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Abstract

In this paper authors discussed a problem of quickest descent, the
Brachistochrone curve. Spline collocation method is used to solve the
non-linear boundary value problem. The numerical results obtained
are compared with the transformation method to show effectiveness
and accuracy of this method.
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1. Introduction

Johann Bernoulli posed the problem of the Brachistochrone to the readers
of ActaEruditorum in June; 1696. He has also published its solution in
the next year. After deriving the differential equation for the curve five
mathematicians responded with solutions Isaac Newton, Jacob Bernoulli,
Gottfried Leibniz, Ehrenfried Walther von Tschirnhaus and Guillaume de
IHopital. (Dunham[8]). Solution of the classical Brachistochrone problem
using techniques of calculus of variations, (Gelfand and Fomin [11]) or ge-
ometrical optics (Erlichson [9]). Problem of finding Brachistochronecurve
with coulomb friction lying on a vertical plane in a uniform gravitational
field has been discussed by Ashbyet al.[2], Hayen [13], Heijden and Diep-
straten [19] and further generalized to a curve with friction lying on a
cylinder by Covic and Veskovic[5] and Vratanar and Saje [21] studied re-
lated problem of finding the Brachistochrone curve in a non conservative
resistance field. Problem of finding Brachistochrone curve on cylinders in
uniform fields has been solved by Yamini and Mulhem [22].Brachistochrone
curve on spheres mentioned in the unpublished work of Palmieri [14]. A
generalization to non-uniform fields has been discussed by several authors
(Arvind[1] , Denman [7]). Venezian[20] successfully obtained solution of
Brachistochronefor linear radial fields. Parnovsky[15] and Tee[18] got solu-
tions for inverse square redial fields. Further,generalizations of this problem
to include specila relativistic effects have been initialed by Farina[10], Gold-
stein and Bender[12], Scarpello and Ritelli[16]. A study of point-to-point
optimal control problem where the objective is to transfer the state of a
dynamical system with minimum cost from one point to another point has
been discussed by Sussmann and Willem[17]
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Cal de Boor[6] was first person to introduced bicubic splines method.
Bickley[3] brought forward a useful aspect of spline functions in linear two
point boundary value problem. In continuation of this study, Blue[4] dis-
cussed the applicability of spline functions to non-linear differential equa-
tions. In this paper, spline collocation method has been applied to generate
approximate solutions of the governing equations of the Brachistochrone
problem.

2. Formulation of Brachistochrone Problem

Consider two points A and B in a space containing a constant gravitational
forced field as shown in figure. Point A is the initial point at (0, y0) a fixed
point whereas point B lies anywhere on the terminal line x = xT will the
restraint that dy

dx = 0 at a point. It is the purpose of the methods to find a
frictionless path from A to B along which a particle will slide in minimum
time. Since gravitational force I the only force acting on the mass, the time
of descent T is given by,

T =

Z xT

0

ds

V
=

Z xT

0

s
1 + y02

2gy
dx(2.1)

the integrand is defined by

F =

s
1 + y02

2gy
dx(2.2)

we get,

T =

Z xT

0
Fdx(2.3)

To minimize the time of descent T ,Eulers equation is applied to the
integrand F ,

∂F

∂y
− d

dx

Ã
∂F

∂y0

!
= 0(2.4)

Equation (2.4) can be reduce to,

2y
d2y

dx2
+

"
1 +

Ã
dy

dx

!2#
= 0(2.5)
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with boundary conditions,

y(0) = y0,
dy(xT )

dx
= 0(2.6)

Equation (2.5) subject to the boundary condition (2.6),is the two point non
linear boundary value problem.

Let us introduce following transformations,

η = 1− x

xT
, f =

y

xT
(2.7)

then equation (2.5)reduces to,

2f
d2f

dη2
+

"
1 +

Ã
df

dη

!2#
= 0(2.8)

subject to the boundary conditions

df(0)

dη
= 0, f(1) = 3(2.9)

3. General Spline Collocation Method

Use of Spline functions with moments for the solution of nonlinear differ-
ential equation was suggested by Blue (1969).

Consider a linear two point boundary value problem

y00(x) + p(x)y0(x) + q(x)y(x) = r(x)(3.1)

subject to the boundary conditions

G1[y(a), y
0(a)] = 0 at x = a(3.2)

G2[y(b), y
0(b)] = 0 at x = b(3.3)

Since s(x) is a cubic Spline interpolating y(x) given by equation (3.1),we
have s(xi) = y(xi), and s”(x) is a linear function.

Let us define s”(x) in the subinterval [xi, xi+1] of [a, b] as follows:

s00(x) = y00i+1
x− xi
hi+1

+ y00i
xi+1 − x

hi+1
, i = 0, 1, 2..., n− 1(3.4)
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where hi+1 = xi+1 − xi

On applying two successive integrations on equation (3.4) produced a
cubic spline s(x) in [xi, xi+1] given by

s(x) = y00i+1
(x− xi)

3

6hi+1
+ y00i

(xi+1 − x)3

6hi+1
+A1

xi+1 − x

hi+1
+B1

x− xi
hi+1

(3.5)

where A1 and B1 are constants to be determined.

Equation (3.5) can be written as

s(x) = y00i+1
(x− xi)

3

6hi+1
+ y00i

(xi+1 − x)3

6hi+1
+

Ã
yi −

h2i+1
6

y00i

!
xi+1 − x

hi+1

+

Ã
yi+1 −

h2i
6
y00i+1

!
(x− xi)

hi+1
(3.6)

Similarly s(x) can be obtained in the interval [xi−1, xi] as

s(x) = y00i
(x− xi−1)3

6hi
+ y00i−1

(xi − x)3

6hi
+

Ã
yi −

h2i
6
y00i

!
x− xi−1

hi

+

Ã
yi−1 −

h2i
6
y00i−1

!
(xi − x)

hi
(3.7)

From equation (3.5), we obtained s0(x) at x = xi denoted by s0(xi+),
arrived at

s0(xi+) = −
hi+1
3

y00i −
hi+1
6

y00i +
yi+1 − yi
hi+1

, i = 0, 1, 2, ..n− 1.(3.8)

and

s0(xi−) =
hi
6
y00i−1 −

hi
3
y00i +

yi − yi−1
hi

, i = 1, 2, ..n.(3.9)

Continuity of s”(x) at x = xi requires that s”(xi+) = s”(xi−) so that,
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hiyi+1−(hi+hi+1)yi+hi+1yi−1 = hihi+1

Ã
hi
6
y00i−1+

hi + hi+1
6

y00i +
hi+1
6

y00i+1

!
,

i = 1, 2, ..n− 1.(3.10)

Equation (3.10) gives a system of (n − 1) equations in (n + 1) vari-
ables yi, i = 0, 1, 2, ...n to be determined. Therefore, the moments y

00
i , i =

0, 1, 2, ... can be obtained from equation (3.10) if a curve is initially fitted
to the data.

Let us express the equation (3.1) in the form

y00(x) = f(x, y, y0)(3.11)

subject to the boundary conditions (3.2) and (3.3). From these boundary
conditions, it can be seen that there are four pairs of boundary conditions
as possible combinations viz.
(i) y(a) = K ; y(b) = L
(ii)y(a) = K; y0(b) = L
(iii)y0(a) = K; y(b) = L
(iv)y0(a) = K; y0(b) = L

For case (iii) equation (3.10) reduces in general form,

y0 − y1 =
h21
6 (2y

00
0 + y001)− h1y

0
0

hiyi+1 − (hi + hi+1)yi + hi+1yi+1 =

hihi+1

Ã
hi
6 y

00
i−1 +

hi+hi+1
3 y00i +

hi+1
6 y00i+1

!
. i = 1, 2, 3, .., n− 1.

yn−2 − 2yn−1 = −h2n
6 (y

00
n−2 + 4y

00
n−1 + y00n)− yn

Similarly, we are able to deal with remaining cases. Now in order to
obtain a solution to equation (2.8) with the boundary conditions given in
equations (2.9) we fit a straight line y(x) = mx+ c through the boundary
points, this is an initial guess, the moments are calculated from the relation
(3.11) at the nodal points x = xi These moments y

00
i are now utilized to

evaluate yi, i = 0, 1, 2...n, through the relation along with the two additional
equations from boundary conditions. This can be furnished by solving
merely a tridiagonal system of equations. The results so obtained can
again be improve by continuing the same process till the desired solutions
are found or two successive iterations produce the same values.
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4. Solution of Brachistochrone Problem by Spline

Rewrite the differential equation (2.8) in the form of

d2f

dη2
= −

"
1 +

Ã
df
dη

!2#
2f

To find the Spline approximation s(x) of f(η) described in equation
(2.9) satisfying the boundary conditions, a line f(η) = uη+v is assumed to
be the first approximation to start with the iterative scheme. The straight
line f(η) = 3 can be fitted through points x = 0 and x = 1. The calculation
of, yi,i = 0, 1, 2...N is to be carried out through the solution of tridiagonal
system of (N +1) equations. The solution obtained the tridiagonal system
of (N + 1) equation is given below:
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5. Conclusion

The brachistochrone problem can be fit well by an equally space knots.The
spline collocation method is considered to find the approximate solution
of the brachistochrone problem. An analysis is presented without doing
any linearization for solving highly non-linear governing equation. To val-
idate the present system, the result determined by the above analysis has
been compared with solution obtained by transform method. The result
indicates that spline collocation method gives the best approximation for
the non-linear problems without any assumption and linearization. The
method is easy to implement and yield very accurate results.
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