open subsets of (X, τ) is denoted by RωO(X). The complement of a
regular ω−open set is called regular ω−closed. The class of Rω−open sets
forms a base for some a topology on X denoted by τδ−ω. A point x ∈ X
is called a δω−cluster point of A [1] if and only if Int(Clω(V )) ∩ A = φ,
for each open set V containing x. The set of all δω−cluster points of A is
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called the δω−closure of A [1], which is denoted by Clδω(A). A subset A
of a space X is called δω−closed [1] if and only if A = Clδω(A) and it is
called δω−open if and only if it is complement is δω−closed and the set of
all δω−open sets form a topology denoted by τδω and equal to τδ−ω. In [1],
we show that a subset A is δω−open if and only if for each x ∈ A there
exists a regularly ω−open set G such that x ∈ G ⊆ A.

Generalized semiclosed [3]( resp., α−generalized closed [11], θ−generalized
closed [6], δ−generalized closed [5]) sets are defined by replacing the clo-
sure operator in Livine’s original [10] by the semiclosure (resp., α−closure,
θ−closure, δ−closure) operator.

In section 2 of this work, we follows a similar line to introduce δω−generalized
closed sets by using the δω−closure operator. Also we define generalized
δω−closed and δδωω −generalized closed, then we study some of relation-
ship between them. In section 3, we introduce and study some of topo-
logical properties of δω−generalized closed sets. In section 4, we intro-
duce δω−continuity and δω−irresoluteness and study some of its charac-
terizations. We introduce δωg−continuity and δωg−irresoluteness by using
δωg−closed sets and study some of their fundamental properties.

In this paper R,Q and N denote, respectively the set of real numbers,
the set of rational numbers and the set of natural numbers.

Now we begin with some notations, definitions, and result will be used
in this work.

Proposition 1.1. [1] A topological space (X, τ) is connected if and only
if (X, τδω) is connected.

Theorem 1.2. [1] Let (X, τ) be a topological space. Then:

1. τδ ⊆ τδω ⊆ τ .

2. If (X, τ) is regular, then τδ = τδω = τ .

Proposition 1.3. [1] Let (X, τ) be a topological space and let A ⊆ X.
Then:

1. For each A ∈ τω, Clδω(A) = Cl(A).

2. For each A ∈ τ , Clδ(A) = Clδω(A) = Cl(A).

Lemma 1.4. [1] Let (X, τ) be an anti-locally countable space, then (τδω)δω =
τδω .
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Theorem 1.5. [1] Let (X, τ) and (Y, σ) be two topological spaces. Then
(τ × σ)δω ⊆ τδω × σδω

Definition 1.6. [4] A function f : (X, τ)→ (Y, σ) is called g−continuous
if f−1(V ) is g−closed in (X, τ) for every closed set V of (Y, σ).

Theorem 1.7. [8] For every locally finite family {Aα}α∈∆ we have the

equality Cl

Ã S
α∈∆

Aα

!
=

S
α∈∆

Cl (Aα).

Recall that a subset A of a space (X, τ) is called generalized closed
[10] (resp. δ−generalized closed [5]) if Cl(A) ⊆ U (resp. Clδ(A) ⊆ U)
whenever A ⊆ U and U is open in (X, τ) and we will denoted by g−closed
and δg−closed; respectively. A topological space (X, τ) is called T 1

2
-space

[10] if every g−closed set is closed, (equivalently, every singleton is either
open or closed [7]).

2. δω−generalized closed sets

Definition 2.1. A subsetA of a space (X, τ) is called generalized δω−closed
(reps. δω−generalized closed, δδωω −generalized closed) if Cl(A) ⊆ U (resp.
Clδω(A) ⊆ U , Clδω(A) ⊆ U) whenever A ⊆ U and U is δω−open (reps.
U is open, U is δω-open). Respectively, we will briefly it by gδω−closed,
δωg−closed and δδωω g−closed.

We denote the family of all generalized δω−closed (reps. δω−generalized
closed, δδωω −generalized closed, δg−closed, g−closed) subsets of a space
(X, τ) byGδωC(X, τ) (resp. δωGC(X, τ), δδωω GC(X, τ), δGC(X, τ), GC(X, τ)
). It is note that δδωω GC(X, τ) = GC(X, τδω).

Observe that if (X, τ) is a locally countable space or regular space, then
τδω = τ and so GC(X, τ) = GδωC(X, τ) = δωGC(X, τ) = δδωω GC(X, τ).

The following implications follows from the definitions and the fact that
for any space (X, τ), τδ ⊆ τδω ⊆ τ .

closed → GC(X, τ) → GδωC(X, τ)
↑ ↑ ↑

δω−closed → δωGC(X, τ) → δδωω GC(X, τ)
↑ ↑

δ−closed → δGC(X, τ)
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Example 2.2. Let X = {1, 2, 3} with the topology τ = {φ,X, {1, 2}}
and let A = {1, 3}. Since the only open superset of A is X, then A ∈
δωGC(X, τ). But A is not δω-closed.

Example 2.3. Let X = R with the topology τ = {φ}∪{U ⊆ X : R−Q ⊆
U} and let A = {1}. Then U = (R−Q)∪{1} is an open set in (X, τ) such
that A ⊆ U and Clδω(A) = R ⊆ U . So A ∈ GC(X, τ)− δωGC(X, τ).

Example 2.4. Let X = R with the topology τ = {φ,R,R −Q} and let
A = {

√
2}. Then A ∈ GδωC(X, τ). On the other hand, A /∈ GC(X, τ)

since A ⊆ R−Q ∈ τ and Cl(A) = X ⊆ R−Q.

Example 2.5. Let X = R with the topology τ = {φ} ∪ {U ⊆ X : 0 ∈ U}
and let A = R − Q. Note that τω = τdis and so τδω = τ . On the other
hand, τδ = τind. Thus A ∈ δωGC(X, τ), but A /∈ δGC(X, τ).

Example 2.6. Let X = R with the topology τ = {φ,R, {0}, [0,∞)} and
let A = {1}. Then A ∈ δδωω GC(X, τ). But A is neither g−closed in (X, τ)
nor δωg−closed in (X, τ). Note that A ⊆ [0,∞) ∈ τ and Clδω(A) =
Cl(A) = R− {0} ⊆ [0,∞).

In the following theorem we will show what the additional conditions
that make the reversal of previous relationships is true.

Theorem 2.7. Let (X, τ) be a space and A be an open subset of X. Then
the following are equivalent:

1. A ∈ δωGC(X, τ).

2. A ∈ δGC(X, τ).

3. A ∈ GC(X, τ).

Proof. The proof follows from the Proposition 1.3. 2

It is note that for an element x ∈ X, the set X − {x} is δωg−closed or
open. To show that suppose X − {x} is not open. Then the only open set
containing X − {x} is X. Hence X − {x} is δωg−closed set in X.

Theorem 2.8. Let (X, τ) be an anti-locally countable space. Then A ∈
δωGC(X, τδω) if and only if A ∈ δδωω GC(X, τ).
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Proof. The proof follows immediately from Lemma 1.4. 2

Theorem 2.9. A space (X, τ) is a T 1
2
-space if and only if every δω−generlized

closed set in (X, τ) is closed in (X, τ).

Proof. Necessity. Let A ⊆ X be δω−generalized closed. Since (X, τ) is
a T 1

2
-space and every δω−generalized closed set is g−closed so A is closed.
Sufficiency. Let x ∈ X. If {x} is not closed, then B = X − {x} is not

open and thus the only superset of B is X. Trivially, B is δω−generlized
closed. By assumption, B is closed or, equivalently, {x} is open. Thus,
every singleton in (X, τ) is open or closed. Hence, (X, τ) is a T 1

2
-space. 2

Theorem 2.10. Let (X, τ) be T 1
2
space. Then the collection of δωg−closed

in (X, τ) coincided with the collection of δω−closed sets in (X, τ).

Proof. Let x ∈ Clδω(A). Since (X, τ) is T 1
2
, so either {x} is open or

closed in (X, τ). If {x} is open, then x ∈ A. Now if {x} is closed in (X, τ),
then X − {x} ∈ τδω . Suppose that x /∈ A. Then A ⊆ X − {x}. As
A is δωg−closed in (X, τ) so Clδω(A) ⊆ X − {x}, which contradicts the
assumption. Therefore, A is δω−closed set in (X, τ). 2

Proposition 2.11. If every {x} is δω− closed in (X, τ) or RωO(X) then
every δωg−closed in (X, τ) is closed in (X, τ).

Proof. Let A ∈ δωGC(X, τ) and suppose that x ∈ Cl(A). If {x} ∈
RωO(X), then x ∈ A. Suppose that {x} is δω− closed in (X, τ), and
x /∈ A. Then x ∈ Cl(A) − A ⊆ Clδω(A) − A , which is impossible. Thus
Cl(A) = A. 2

Proposition 2.12. If A ∈ δωGC(X, τ), then Clδω(A)−A does not contain
a nonempty closed set in (X, τ).

Proof. Assume that F is a closed subset of (X, τ) such that F ⊆
Clδω(A)−A and so A ⊆ (X−F ) ∈ τ . Thus Clδω(A) ⊆ (X−F ). It follows
that F ⊆ X − Clδω(A). Therefore, F ⊆ (X − Clδω(A)) ∩ (Clδω(A)). Thus
F = φ. 2

Corollary 2.13. If A ∈ δωGC(X, τ) and Clδω(A)− A is closed then A is
δω−closed.
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Proof. Since Clδω(A) − A is closed and Clδω(A) − A ⊆ Clδω(A) − A
so by Proposition 2.12, Clδω(A) − A = φ. Thus Clδω(A) = A and so A is
δω−closed. 2

Theorem 2.14. Let (X, τ) be an antilocally countable space. Then (X, τ)
is a T1−space if and only if every δωg−closed set in (X, τ) is δω−closed in
(X, τ).

Proof. Necessity. Let A ⊆ X be δω−generalized closed and let x ∈
Clδω(A). Since (X, τ) is T1, then {x} is closed and thus by Proposition
2.12, x /∈ Clδω(A)−A. Since x ∈ Clδω(A), then x ∈ A. This show that A
is δω−closed set in (X, τ).

Sufficiency. Let x ∈ X and suppose that {x} is not closed. Then
B = X − {x} is not open, and thus B is δωg−closed in (X, τ). Therefore,
by assumption, B is δω−closed, and thus {x} is δω−open. So there exists
U ∈ τ such that x ∈ U ⊆ Int(Clω(U)) ⊆ {x}. It follows that U ia a
nonempty countable open subset of (X, τ), a contradiction. 2

The proof of the following lemma is clear.

Lemma 2.15. Let (X, τ) be any space such that (X, τδ) is a T1−space.
Then A is δω−closed in (X, τ) if and only if A ∈ δδωω GC(X, τ).

3. Some properties of δω−generalized closed sets

In this section we introduce and study some of topological properties of
δω−generalized closed sets.

From the definition of δω−generalized closed sets we can get the follow-
ing definition.

Definition 3.1. A subset A of a space (X, τ) is called δω−generalized
open( briefly δωg−open) if its complement X−A is δω−generalized closed.

Proposition 3.2. A subset A of a space (X, τ) is δω−generalized open if
and only if F ⊆ Intδω (A), whenever F ⊆ A and F is closed in (X, τ).

Proof. The proof follows immediately from the definition. 2

Theorem 3.3. Let A be δω−generalized closed in a space (X, τ). If B ⊆ X
such that A ⊆ B ⊆ Clδω(A), then B ∈ δωGC(X, τ).
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Proof. Let U ∈ τ such that B ⊆ U . Then A ⊆ B ⊆ U . Since A ∈
δωGC(X, τ), Clδω(A) ⊆ Clδω(B) ⊆ Clδω(Clδω(A)) = Clδω(A) ⊆ U. Hence
B ∈ δωGC(X, τ). 2

The following Theorem and example show that the finite union of
δω−generalized closed sets is δω−generalized closed but the countable union
of δω−generalized closed sets need not be δω−generalized closed.

Theorem 3.4. Union of two δω−generalized closed sets in (X, τ) is
δω−generalized closed set.

Proof. Let A and B be two δω−generalized closed sets in a space (X, τ).
Let U ∈ τ such that A ∪ B ⊆ U . Then A ⊆ U and B ⊆ U . Since A,B ∈
δωGC(X, τ), Clδω(A ∪ B) = Clδω(A) ∪ Clδω(B) ⊆ U . Thus A ∪ B is
δω−generalized closed. 2

Corollary 3.5. 1. Finite union of δω−generalized closed sets in (X, τ)
is δω−generalized closed set.

2. Finite intersection of δω−generalized open sets in (X, τ) is δω−generalized
open set.

To show that a countable union of δω−generalized closed sets need not
be δω−generalized closed set we consider the following example.

Example 3.6. Let X = R with the usual topology. For each n ∈ N, put
An = [

1
n , 1] and A =

S
n∈N

An. Then for each n ∈ N, An ∈ δωGC(X, τ), so

A is a countable union of δω−generalized closed sets but A /∈ δωGC(X, τ)
since U = (0, 5) ∈ τ,A ⊆ U and Clδω(A) ⊆ U. Note that 0 ∈ Clδω(A) but
0 /∈ U .

The following example shows that the intersection of two δω−generalized
closed sets in (X, τ) may fail to be δω−generalized closed set.

Example 3.7. Let X = {1, 2, 3, 4, 5} and τ = {φ,X, {1, 2}, {3}, {1, 2, 3}}.
Set A = {1, 3, 4} and B = {2, 3, 5}. It is easily to proof A and B are two
δω−generalized closed sets. But A ∩B = {3} /∈ δωGC(X, τ).

Theorem 3.8. The intersection of a δω−generalized closed set in (X, τ)
and δω−closed is always δω−generalized closed.
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Proof. Let A ∈ δωGC(X, τ) and B be δω−closed in (X, τ). Let U be
an open set in (X, τ) such that A ∩ B ⊆ U. Then A ⊆ U ∪ (X − B) ∈ τ.
Since A ∈ δωGC(X, τ), Clδω(A) ⊆ U ∪ (X − B). Now, Clδω(A ∩ B) ⊆
Clδω(A) ∩ Clδω(B) = Clδω(A) ∩ B ⊆ (U ∪ (X − B)) ∩ B ⊆ U. Hence
A ∩B ∈ δωGC(X, τ). 2

Let {(Xα, τα) : α ∈ ∆} be a collection of topological spaces such that
Xα ∩ Xβ = φ for each α = β. Let X = ∪

α∈∆
Xα be topologized by τs =

{G ⊆ X : G ∩Xα ∈ τα for each α ∈ ∆}. Then (X, τs) is called the sum of
the spaces {(Xα, τα) : α ∈ ∆} and we write X = ⊕

α∈∆
Xα.

Theorem 3.9. [1] For any collection of spaces {(Xα, τα) : α ∈ ∆}, we have
(τs)δω = (ταδω )s.

Theorem 3.10. Let {(Xα, τα) : α ∈ ∆} be a collection of spaces and
A = ∪

α∈∆
Aα such that Aα◦ ⊆ Xα◦ , then:

1. Cl(τα◦ )δω
(Aα◦) = Cl(τs)δω

(Aα◦).

2. ∪
α∈∆

Cl(τα)δω
(Aα) = Cl(τs)δω

(A).

Proof. (1) Let x ∈ Cl(τα◦)δω
(Aα◦) and let W ∈ (τs)δω such that x ∈W .

Then by Theorem 3.9, W ∈ (ταδω )s , i.e. W ∩ Xα◦ ∈ τ(α◦)δω
and so

φ =W ∩Xα◦ ∩Aα◦ =W ∩Aα◦ . Therefore, x ∈ Cl(τs)δω
(Aα◦). Conversely,

let x ∈ Cl(τs)δω
(Aα◦) and let W ∈ (τα◦)δω such that x ∈ W . So for each

α = α◦, W ∩ Xα = φ and so by Theorem 3.9, W ∈ (ταδω )s = (τs)δω .
Therefore, W ∩Aα◦ = φ. Thus x ∈ Cl(τα◦)δω

(Aα◦).

(2) Since (τs)δω is a topology onX , so ∪
α∈∆

Cl(τα)δω
(Aα) = ∪

α∈∆
Cl(τs)δω

(Aα) ⊆
Cl(τs)δω

( ∪
α∈∆

Aα) = Cl(τs)δω
(A). Conversely, let x ∈ Cl(τs)δω

(A). Then

there exists α◦ ∈ ∆ such that x ∈ Aα◦ . Let W ∈ (τα◦)δω such that x ∈W .
Then by Theorem 3.9, W ∈ (τs)δω and since x ∈ Cl(τs)δω

(A), φ = A∩W =

( ∪
α∈∆

Aα)
0 ∩W = W ∩ Aα◦ . Thus x ∈ Cl(τα◦)δω

(Aα◦) ⊆ ∪
α∈∆

Cl(τα)δω
(Aα).

2

Theorem 3.11. Let {(Xα, τα) : α ∈ ∆} be a collection of spaces and
A = ∪

α∈∆
Aα such that Aα ⊆ Xα for each α ∈ ∆. Then Aα is δω−generalized

closed in (X, τα) for each α ∈ ∆ if and only if A is δω−generalized closed
in (X, τs).
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Proof. Let W ∈ τs such that A ⊆W . For each α ∈ ∆, Aα = A ∩Xα ⊆
W ∩Xα and W ∩Xα ∈ τα. Since Aα is δω−generalized closed in (X, τα),
Cl(τα)δω

(Aα) ⊆ W ∩ Xα. Hence, Cl(τs)δω
(A) = ∪Cl(τα)δω (Aα) ⊆ ∪(W ∩

Xα) = W . Therefore, A is δω− generalized closed in (X, τs) . Conversely,
Fix α◦ ∈ ∆ and let W◦ ∈ τα◦ such that Aα◦ ⊆ W◦. Then W = W◦ ∪
( ∪
α=α◦

Xα) is an open set in (X, τs) such that A ⊆ W . Then Cl(τs)δω
(A) ⊆

W . By Theorem 3.10, ∪Cl(τα)δω (Aα) ⊆W . To show that Cl(τα◦)δω
(Aα◦) ⊆

W◦, let x◦ ∈ Cl(τα◦ )δω
(Aα◦). Then x◦ ∈W . Since x◦ ∈ Xα◦ , then x◦ /∈ Xα

for all α = α◦ and so x◦ ∈W◦. Therefore, Cl(τα◦)δω (Aα◦) ⊆W◦. Thus Aα◦

is δω− generalized closed in (Xα◦ , τα◦). 2

Theorem 3.12. Let {Aα}α∈∆ be locally finite family in (X, τδω) such that
Aα ∈ δωGC(X, τ) for each α ∈ ∆. Then A =

S
α∈∆

Aα ∈ δωGC(X, τ).

Proof. Let A ⊆ U and U be an open set in (X, τ). Since Aα ∈
δωGC(X, τ) and Aα ⊆ A ⊆ U for each α ∈ ∆, Clδω(Aα) ⊆ U . Since
{Aα}α∈∆ is locally finite in (X, τδω), by using Theorem 1.7, Clδω

S
α∈∆

(∪Aα) =S
α∈∆

Clδω(Aα) ⊆
S

α∈∆
U = U. Therefore, A =

S
α∈∆

Aα ∈ δωGC(X, τ). 2

Theorem 3.13. For a topological space (X, τ) the following conditions are
equivalent:

1. The open sets in (X, τ) are clopen in (X, τ).

2. If A ⊆ X, then A ∈ δωGC(X, τ).

Proof. (1→ 2) Let A ⊆ U, where U ∈ τ. Then U is clopen in (X, τ) and
so it is clopen in (X, τδω) by Proposition 1.1. Therefore, ClδωA ⊆ ClδωU =
U.
(2 → 1) Let U ⊆ X be open. Since U ∈ δωGC(X, τ), ClδωU ⊆ U, so
ClδωU = U . Thus U is δω−closed and so it is closed. 2

The following is nontrivial example that demonstrate the above theo-
rem.

Example 3.14. Let X = R with topology τ = {φ,X,Q,R −Q}. Then
τδω = τ . For any A ⊆ X, A = H ∪ L where H ⊆ Q and L ⊆ R − Q.
If H = φ and L = φ, then the only open set containing A is X and so
A ∈ δωGC(X, τ). Now, suppose L = φ and let U ∈ τ such that A ⊆ U .
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Then U = Q or U = X. For U = Q, the Clδω(A) = Cl(A) = Q ⊆ Q.
Therefore, A ∈ δωGC(X, τ). By the same way, we show that if H = φ,
then A ∈ δωGC(X, τ).

Proposition 3.15. [1] Let (X, τ) be a topological space. If A ∈ τ , then
(τδω)A = (τA)δω .

The relationship between the δω−generalized closed sets and the
δω−generalized closed sets of the subspace will be given in the next theorem.

Theorem 3.16. Let (Y, τY ) be an open subspace of a space (X, τ) and
A ⊆ Y. Then the following hold:

1. If A ∈ δωGC(X, τ), then A ∈ δωGC(Y, τY ).

2. If A ∈ δωGC(Y, τY ) and Y is δω−closed, then A ∈ δωGC(X, τ).

Proof. (1) Let V ∈ τY such that A ⊆ V. Then V = U ∩ Y for some
U ∈ τ . Since A ∈ δωGC(X, τ) and A ⊆ U , Clδω(A) ⊆ U . It follows that
Clδω(A) ∩ Y ⊆ U ∩ Y = V. Since Y is open in X so, by Proposition 3.15,
Cl(τY )δω (A) = Cl(δω)τY (A) = Clδω(A) ∩ Y ⊆ V. Thus A ∈ δωGC(Y, τY ).

(2) Let U be an open set in (X, τ) such that A ⊆ U. Then A ⊆ U ∩ Y ∈
τY . Since A ∈ δωGC(Y, τY ) and Y is open in (X, τ), by Proposition 3.15,
Cl(τY )δω (A) = Cl(δω)τY (A) = Clδω(A) ∩ Y ⊆ U ∩ Y. As Y is δω−closed in
(X, τ) so Clδω(A) = Clδω(A ∩ Y ) ⊆ Clδω(A) ∩ Clδω(Y ) = Clδω(A) ∩ Y ⊆
U ∩ Y ⊆ U. Therefore, A ∈ δωGC(X, τ). 2

The condition that Y is δω−closed in (X, τ) in Theorem 3.16, can not
be dropped as we see in the following example.

Example 3.17. Let X be an uncountable set and let A be a subset of X
such that A and X − A are uncountable. Let τ = {φ,A,X}. If Y = A,
then A ∈ δωGC(Y, τY )− δωGC(X, τ).

Theorem 3.18. Let (X, τ) and (Y, σ) be two spaces. IfA×B is a δωg−open
subset of (X × Y, τ × σ), then A is a δωg−open set in (X, τ) and B is a
δωg−open in (Y, σ).
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Proof. Let FA be a closed subset of (X, τ) and let FB be a closed
subset of (Y, σ) such that FA ⊆ A and FB ⊆ B. Then FA × FB is closed
in (X × Y, τ × σ) such that FA × FB ⊆ A × B. By assumption, A × B ∈
δωGC(X × Y, τ × σ) and so FA × FB ⊆ Int(τ×σ)δω (A× B) ⊆ Intτδω (A)×
Intσδω (B) by using Theorem 1.5. Therefore, FA ⊆ Intτδω (A) and FB ⊆
Intσδω (B). Thus A ∈ δωg−open set in (X, τ) and B ∈ δωg−open set in
(Y, σ). 2

Theorem 3.19. Let (X, τ) be a normal space. If F ∩ A = φ, where F is
closed and A ∈ δωGC(X, τ), then there exist two disjoint open sets G and
H in (X, τ) such that F ⊆ G and A ⊆ H.

Proof. Suppose that(X, τ) is normal and F ∩A = φ. Then, A ⊆ X −F
and X − F is open. Since A ∈ δωGC(X, τ), Clδω(A) ⊆ X − F . That is
Clδω(A) ∩ F = φ, this implies that Clδω(A) and F are disjoint closed sets
in the normal space (X, τ). Then there exist disjoint open sets G and H
such that F ⊆ G and A ⊆ Clδω(A) ⊆ H. 2

4. δωg−continuous functions and δωg−irresolute functions

In this section we introduce δωg−continuity and δωg−irresoluteness by us-
ing δωg−closed sets and we study some of their fundamental properties.

Definition 4.1. A function f : (X, τ)→ (Y, σ) is said to be

1. δωg−continuous if f−1(V ) is δωg−closed in (X, τ) for every closed set
V of (Y, σ).

2. δωg−irresolute if f−1(V ) is δωg−closed in (X, τ) for every δωg−closed
set V of (Y, σ).

It follows from the definitions that a function f : (X, τ) → (Y, σ) is
δωg−continuous (δωg−irresolute) if and only if f−1(V ) is δωg−open in
(X, τ) for every open (δωg−open) subset V of (Y, σ).

The following two examples show that for any function f : (X, τ) →
(Y, σ), the δωg−continuous and δωg−irresolute are independent notions.

Example 4.2. LetX = {1, 2, 3}with the topologies τ = {φ,X, {1}, {3}, {1, 3}}
and σ = {φ,X, {1}}. Let f : (X, τ)→ (X,σ) be the function defined by
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f(x) =

(
1 , x = 1, 3
2 , x = 2

.

Then f is δωg−continuous but it is not δωg−irresolute.

Example 4.3. Let (X, τ) and (Y, σ) be spaces that defined in Example 4.2
and define the function f : (X, τ)→ (Y, σ) as

f(x) =

(
1 , x = 2
2 , x = 1, 3

. Then f is δωg−irresolute but it is not δωg−continuous.

Theorem 4.4. Let f : (X, τ) → (Y, σ) be a δωg−continuous. Then f is
δωg−irresolute, if one of the following holds:

1. f is bijective and open function.

2. f is closed function.

Proof. (1) Let V ∈ δωGC(Y, σ) and let U ∈ τ such that f−1(V ) ⊆ U .
Clearly V ⊆ f(U). Since f(U) ∈ σ, and V ∈ δωGC(Y, σ), then Clδω(V )
⊆ f(U) and f−1(Clδω(V )) ⊆ U. Since f is δωg− continuous and Clδω(V ) is
a closed subset of Y , then Clδω(f

−1(Clδω(V ))) ⊆ U and Clδω(f
−1(V )) ⊆ U .

Thus, f is δωg−irresolute.
(2) Let A be a δωg−open subset of (Y, σ) and C ⊆ f−1(A), where C is
a closed set in (X, τ). Then f(C) is closed in (Y, σ) such that f(C) ⊆
A. Since A is δωg−open in (Y, σ), f(C) ⊆ Intσδω (A) and thus C ⊆
f−1(Intσδω (A)). Since f is δωg−continuous and Intσδω (A) is open in (Y, σ),
then f−1(Intσδω (A)) is δωg−open in (X, τ). Since C ⊆ Intτδω (f

−1(Intσδω (A))) ⊆
Intτδω (f

−1(A)), then f is δωg−irresolute. 2
Example 4.2 shows that the condition that f is bijective in part (1) and
closed in part (2) in Theorem 4.4 can not be dropped.

Corollary 4.5. Under the same assumptions of Theorem 4.4 part (1), If
(X, τ) is T 1

2
, then (Y, σ) is T 1

2
.

Proof. Let V ∈ δωGC(Y, σ). Since f is δωg−irresolute, then f−1(V ) ∈
δωGC(X, τ). But (X, τ) is T 1

2
, therefore, by Theorem 2.9, f−1(V ) is closed

in (X, τ). Thus f(f−1(V )) = V is closed in (Y, σ) since f is bijective and
open function. 2

Let f : (X, τ)→ (Y, σ) be a function. Then a function f δωδω : (X, τδω)→
(Y, σδω) (resp., fδω : (X, τδω) → (Y, σ), fδω : (X, τ) → (Y, σδω)) associated
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with f is defined as follows: fδωδω (x) = f(x) (resp., fδω(x) = f(x), f δω(x) =
f(x)) for each x ∈ X.

The proof of the following results follow immediately from the Definition
2.1.

Theorem 4.6. Let f : (X, τ)→ (Y, σ) be a function:

1. If fδω is continuous, then fδωδω is continuous.

2. If f δωδω is continuous, then f δω is δωg−continuous.

3. If fδω is continuous, then f is δωg−continuous.

4. If f is δωg−continuous, then f is g−continuous.

5. If f is δωg−irresolute, then f δω is δωg−continuous.

The next examples will show the reverse implications are not necessarily
true.

Example 4.7. (1) Let X = R with the topologies τ = {φ,R,R−Q} and
σ = {φ,R, {0}, [0,∞)}. Let f : (X, τ) → (Y, σ) and g : (X, τ) → (X, τ)
be the identity functions. Then fδω is δωg−continuous but f δωδω is not

continuous since τδω = τind. On the other hand gδωδω is continuous but gδω
is not continuous.
(2) Let X = R, with the topologies τ = {U : R−Q ⊆ U} ∪ {φ} and
σ = {φ,X,R − {1}}. Let f : (X, τ) → (X,σ) be the identity function.
One can easily check that τδω = τind and f is g−continuous but it is not
δωg−continuous.
(3) Let X = {1, 2, 3}, with the topologies τ = {φ,X, {1, 2}} and σ =
{φ,X, {2}}. Let f : (X, τ) → (X,σ) be the identity function. It is easily
to observe that f is δω g−continuous but fδω is not continuous.
(4) Consider the function given in Example 4.2. Then f δω is δωg−continuous
but f is not δωg−irresolute.

The proof of Theorems 4.8 and 4.10 follows directly from definitions and
Theorem 2.10.

Theorem 4.8. Let f : (X, τ) → (Y, σ) be a function such that (X, τ) is
T 1
2
.
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1. If f is δωg−continuous, then fδω is continuous.

2. If f is δωg−irresolute, then f δωδω is continuous.

The following example shows that the condition that (X, τ) is T 1
2
in

Theorem 4.8 (2) cannot be drop.

Example 4.9. Let X = R, with the topologies τ = {φ,R,R−Q} and
σ = τind. Let f : (X, τ) → (X,σ) be the identity function. Then fδωδω is

continuous but it is not δωg−irresolute since {
√
2} is δω−gclosed in (X,σ)

but {
√
2} = f−1({

√
2}) /∈ δωGC(X, τ).

Theorem 4.10. Let f : (X, τ) → (Y, σ) be a function such that (Y, σ) is
T 1
2
.

1. If f is δωg−continuous, then f is δωg−irresolute.

2. If f is δωg−continuous, then f δωδω is continuous.

3. If f δωδω is continuous, then f is δωg−irresolute.

The following example shows that the condition that (X, τ) is T 1
2
in

Theorem 4.10 (3) is essential.

Example 4.11. Let X = R, with the topologies τ = τind and σ =
{φ,R, {0}, [0,∞)}. Let f : (X, τ)→ (X,σ) be the identity function. Then
f is δωg−irresolute but f δωδω is not continuous. Note that {0} ∈ σδω , but
{0} = f−1({0}) /∈ τδω .

Theorem 4.12. If f : (X, τ) → (Y, σ) is δωg−continuous, then for each
x ∈ X and each open set V in (Y, σ) with f (x) ∈ V, there exists a δωg−open
set U in (X, τ) such that x ∈ U and f(U) ⊆ V.

Proof. Let x ∈ X and let V be any open set in (Y, σ) containing f(x).
Put U = f−1(V ). Then, by assumption, U is a δωg−open set in (X, τ) such
that x ∈ U and f(U) ⊆ V, and the result follows. 2

The converse of the above theorem is not true in general as the following
example shows.
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Example 4.13. Let X = R, with the topologies τ = {φ,X,R−Q } and
σ = {φ,X,R − {

√
2}}. Let f : (X, τ) → (X,σ) be the identity function.

Then f is not δωg−continuous. On the other hand, f satisfies the property
stated in the above theorem because x ∈ U is a δωg−open set in (X, τ) for
each x ∈ X.

Next we offer the following composition theorem and the proof is clear.

Theorem 4.14. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, υ) be two
functions. Then:

1. gof is δωg−continuous, if g is continuous and f is δωg−continuous.

2. gof is δωg−irresolute, if g is δωg−irresolute and f is δωg−irresolute.

3. gof is δωg−continuous, if g is δωg−continuous and f is δωg−irresolute.

4. Let (Y, σ) be T 1
2
. Then gof is δωg−continuous, if f and g are δωg−continuous.

The following example shows that the composition of two δωg−continuous
functions need not be δωg−continuous.

Example 4.15. Let X = R with the topologies τ = {U : R−Q ⊆ U} ∪
{φ}, σ = {φ,R,R−Q} and υ = {φ,X,R− {1}}. Let f : (X, τ)→ (X,σ)
and g : (X,σ) → (X, υ) be the identity functions. Note that f and g are
δωg− continuous, but the composition function gof :(X, τ)→ (X, υ) is not
δωg− continuous.

Theorem 4.16. Let f : (X, τ) → (Y, σ) be continuous and suppose that
f δωδω is closed. If A ∈ δωGC(X, τ), then f(A) ∈ δωGC(Y, σ).

Proof. Let A be δω−closed in (X, τ). Let f(A) ⊆ O, where O is
open in (Y, σ). Therefore, f−1(O) is an open set in (X, τ) containing the
δωg−closed set A. Then Clδω(A) ⊆ f−1(O). Thus f(Clδω(A)) ⊆ O. Hence
Clδω(f(A)) ⊆ Clδω(f(Clδω(A))) = f(Clδω(A)) ⊆ O, since f δωδω is closed.
Hence f(A) ∈ δωGC(Y, σ). 2

The following example shows that the assumption that f is continuous
in the above theorem cannot be dropped.

Example 4.17. Consider the function f as in Example 4.15. Note that
τδω = σδω = τind. Put A = {1}. One can easily check that A ∈ δωGC(X, τ)
but f(A) /∈ δωGC(Y, σ).
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Regarding the restriction of a δωg−continuous function, we have the

following.

Theorem 4.18. Let f : (X, τ) → (Y, σ) be a δωg−continuous function
and let A be a δω−closed and open subset of (X, τ). Then, the restriction
f |A : (A, τA)→ (Y, σ) is δωg−continuous .

Proof. Let F be a closed subset of (Y, σ). Then (f |A)−1(F ) = f−1(F )∩
A. Since f is δωg−continuous, f−1(F ) ∈ δωGC(X, τ) and so, by Theorem
3.8, f−1(F )∩A ∈ δωGC(X, τ). Therefore, by Theorem 3.16, (f |A)−1(F ) ⊆
U ∈ δωGC(A, τA) and the result follows. 2

The next example shows that we can not drop the condition on A in
the previous theorem.

Example 4.19. Let X = {1, 2, 3} with the topology τ = {φ,X, {1}} and
let Y = {a, b} with the topology σ = {φ, Y, a}. Define f : (X, τ) → (Y, σ)
as

f(x) =

(
b , x = 1, 3
a , x = 2

. Put A = {1, 2}. Then f is δωg−continuous

but the restriction f |A is not δωg−continuous since (f |A)−1({b}) is not
δωg−closed in (X, τ).

Theorem 4.20. Let (X, τ) be a topological space such that X = A ∪ B,
where A and B are both open and δω−closed in (X, τ). Let f : (X, τ) →
(Y, σ) be given such that the restrictions f |A and f |B are both δωg−continuous.
Then f is δωg−continuous.

Proof. Let F be a closed subset of (Y, σ). Then, f−1(F ) = (f |A)−1(F )∪
(f |B)−1(F ). Since (f |A)−1(F ) ∈ δωGC(A, τA) and A is open and δω−closed
in (X, τ), by Theorem 3.16, (f |A)−1(F ) ∈ δωGC(X, τ). Similarly, (f |B)−1(F )
∈ δωGC(X, τ). By Theorem 3.12, f−1(F ) ∈ δωGC(X, τ). Thus f is
δωg−continuous. 2

Definition 4.21. A subset A of a space (X, τ) is said to be δωg−compact
relative to X if for every collection {Wα : α ∈ ∆} of δωg−open subsets of
X such that A ⊆ ∪{Wα : α ∈ ∆} there exists a finite subset ∆◦ of ∆ such
that A ⊆ ∪{Wα : α ∈ ∆◦}.

If A = X, then the space (X, τ) is called δωg−compact. A subset A of a
space (X, τ) is called δωg−compact if the subspace (A, τA) is δωg−compact.
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Theorem 4.22. For a space (X, τ) the following are equivalent:

1. (X, τ) is δωg−compact.

2. If {Fα : α ∈ ∆} is a collection of δωg−closed subsets of (X, τ) satis-
fying the finite intersection property, then ∩{Fα : α ∈ ∆} = φ.

3. If {Fα : α ∈ ∆} is a collection of δωg−closed subsets of (X, τ) such
that ∩{Fα : α ∈ ∆} = φ, then there exists a finite subset ∆◦ of ∆
such that ∩{Fα : α ∈ ∆◦} = φ.

Proof. (1 → 2) Suppose that (X, τ) is δωg−compact and let {Fα : α ∈
∆} be a collection of δωg−closed subsets of (X, τ) which satisfying the finite
intersection property. Now, suppose by contrary that ∩{Fα : α ∈ ∆} = φ.
Then, the collection {X − Fα : α ∈ ∆} is a δωg−open cover of the δωg−
compact space (X, τ) and so there exists a finite subset ∆◦ of ∆ such that
X = ∪{X − Fα : α ∈ ∆◦}. Therefore, ∩{Fα : α ∈ ∆◦} = φ which is a
contradiction.
(2→ 3) Follows from the definition.
(3→ 1) Suppose by contrary that (X, τ) is not δωg−compact. Then, there
exists a δωg−open cover {Wα : α ∈ ∆} of X which has no finite subcover.
For each α ∈ ∆, put Fα = X −Wα. Then {Fα : α ∈ ∆} is a collection of
δωg− closed subsets of (X, τ) such that ∩{Fα : α ∈ ∆} = φ and so by (3),
there exists a finite subset ∆◦ of ∆ such that ∩{Fα : α ∈ ∆◦} = φ. Thus
X = X − ∩{Fα : α ∈ ∆◦} = ∪{X − Fα : α ∈ ∆◦} = {Wα : α ∈ ∆◦} which
is also a contradiction. 2

Proposition 4.23. Every δωg−closed subset of a δωg−compact space (X, τ)
is δωg−compact relative to (X, τ).

Proof. Let A be a δωg−closed subset of a δωg− compact space (X, τ)
and let {Wα : α ∈ ∆} be a δωg−open cover of A in (X, τ). Then {Wα :
α ∈ ∆} ∪ {X − A} is a δωg−open cover of the δωg−compact space (X, τ)
and so there exists a finite subset ∆◦ of ∆ such that X = ∪{Wα : α ∈ ∆◦}.
Thus A is δωg−compact relative to (X, τ). 2

The following two examples show that δωg−compact and δωg−compact
relative are independent notions.

Example 4.24. Let X = A∪B with the topology τ = {U : U ⊆ A}∪{U :
A ⊆ U} where A and B are uncountable disjoint sets. Then τδω = {U :
U ⊆ A} ∪ {X} (see Example 4.13 [1]).
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