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Abstract:

Let B(X) be the algebra of all bounded linear operators in a com-
plex Banach space X. For A € B(X) let F(A) be the subspace of fixed
point of A. For an integer k > 2, let (i1,..,1m) be a finite sequence
with terms chosen from {1,---,k}, and assume at least one of the
terms in (i1,---,imy) appears exactly once. The generalized product of
k operators Ay, ..., Ax, € B(X) is defined by

Al*AQ*---*Ak. :AilAiz"'Aim7
and includes the usual product and the triple product. We characterize
the form of maps from B(X) onto itself satisfying
forall Ay,---, A, € B(X).
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1. Introduction

Let X be a Banach space over K, where K is the complex field C or the
real field R, and let B(X) be the algebra of all bounded linear operators
on X. The dual space of X will be denoted by X*. For a vector z € X
and linear functional f in the dual space X* of X, let x ® f stands for the
operator of rank at most one defined by

(z® fly = fy)z, (ye€X).

The problem of characterizing maps on matrices or operators that preserve
certain functions, subsets and relations has attracted the attention of many
mathematicians in the last decade; for example we can see [1, 2, 3,4, 5,
6, 7] and their references. In recent years, a great activity has occurred
in characterising maps preserving the subspace of fixed points of a matrix
or operators. Recall that a vector z € X is said to be fixed point of an
operator A € B(X) if Az = z, denote by F(A) the set of all fixed points
of an operator A. Note that if we consider the rank-one operator = ® f for
z € X and f € X* then

(1.1) x® f is idempotent <= F(x ® f) = (z)

(1.2) x® f is not idempotent — F(zx ® f) = {0}.

Clearly that F'(A) € Lat(A), where Lat(A) the lattice of A, is the
set of all invariant subspaces of A. In [4], A. A. Jafarian and A.R.
Sourour described linear maps preserving the lattice of an operator in
Banach alge- bra. In particular they showed that a linear map ¢ : B(X) —
B(X) satisfied Lat(¢(A)) = Lat(A), if and only if ¢(A) = aAd + ¢(A)I
for all A € B(X) where I is the identity operator, @ a nonzero scalar in K
and ¢ : B(X) — K linear functional.

This result has been extended in [3], where G. Dolinar et al.
characterised the form of maps preserving the lattice of sum of op-
erators, they showed that maps (not necessarily linear) ¢ : B(X) — B(X)
satisfied Lat(¢p(A) + ¢(B)) = Lat(A + B) for all A,B € B(X), if and
only if there is a non zero scalar a and a map ¢ : B(X) — K such
that ¢(A) = aA + p(A)I for all A € B(X). They proved also, in the
same paper, that a non necessarily linear maps ¢ : B(X) — B(X) satisfied
Lat(¢(A)p(B)) = Lat(AB) (resp. Lat(¢(A)p(B)¢p(A)) = Lat(ABA)) for
all A, B € B(X), if and only if there is a map ¢ : B(X) — K such that
©(A) =0if A=0and ¢(A) = p(A)A for all A € B(X).In [5], A. Taghavi
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and R. Hosseinzadeh proved that if X is a complex Banach space with
dim X > 3 and if a surjective map ¢ : B(X) — B(X) satisfies

dim F($(A)$(B)) = dim F(AB)

for all A, B € B(X), then there exists an invertible operator S € B(X)
such that ¢(A) = £SAS™! for all A € B(X). In [6] A. Taghavi et al.
studied the surjective maps ¢ : B(X) — B(X) which satisfy F(¢(A)+¢(B))
= F(A+B) for all A, B € B(X), they conclude that ¢(A) = UA + R for
all A € B(X) where U =1 —2¢(0) and R = ¢(0). In [7] A. Taghavi et al.
proved that if X is a complex Banach space with dim X > 3 and ¢ : B(X)
— B(X) is sur- jective maps satifying F'(¢(A)o(B)¢p(A)) = F(ABA) for
all A, B € B(X), then ¢(A) = aA for all A € B(X) where @ € C with
a3 = 1. The aim of this note is to prove the last result for the generalized

product.

For an integer k > 2, let (i1,---,i,) be a finite sequence such that
{i1, - ,im} = {1---k} and let at least one of the terms in (i1,- -, %)

appears exactly once. The generalized product of width m of k operators
Ap - A € B(X) is defined by

Al*AQ**Ak:A“AmA

Tm *

Evidently, the generalized product includes the usual product and the
triple product. The following theorem is the main result of this paper. Its
proof use ideas from [1, 7].

Theorem 1.1.  Consider the generalized product of width m, T1%- - -xT.
Let ¢ : B(X) — B(X) be a surjective map. Then, the following statements
are equivalent.

1. F(¢(Ar) *---x Pp(Ag)) = F(Ay -+ x Ag) for all Ay,---, Ay € B(X).
2. There exists « € C with o™ = 1 such that ¢(A) = aA for all A €
B(X).

2. Preliminaries

In this section, we collect and prove some lemmas that will be used in
the sequel. The first and the second are quoted from [7]. Denote C* =

C\{0, 1}. Lemma 2.1. Let A € B(X), then A € C*I if and only if
F(PAP) = {0}, for every rank one idempotent operators P € B(X).
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Proof. See [7, Lemma 2.1]. O

Lemma 2.2. Let A and B be non-scalar operators. If F(PAP) = F(PBP),
for every rank one idempotent operators P € B(X), then there exists a
scalar A € C\ {1} such that B = X + (1 — \)A.

Proof. See [7, Lemma 2.2]. O
In the following we give a conditions in term of dimension of fixed points
of generalized product for two operators to be the same.

Lemma 2.3. Let A and B in B(X)\ {0}, and r and s two positive integers
such that r 4+ s > 1. The following statements are equivalent.

1. A=B.

2. dim F(T"AT?®) = dim F(T" BT?) for all operators T' € B(X).

3. dim F(R"AR?®) = dim F(R" BR?) for all rank one operators R € B(X).
Proof.  The implications (i) = (i) = (¢i¢) can be easily obtained. It

remains to show that (i) = (¢). So, by Lemma 2.1, it is clear that A € C*I
if and only if B € C*I. Let A = ol and B = 51, for some «, 3 € C*. By

assumption, we have
dim F(f(2)" 72 f(Az)z ® f) = dim F(f(x) "7 f(Bz)z ® f)

which implies that f(z)"** = a~1 if only if f(z)"™* = 7! and so a = §3.
Now let A be a non-scalar operator. Since B is a non-scalar operator too,
we can apply Lemma 2.2. Thus, there exists a scalar A € C\ {1} such that
B = A + (1 — MN)A. It is enough to prove that A = 0. Assume on the
contrary that A =0 and let z € X and f € X* such that f(z) =,1,—1 and
f(Az) = mﬂm It is clear that

dim((z ® f)"A(z ® f)°) = 1.
Also we obtain
(2@ £ A+ VA2 ® £) = F@) 10 f(@) + (1= A f(Az) = 1
which implies that

dim F(z @ f)' (M + (M) A)(z @ f)* = dim F((z ® f)" Bz ® f)*) = 0.
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This is a contradiction. It follows that A = B and thus the lemma is
established. O

Finally, we close this section with the following lemma that gives a
characterization of rank-one operators by the dimension of fixed points of
generalized product of operators.

Lemma 2.4. Let r and s be positive integers such that r +s > 1. For a
nonzero operator R € B(X), the following statements are equivalent.

1. R is a rank one operator.

2. dim F(T"RT*)) <1 for all T € B(X).

Proof. If R is a rank one operator and T' € B(X) is an arbitrary
operator, then 7" RT* has rank at most one. Therefore, by (1.1) and (1.2),
we have dim F(T"RT*) < 1, and the implication (i) = (4i) is established.
Conversely, assume that R has rank at least two. Let us show that there
exists T' € B(X) such that dim F(T"RT*®) > 2. Since rank(R) > 2, let yi,
y2 be two linearly independent vectors in the range of R, and x1, x2 in X
such that Rr; = y; and Rxo = y2. Assume that s # 0 and r # 0. Since X
has infinite dimension, we can find linearly independent vectors

R0y R1s +ey Ry Rst1y ey Rs+r—1, WO, W1y +oey Wsy veey Wstr—1

with z; := y1 and ws := yo. Now, we can find a finite rank operator
T € B(X) such that

Tzs 1 =m1, Tzsyr—1 = 20, Tws—1 = 22, TWsyr—1 = wWo
and for i € {0,1,....,7r+s—1}\{s—1,r +s—1}
Tzz- = Zi+1 and Twz- = Wi+1-

Note that T"RT%zy = zp and T"RT*wo = wg. Then zg,wg € F(T"RT?),
hence dim F(T"RT®) > 2. This shows that the implication (i7) = (%)
always holds in case both r and s are positive integers.

To finish, we may and will assume that s = 0 as the case when r = 0 is
similar. Then choose linearly independent vectors zg, 21, ..., Zr—1, Wo, W1, ++vy Wy_1
in X with 29 = y1,wg = y2. Thus, there exists a finite rank operator
T € B(X) such that Tz; = z;4; for i € {0,r — 2} and Tz,_1 = 27 and
Tw; = wiyq for i € {0,r — 2} and Tw,_1 = x2. We have T"Rx; = x;
and T"Rze = xa. Hence, z1,22 € F(T"R) and dim F(T"R)) > 2. This
establishes the implication in this case too and the proof is then complete.

O
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3. Main Results

Since all the necessary ingredients are collected in the preliminary section
we will state and prove the promised main result. Let A, B € B(X), set
A;, = B and A;; = A for j # p with i; is the term which appears exactly
once in (i1, -+ ,im). Note that Ajx Ag*---x A = A" BA® for some positive
integers r and s such that » + s = m — 1. Then, the Theorem 1.1 is a
consequence of the following one.

Theorem 3.1.
Let r and s be two positive integers with r +s > 1 and ¢ : B(X) —
B(X) be a surjective map. Then the following statements are equivalent.

1. For all A,B € B(X),
(3.1) F(o(A)"¢(B)p(A)*) = F(A"BA).

2. There exists a« € C with o571 = 1 such that ¢(A) = aA for all
A e B(X).

Proof. The ’if’ part is easily verified, so we need only to prove the ’only
if” part. Indeed, assume that ¢ is a surjective map from B(X) into itself
such that for all A, B € B(X),

F(o(A) d(B)p(A)*) = F(A"BA).

We divide the proof into several steps.

Step 1. ¢(0) =0 and ¢ is injective.
By assumption, ¢ is surjective, so there exist A € B(X) such that ¢(A) =
x ® f. Then by hypothesis we have

0y = F

which implies that
(3.2) F@) ™ f(9(0)z) # 1.

So z and ¢(0)zx are linearly dependant for every x € X, because otherwise,
we can find a linear functional f such that f(z) # 0 and f(¢(0)z) =
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W. Thus, there exists a complex number « such that ¢(0) = ~I.
Replace in 3.2, we get v f(x)" 571 # 1. Hence v = 0 and ¢(0) = 0.

Let A, B € B(X) such that ¢(A) = ¢(B). Then, by hypothesis, for
every R € B(X) we have

F(RTAR®) = F(¢(R)"$(A)p(R)%)
= F(¢(R)"$(B)¢(R)*)
— F(R'BR®).

It follows, by lemma 2.3 that A = B, and so ¢ is injective. Thus ¢ is bijec-
tive since it is assumed surjective, moreover ¢~ satisfied the equation (3.1).

Step 2. ¢ preserves rank one operators in both directions.
This is obvious by Lemma 2.4 and the assumption that ¢ is surjective.

Step 3. ¢(P) = aP for every rank-one idempotent P and some scalar
a € C with o5+ = 1.

Let P € P1(X) be a rank-one idempotent operator. Note P = 2 ® f where
x € X and f € X* with f(xz) = 1. By the previous step ¢ preserves rank-
one operators in both directions. Then there exist y € X and g € X* such
that ¢(P) =y ® g. From 3.1 and hypothesis, we have

(z) = F(P) = F(P"PP®)
= F(¢(P) o(P)p(P))
(3.3) = F(fy) " y®g).

Then (z) = (y) and so = and y are linearly dependant. Without loss of
generality we can assume that x =y and so ¢(z ® f) =z ® g. By (3.3) we
obtain
(3.4) glz) sl =1

and so = ¢ ker(g). Thus we have
ker(f)U (x) =X, ker(g) U (z) =X
and its clear that

ker(f) N {x) = {0}, ker(g) N () = {0}
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which imply that ker(f) = ker(g) and so f and g are linearly dependant.
This and (3.4) yield that there exists a complex number a with o5+ = 1
such that ¢(P) = aP.

Step 4. ¢(A) = aA for every A € B(X) and some scalar & € C with
artstl =1,

If A is a rank one operator, by Lemma 2.2 there exists a A € C\ {1} such
that
P(A) = a(A + (1 = N)A),

because by Lemma 2.1, A and ¢(A) are non-scalar operators and by Step
3, ¢(P) = aP for every rank one idempotent P. Since ¢(A) is a rank one
operator, we obtain A = 0 and so ¢(A) = aA for every rank one operator
A. Now if A is an arbitrary operator, the assertion follows from Lemma
2.4, then ¢ takes the desired form. O

By taking r = s = 1 the main theorem of [7] becomes corollary
of Theorem 1.1.

Corollary 3.2.

Let ¢ : B(X) — B(X) be a surjective map. Then the following state-
ments are equivalent.

1. F(¢(A)p(B)d(A)) = F(ABA) for all A, B € B(X).

2. There exists a € C with a® = 1 such that ¢(A) = aA for all A €
B(X).
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