Proyecciones Journal of Mathematics Vol. 38, N^o 2, pp. 315-324, June 2019. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172019000200315

On the uniform ergodic theorem in invariant subspaces

Abdelaziz Tajmouati Sidi Mohamed Ben Abdellah University, Morocco Abdeslam El Bakkali Chouaib Doukkali Univesity, Morocco and

Fatih Barki Sidi Mohamed Ben Received : October 2017. Accepted : March 2019

Abstract

Let T be a bounded linear operator on a Banach space X into itself.

In this paper, we study the uniform ergodicity of the operator $T|_Y$ when Y is a closed subspace invariant under T. We show that if T satisfies $\lim_{n\to\infty} \frac{||T^n||}{n} = 0$, then T is uniformly ergodic on X if and only if the restriction of T to some closed subspace $Y \subset X$, invariant under T and $R[(I-T)^k] \subset Y$ for some integer $k \ge 1$, is uniformly ergodic. Consequently, we obtain other equivalent conditions concerning the theorem of Mbekhta and Zemànek [9, theorem 1], also to the theorem of the Gelfand-Hille type.

2010 Mathematics Subject Classification. 47A35, 47A25, 47A15.

Key words and phrases. Uniform ergodic theorem, Cesàro averages, decomposition ergodic.

1. Introduction

Throughout this paper, $\mathbf{B}(X)$ denotes the Banach algebra of all bounded linear operators on a Banach space X into itself. For $T \in \mathbf{B}(X)$, we denote by R(T), N(T), $\sigma(T)$, r(T) and $\rho(T)$, the range, the kernel, the spectrum, the spectral radius and the resolvent set of T, respectively. A closed subspace Y of X is called invariant under T or shortly T-invariant if $T(Y) \subset Y$.

By $M_n(T) = \frac{1}{n} \sum_{k=0}^{n-1} T^k$, for $n \in N$, denote the sequence of the arithmetic means of the powers of T. An operator $T \in \mathbf{B}(X)$ is called uniformly ergodic (resp. mean ergodic) if $\{M_n(T)\}$ is uniformly (resp. strongly) convergent in $\mathbf{B}(X)$.

Recall that, $T \in \mathbf{B}(X)$ is called Cesàro bounded if $\sup_n ||M_n(T)|| < \infty$. Then a every uniformly ergodic operator T is necessarily Cesàro bounded, and $\frac{||T^n||}{n} \to 0$ when $n \to \infty$, by the following identity:

$$T^n = (n+1)M_{n+1}(T) - M_n(T).$$

In 1938, Yosida [12] showed that when $\{M_n(T)\}$ converge strongly to $P \in \mathbf{B}(X)$ (i.e. T is mean ergodic) then P is the projection onto the space N(I-T) along $\overline{R(I-T)}$, corresponding to the ergodic decomposition (see [7, Theorem 2.1.3.])

$$X = N(I - T) \oplus \overline{R(I - T)}.$$

Much of ergodic operator theory is concerned with determining when, conversely, the convergence to 0 of $\{\frac{T^n}{n}\}$ and/or the boundedness of $\{M_n(T)\}$ implies the convergence of $\{M_n(T)\}$ in the operator topology considered. A fundamental theorem due to M. Lin [8] (see also [7, Theorem 2.2.1. p.87]) says that when $\frac{||T^n||}{n} \to 0$, T is uniformly ergodic if and only if R(I-T) is closed. In this case $R[(I-T)^k]$ is closed for every integer $k \ge 1$.

Mbekhta and Zemànek [9], still assuming $\frac{||T^n||}{n} \to 0$ when $n \to \infty$, have showed that T is uniformly ergodic if and only if $R[(I-T)^k]$ is closed for some integer $k \ge 1$. The case k = 2, is due to Dunford [4]. On the other hand, Koliha in [6, Theorem 4] proved that $\{T^n, n \ge 0\}$ converge uniformly if and only if $r(T) \le 1$, $\sigma(T) \cap \Gamma \subset \{1\}$ and 1 is a pole of the resolvent of order at most 1 (Γ is the unit circle). The latter condition is equivalent to uniform ergodicity (see [4]). In the same case, Mbekhta and Zemànek give another condition equivalent to Koliha's theorem [6], presented in the following theorem: **Theorem 1.1.** [9, Corollary 3] Let T be a bounded linear operator on a complex Banach space X. Then the following conditions are equivalent:

- 1. $\{T^n\}_{n>0}$ converge uniformly in $\mathbf{B}(X)$,
- 2. T is uniformly ergodic and $\sigma(T) \cap \Gamma \subset \{1\}$,
- 3. $\lim_{n \to \infty} \frac{\|T^n\|}{n} = 0, \ \sigma(T) \cap \Gamma \subset \{1\} \text{ and } R[(I-T)^k] \text{ is closed for some integer } k \ge 1,$
- 4. $||T^n T^{n+1}|| \to 0$ when $n \to \infty$ and $R[(I T)^k]$ is closed for some integer $k \ge 1$.

M. E. Becker [2] gives an example of a subspace of X which is invariant under T denoted by $X_1 := \{x \in X : \lim_{n \to \infty} \sum_{k=1}^n \frac{T^k x}{k} \text{ exists }\}$. By the Hahn-Banach theorem, $X_1 \subset \overline{R(I-T)}$. She proved [2, Remark 2] that if $\lim_{n \to \infty} \frac{\|T^n\|}{n} = 0$ and $R(I-T) \subset X_1$, then T is uniformly ergodic if and only if X_1 is closed. When T is power-bounded, $R(I-T) \subset X_1$.

This paper is organized as follows. In section 2, we give some definitions and fundamental properties of ergodic operator theory. In section 3, we show that for every operator $T \in \mathbf{B}(X)$ which satisfies $\lim_{n\to\infty} \frac{||T^n||}{n} = 0$, T is uniformly ergodic if and only if there exists a closed subspace $Y \subset X$, T-invariant, contains $R[(I - T)^k]$ for some integer $k \ge 1$ and $T|_Y$ is uniformly ergodic. This result was also obtained for an operator satisfying $\lim_{n\to\infty} \frac{T^n x}{n} = 0$ for all $x \in X$, in the weak operator topology.

2. Preliminaries

In this section, we briefly review the definitions and some basic properties which we will need in the sequel.

For $T \in \mathbf{B}(X)$, Recall that the ascent of T is the smallest non negative integer n such that $N(T^n) = N(T^{n+1})$, if no such n exists, we write $asc(T) = \infty$. Similarly, the descent of T is the smallest nonnegative integer n such that $R(T^n) = R(T^{n+1})$, if there is no such n, we write $des(T) = \infty$ (see e.g. [1, Definition 3.1] or [3] p.10). It may be instructive to note that one may have $des(T) \leq n < \infty$ without $R(T^n)$ begin closed (see example at the end of [5]). We mention the following characterization: **Lemma 2.1.** [6, Lemma 1.1] Given a non-negative integer d and $T \in \mathbf{B}(X)$, we have (i) $asc(T) \leq d < \infty$ if and only if $R(T^d) \cap N(T^m) = \{0\}$, for some (equivalently, all) integer $m \geq 1$. (ii) $des(T) \leq d < \infty$ if and only if $R(T^m) + N(T^d) = X$, for some (equivalently, all) integer $m \geq 1$.

If both asc(T) and des(T) are finite, then they are equal, and $X = R(T^d) \oplus N(T^d)$

where d = asc(T) = des(T). For more details see Lemma 1.4.6, Lemma 3.2.4 and Proposition 1.4.3 from [3] or p.330 from [11].

Lemma 2.2. Let T be a bounded linear operator on a real or complex Banach space X. Let $Y \subset X$ be a closed subspace which is T-invariant and $T|_Y$ be the restriction of T to Y.

If T is uniformly ergodic (resp. mean ergodic), then $T|_Y$ is uniformly ergodic (resp. mean ergodic).

Proof:

Let $Y \subset X$ be a closed subspace which is T-invariant, and denote $S = T|_Y$. Since Y is T-invariant, it is also T^n -invariant for each $n \in N$, thus it is also invariant under $S_n = (T^n|_Y)$. Using that Y is closed, we get that both kind of limits are inside of Y.

Thus, S is uniformly ergodic.

Proposition 2.1. [5, Remark 1.4] Let T be a bounded linear operator on a complex Banach space X. If T satisfies either of the following assumptions:

(i) T is Cesàro bounded operator, or

(*ii*) $\frac{T^n}{n}$ converge weakly to 0.

Then the spectral radius of T is not greater than 1. Moreover, $N(I - T) \cap R(I - T) = \{0\}$, which in turn yields $asc(I - T) \leq 1$.

The next lemma can be considered a version of the Gelfand-Hille theorem [13].

Lemma 2.3. [9, Corollary 2] Let T be a bounded linear operator on a complex Banach space X such that $\sigma(T) = \{1\}$. If T is uniformly ergodic, then T = I.

3. Main results

The first main result of this paper is the following theorem:

Theorem 3.1. Let T be a bounded linear operator on a real or complex Banach space X such that $\lim_{n\to\infty} \frac{||T^n||}{n} = 0$. Let $T|_Y$ be the restriction of Tto a closed subspace $Y \subset X$, which is invariant under T, and $R(I-T) \subset Y$.

If $T|_Y$ is uniformly ergodic, then T is uniformly ergodic.

Proof:

Let Y be a closed subspace of X (not trivial) which is invariant under T, assume that R(I-T) is included in Y, and suppose that $T|_Y$ is uniformly ergodic.

Put $Z := \overline{R(I-T)}$. Then $Z \subset Y$, so $T|_Z$ is uniformly ergodic on Z. The limit is 0 on R(I-T), so by continuity of the limit $||M_n(T|_Z)|| \to 0$. Hence $(I_Z - T|_Z)Z = Z$. Then

$$R(I-T) \subset Z = (I_Z - T|_Z)Z \subset R(I-T),$$

which implies R(I - T) = Z, so R(I - T) is closed and T is uniformly ergodic by [8]. \Box

Corollary 3.1. Let T be a bounded linear operator on a complex Banach space X such that $\lim_{n\to\infty} \frac{||T^n||}{n} = 0$. Let $Y \subset X$ be a closed subspace Tinvariant such that $R[(I - T)^k] \subset Y$, for some integer $k \ge 1$. If $T|_Y$ is uniformly ergodic, then T is uniformly ergodic.

Proof:

Let $Y \subset X$ be a closed subspace T-invariant such that $R[(I-T)^k] \subset Y$, for some integer $k \geq 1$. Let's denote $S = T|_Y$, and assume that S is uniformly ergodic. By uniform ergodicity, $Y = R(I-S) \oplus N(I-S)$ with R(I-S) closed [8].

We will show $R[(I-T)^k] = R(I-S)$. Since $R[(I-S)^k] \subset R[(I-T)^k]$, we need to prove only $R[(I-T)^k] \subset R[(I-S)^k]$. Since $R[(I-T)^k] \subset Y = R(I-S) \oplus N(I-S)$ by assumption, for $x \in X$ write $(I-T)^k x = (I-S)y+z$ with $y, z \in Y$ and Tz = Sz = z. Then

$$M_n(T)(I-T)^k x = M_n(S)(I-S)y + z,$$

and $||T^n||/n \to 0$ yields that z = 0, so $R[(I-T)^k] \subset R(I-S)$. But by uniform ergodicity I - S is invertible on R(I - S), which is closed, so $R[(I - S)^k] = R(I - S)$.

Hence $R[(I-T)^k] \subset R[(I-S)^k]$ and equality holds, so $R[(I-T)^k] = R(I-S)$ is closed.

Hence T is uniformly ergodic by [9]. \Box

In the following theorem, we give a generalization of Theorem 3.1 and Corollary 3.1 where X is a real or complex Banach space and $T \in \mathbf{B}(X)$ satisfying $\lim_{n \to \infty} \frac{T^n x}{n} = 0$, for all $x \in X$, in the weak operator topology.

Theorem 3.2. Let T be a bounded linear operator on a real or complex Banach space X such that $\lim_{n\to\infty} \frac{T^n x}{n} = 0$, for all $x \in X$, in the weak operator topology. Let $Y \subset X$ be a closed subspace T-invariant such that $R[(I-T)^k] \subset Y$, for some integer $k \ge 1$.

If $T|_Y$ is uniformly ergodic, then T is uniformly ergodic.

Proof:

Let $Y \subset X$ be a closed subspace T-invariant such that $R[(I-T)^k] \subset Y$, for some integer $k \geq 1$. Let's denote $S = T|_Y$, and assume that S is uniformly ergodic.

Using the technique employed in the proof of Corollary 3.1, we get $R[(I-T)^k] = R(I-S)$. Now, we prove that if k > 1, then also $R[(I-T)^{k-1}] = R(I-S)$.

Let $x \in X$, then $(I-T)^k x = (I-S)y = (I-T)y$ for some $y \in Y$, and by uniform ergodicity of S, we can take $y \in R(I-S)$. Then $(I-T)[(I-T)^{k-1}x-y] = 0$, so $(I-T)^{k-1}x = y + z$ with $y \in R(I-S)$ and $z \in N(I-T)$.

Applying $M_n(T)$ to both sides and using $T^n/n \to 0$ weakly, we get z = 0, which implies $R[(I-T)^{k-1}] \subset R(I-S)$. We proceed by induction R(I-T) = R(I-S).

Then $M_n(T|_{R(I-T)}) = M_n(S|_{R(I-S)})$, yields that $\lim_{n \to \infty} \frac{||T^n||}{n} = 0$ by uniform ergodicity of S.

Since R(I - T) = R(I - S) is closed, T is uniformly ergodic by [8].

Theorem 3.3. Let T be a Cesàro bounded operator on a real or complex Banach space X,

and Y be a closed subspace of X which is invariant under T. If there exists $k \ge 1$ such that $R[(I-T)^k] \subset Y$ and $T|_Y$ is uniformly ergodic, then R(I-T) is closed and $X = R(I-T) \oplus N(I-T)$. Moreover, T is uniformly ergodic.

Proof:

Let T be a Cesàro bounded operator on a real or complex Banach space X, then by Proposition 2.1 we have $R(I - T) \cap N(I - T) = \{0\}$, hence $asc(I - T) \leq 1$.

Let $Y \subset X$ be a closed subspace which is invariant under T and denote by $S = T|_Y$.

Assume that there is an integer $k \ge 1$ such that $R[(I-T)^k] \subset Y$ and S is uniformly ergodic. Since $N(I-S) \subset N(I-T)$, then $R(I-T) \cap N(I-S) =$ $\{0\}$. Since S is uniformly ergodic, then $Y = R(I-S) \oplus N(I-S)$ and R(I-S) is closed. By assumption we infer that $R[(I-T)^k] \subset R(I-S)$.

The uniform ergodicity of S implies that I-S is invertible on R(I-S), so $R[(I-S)^k] = R(I-S)$. Hence

$$R[(I - T^k)] \subset R(I - S) = R[(I - S)^k] \subset R[(I - T)^k],$$

which shows that $R[(I-T)^k] = R(I-S)$ and this yields $R[(I-T)^n] = R(I-S)$ for all $n \ge k$, hence $des(I-T) < \infty$. Thus by [11, Theorem V.6.2] $X = R(I-T) \oplus N(I-T)$.

Therefore, for all $n \ge 1$, $R(I - T) = R[(I - T)^n] = R(I - S)$. Consequently,

$$M_n(T|_{R(I-T)}) = M_n(S|_{R(I-S)})$$

which implies $\frac{\|T^n\|}{n} \to 0$ by uniform ergodicity of S. Since R(I - T) = R(I - S) is closed, then T is uniformly ergodic by [8].

Corollary 3.2. Let T be a Cesàro bounded operator on a real or complex Banach space X. T is uniformly ergodic if (and only if) the restriction of T to $\overline{R[(I-T)^k]}$ is uniformly ergodic, for some integer $k \ge 1$. Now, we recall the following lemma that was introduced in [10, Theorem 2.2(ii)].

Lemma 3.1. Let T be a Cesàro bounded operator on a complex Banach space X with $\sigma(T) \cap \Gamma \subset \{1\}$, where Γ is the unit circle, then $\lim_{n \to \infty} \frac{||T^n||}{n} = 0$.

In accordance with the previous lemma, we infer from Theorem 1.1 and Theorem 3.3 the following result:

Corollary 3.3. Let T be a bounded linear operator on a complex Banach space X.

Then the following conditions are equivalent:

- 1. $\{T^n\}_{n>0}$ converge uniformly in $\mathbf{B}(X)$,
- 2. T is uniformly ergodic and $\sigma(T) \cap \Gamma \subset \{1\}$,
- 3. T is Cesàro bounded, $\sigma(T) \cap \Gamma \subset \{1\}$ and $R[(I-T)^k]$ is closed, for some integer $k \ge 1$,
- 4. T is Cesàro bounded, $\sigma(T) \cap \Gamma \subset \{1\}$ and $T|_Y$ is uniformly ergodic for some closed subspace $Y \subset X$ which is T-invariant and $R[(I-T)^k] \subset Y$, for some integer $k \geq 1$,
- 5. <u>T is Cesàro</u> bounded, $\sigma(T) \cap \Gamma \subset \{1\}$ and the restriction of T to $\overline{R[(I-T)^k]}$, for some integer $k \geq 1$, is uniformly ergodic.

In analogy with the Gelfand-Hille theorem, we give the following theorem:

Theorem 3.4. Let T be a bounded linear operator on a complex Banach space X such that $\sigma(T) = \{1\}$. Let $Y \subset X$ be a closed subspace and T-invariant such that $R[(I - T)^k] \subset Y$, for some integer $k \ge 1$. If $T|_Y$ is uniformly ergodic, then $(I - T)^{k+1} = 0$.

Proof:

Let $S = T|_Y$ and suppose that there is $k \ge 1$ such that $R[(I-T)^k] \subset Y$.

Assume that S is uniformly ergodic, then $Y = R(I-S) \oplus N(I-S)$ and R(I-S) is closed.

Since $\sigma(S) \subset \sigma(T) = \{1\}$, we have $\sigma(S) = \{1\}$. Lemma 2.3 implies S = I, which yields Y = N(I - S). Since $R[(I - T)^k] \subset Y = N(I - S) \subset N(I - T)$, then $R[(I - T)^{k+1}] = \{0\}$, which means $(I - T)^{k+1} = 0$.

Acknowledgments.

The authors wish to express their indebtedness to the referee, for his suggestions and valuable comments on this paper.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, (2004).
- [2] M. Becker, A condition equivalent to uniform ergodicity, Studia Math., 167, pp. 215-218, (2005).
- [3] S. R. Caradus, W. E. Pfaffenberger, B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Dekker, New York, (1974).
- [4] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc.54, pp. 185-217, (1943).
- [5] S. Grabiner and J. Zemànek, Ascent, descent, and ergodic properties of linear operators, J. Operator Theory, 48 (2002), 69-81.
- [6] J. J. Koliha, Convergent and stable operators and their generalizations, J. Math. Anal. Appl., 43, pp.778-794, (1993).
- [7] U. Krengel, Ergodic Theorems, Walter de Gruyter Studies in Mathematics 6, Walter de Gruyter, Berlin-New York, (1985).
- [8] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43, pp. 337-340, (1974).
- [9] M. Mbekhta and J. Zemànek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris sèrie I Math., 317, pp. 1155-1158, (1993).
- [10] L. Suciu and J. Zemànek, Growth conditions on Cesàro means of higher order, Acta Sci. Math. (Szeged), 79, pp. 545-581, (2013).
- [11] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, (1980).

- [12] K. Yosida, Mean ergodic theorem in Banach space, Proc. Imp. Acad. Tokyo 14, pp. 292-294, (1938).
- [13] J. Zemànek, On the Gelfand-Hille theorems, in Functional Analysis and Operator Theory, Banach Center Publ., vol. 30, Polish Acad. Sci., Warszawa, pp. 369-385, (1994).

Abdelaziz Tajmouati

Sidi Mohamed Ben Abdellah University Faculty of Sciences Dhar El Mahraz. Fez Morocco e-mail: abdelaziztajmouati@yahoo.fr

Abdeslam El Bakkali

Chouaib Doukkali University Faculty of Sciences El Jadida, Morocco e-mail: aba0101q@yahoo.fr

and

Barki Fatih

Sidi Mohamed Ben Abdellah University Faculty of Sciences Dhar El Mahraz. Fez Morocco e-mail: fatihbarki@gmail.com