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1. Introduction

Let X be a Banach space over K, where K is the complex field C or the
real field R, and let B(X) be the algebra of all bounded linear operators
on X. The dual space of X will be denoted by X∗. For a vector x ∈ X
and linear functional f in the dual space X∗ of X, let x⊗ f stands for the
operator of rank at most one defined by

(x⊗ f)y := f(y)x, (y ∈ X).

The problem of characterizing maps on matrices or operators that preserve
certain functions, subsets and relations has attracted the attention of many

mathematicians in the last decade; for example we can see [1, 2, 3, 4, 5, 6, 7] and their references. In recent years, a great activity has occurred
in characterising maps preserving the subspace of fixed points of a matrix
or operators. Recall that a vector x ∈ X is said to be fixed point of an
operator A ∈ B(X) if Ax = x, denote by F (A) the set of all fixed points
of an operator A. Note that if we consider the rank-one operator x⊗ f for
x ∈ X and f ∈ X∗ then

x⊗ f is idempotent⇐⇒ F (x⊗ f) = hxi(1.1)

x⊗ f is not idempotent =⇒ F (x⊗ f) = {0}.(1.2)

Clearly that F (A) ∈ Lat(A), where Lat(A) the lattice of A, is the
set of all invariant subspaces of A. In [4], A. A. Jafarian and A.R.
Sourour described linear maps preserving the lattice of an operator in
Banach alge- bra. In particular they showed that a linear map φ : B(X) →
B(X) satisfied Lat(φ(A)) = Lat(A), if and only if φ(A) = αA + ϕ(A)I
for all A ∈ B(X) where I is the identity operator, α a nonzero scalar in K
and ϕ : B(X)→ K linear functional.

This result has been extended in [3], where G. Dolinar et al.
characterised the form of maps preserving the lattice of sum of op-
erators, they showed that maps (not necessarily linear) φ : B(X) → B(X)
satisfied Lat(φ(A) + φ(B)) = Lat(A + B) for all A,B ∈ B(X), if and
only if there is a non zero scalar α and a map ϕ : B(X) → K such
that φ(A) = αA + ϕ(A)I for all A ∈ B(X). They proved also, in the
same paper, that a non necessarily linear maps φ : B(X)→ B(X) satisfied
Lat(φ(A)φ(B)) = Lat(AB) (resp. Lat(φ(A)φ(B)φ(A)) = Lat(ABA)) for
all A,B ∈ B(X), if and only if there is a map ϕ : B(X) → K such that

ϕ(A) = 0 if A = 0 and φ(A) = ϕ(A)A for all A ∈ B(X).In [5], A. Taghavi 
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and R. Hosseinzadeh proved that if X is a complex Banach space with
dimX ≥ 3 and if a surjective map φ : B(X)→ B(X) satisfies

dimF (φ(A)φ(B)) = dimF (AB)

for all A, B ∈ B(X), then there exists an invertible operator S ∈ B(X)
such that φ(A) = ±SAS−1 for all A ∈ B(X). In [6] A. Taghavi et al.
studied the surjective maps φ : B(X)→ B(X) which satisfy F (φ(A)+φ(B))
= F (A+B) for all A, B ∈ B(X), they conclude that φ(A) = UA + R for

all A ∈ B(X) where U = I − 2φ(0) and R = φ(0). In [7] A. Taghavi et al.
proved that if X is a complex Banach space with dimX ≥ 3 and φ : B(X)
→ B(X) is sur- jective maps satifying F (φ(A)φ(B)φ(A)) = F (ABA) for
all A, B ∈ B(X), then φ(A) = αA for all A ∈ B(X) where α ∈ C with
α3 = 1. The aim of this note is to prove the last result for the generalized 
product.

For an integer k ≥ 2, let (i1, · · · , im) be a finite sequence such that
{i1, · · · , im} = {1 · · · k} and let at least one of the terms in (i1, · · · , im)
appears exactly once. The generalized product of width m of k operators
A1 · · ·Ak ∈ B(X) is defined by

A1 ∗A2 ∗ · · · ∗Ak = Ai1Ai2 · · ·Aim .

Evidently, the generalized product includes the usual product and the
triple product. The following theorem is the main result of this paper. Its

proof use ideas from [1, 7].
Theorem 1.1. Consider the generalized product of widthm, T1∗· · ·∗Tk.
Let φ : B(X)→ B(X) be a surjective map. Then, the following statements
are equivalent.

1. F (φ(A1) ∗ · · · ∗ φ(Ak)) = F (A1 ∗ · · · ∗Ak) for all A1, · · · , Ak ∈ B(X).

2. There exists α ∈ C with αm = 1 such that φ(A) = αA for all A ∈
B(X).

2. Preliminaries

In this section, we collect and prove some lemmas that will be used in

the sequel. The first and the second are quoted from [7]. Denote C∗ =
C\{0, 1}. Lemma 2.1. Let A ∈ B(X), then A ∈ C∗I if and only if
F (PAP ) = {0}, for every rank one idempotent operators P ∈ B(X).



1160 Y. Bouramdane, M. E. El Kettani, A. Elhiri and A. Lahssaini

Proof. See [7, Lemma 2.1]. 2
Lemma 2.2. LetA andB be non-scalar operators. If F (PAP ) = F (PBP ),
for every rank one idempotent operators P ∈ B(X), then there exists a
scalar λ ∈ C \ {1} such that B = λI + (1− λ)A.

Proof. See [7, Lemma 2.2]. 2
In the following we give a conditions in term of dimension of fixed points

of generalized product for two operators to be the same.

Lemma 2.3. Let A and B in B(X)\{0}, and r and s two positive integers
such that r + s ≥ 1. The following statements are equivalent.

1. A = B.

2. dimF (T rAT s) = dimF (T rBT s) for all operators T ∈ B(X).

3. dimF (RrARs) = dimF (RrBRs) for all rank one operatorsR ∈ B(X).

Proof. The implications (i) ⇒ (ii) ⇒ (iii) can be easily obtained. It
remains to show that (iii)⇒ (i). So, by Lemma 2.1, it is clear that A ∈ C∗I
if and only if B ∈ C∗I. Let A = αI and B = βI, for some α, β ∈ C∗. By
assumption, we have

dimF (f(x)r+s−2f(Ax)x⊗ f) = dimF (f(x)r+s−2f(Bx)x⊗ f)

which implies that f(x)r+s = α−1 if only if f(x)r+s = β−1 and so α = β.
Now let A be a non-scalar operator. Since B is a non-scalar operator too,
we can apply Lemma 2.2. Thus, there exists a scalar λ ∈ C \ {1} such that
B = λI + (1 − λ)A. It is enough to prove that λ = 0. Assume on the
contrary that λ = 0 and let x ∈ X and f ∈ X∗ such that f(x) =, 1,−1 and
f(Ax) = 1

f(x)r+s−1 . It is clear that

dim((x⊗ f)rA(x⊗ f)s) = 1.

Also we obtain

(x⊗ f)r(λI + (λ)A)(x⊗ f)s = f(x)r+s−1(λf(x) + (1− λ)f(Ax)) = 1

which implies that

dimF (x⊗ f)r(λI + (λ)A)(x⊗ f)s = dimF ((x⊗ f)rB(x⊗ f)s) = 0.
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This is a contradiction. It follows that A = B and thus the lemma is
established. 2

Finally, we close this section with the following lemma that gives a
characterization of rank-one operators by the dimension of fixed points of
generalized product of operators.

Lemma 2.4. Let r and s be positive integers such that r + s ≥ 1. For a
nonzero operator R ∈ B(X), the following statements are equivalent.

1. R is a rank one operator.

2. dimF (T rRT s)) ≤ 1 for all T ∈ B(X).

Proof. If R is a rank one operator and T ∈ B(X) is an arbitrary
operator, then T rRT s has rank at most one. Therefore, by (1.1) and (1.2),
we have dimF (T rRT s) ≤ 1, and the implication (i) ⇒ (ii) is established.
Conversely, assume that R has rank at least two. Let us show that there
exists T ∈ B(X) such that dimF (T rRT s) ≥ 2. Since rank(R) ≥ 2, let y1,
y2 be two linearly independent vectors in the range of R, and x1, x2 in X
such that Rx1 = y1 and Rx2 = y2. Assume that s 6= 0 and r 6= 0. Since X
has infinite dimension, we can find linearly independent vectors

z0, z1, ..., zs, zs+1, ..., zs+r−1, w0, w1, ..., ws, ..., ws+r−1

with zs := y1 and ws := y2. Now, we can find a finite rank operator
T ∈ B(X) such that

Tzs−1 = x1, T zs+r−1 = z0, Tws−1 = x2, Tws+r−1 = w0

and for i ∈ {0, 1, ..., r + s− 1} \ {s− 1, r + s− 1}

Tzi = zi+1 and Twi = wi+1.

Note that T rRT sz0 = z0 and T rRT sw0 = w0. Then z0, w0 ∈ F (T rRT s),
hence dimF (T rRT s) ≥ 2. This shows that the implication (ii) ⇒ (i)
always holds in case both r and s are positive integers.

To finish, we may and will assume that s = 0 as the case when r = 0 is
similar. Then choose linearly independent vectors z0, z1, ..., zr−1, w0, w1, ..., wr−1
in X with z0 = y1, w0 = y2. Thus, there exists a finite rank operator
T ∈ B(X) such that Tzi = zi+1 for i ∈ {0, r − 2} and Tzr−1 = x1 and
Twi = wi+1 for i ∈ {0, r − 2} and Twr−1 = x2. We have T rRx1 = x1
and T rRx2 = x2. Hence, x1, x2 ∈ F (T rR) and dimF (T rR)) ≥ 2. This
establishes the implication in this case too and the proof is then complete.

2
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3. Main Results

Since all the necessary ingredients are collected in the preliminary section
we will state and prove the promised main result. Let A,B ∈ B(X), set
Aip = B and Aij = A for j 6= p with ip is the term which appears exactly
once in (i1, · · · , im). Note that A1 ∗A2 ∗ · · ·∗Ak = ArBAs for some positive
integers r and s such that r + s = m − 1. Then, the Theorem 1.1 is a
consequence of the following one.

Theorem 3.1.
Let r and s be two positive integers with r + s ≥ 1 and φ : B(X)→

B(X) be a surjective map. Then the following statements are equivalent.

1. For all A,B ∈ B(X),

F (φ(A)rφ(B)φ(A)s) = F (ArBAs).(3.1)

2. There exists α ∈ C with αr+s+1 = 1 such that φ(A) = αA for all
A ∈ B(X).

Proof. The ’if’ part is easily verified, so we need only to prove the ’only
if’ part. Indeed, assume that φ is a surjective map from B(X) into itself
such that for all A,B ∈ B(X),

F (φ(A)rφ(B)φ(A)s) = F (ArBAs).

We divide the proof into several steps.

Step 1. φ(0) = 0 and φ is injective.
By assumption, φ is surjective, so there exist A ∈ B(X) such that φ(A) =
x⊗ f . Then by hypothesis we have

{0} = F (Ar0As)

= F (φ(A)rφ(0)φ(A)s)

= F ((x⊗ f)rφ(0)(x⊗ f)s)

= F (f(x)r+s−2f(φ(0)x)x⊗ f)

which implies that
f(x)r+s−1f(φ(0)x) 6= 1.(3.2)

So x and φ(0)x are linearly dependant for every x ∈ X, because otherwise,
we can find a linear functional f such that f(x) 6= 0 and f(φ(0)x) =
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1
f(x)r+s−1 . Thus, there exists a complex number γ such that φ(0) = γI.

Replace in 3.2, we get γf(x)r+s−1 6= 1. Hence γ = 0 and φ(0) = 0.

Let A,B ∈ B(X) such that φ(A) = φ(B). Then, by hypothesis, for
every R ∈ B(X) we have

F (RrARs) = F (φ(R)rφ(A)φ(R)s)

= F (φ(R)rφ(B)φ(R)s)

= F (RrBRs).

It follows, by lemma 2.3 that A = B, and so φ is injective. Thus φ is bijec-
tive since it is assumed surjective, moreover φ−1 satisfied the equation (3.1).

Step 2. φ preserves rank one operators in both directions.

This is obvious by Lemma 2.4 and the assumption that φ is surjective.

Step 3. φ(P ) = αP for every rank-one idempotent P and some scalar
α ∈ C with αr+s+1 = 1.
Let P ∈ P1(X) be a rank-one idempotent operator. Note P = x⊗ f where
x ∈ X and f ∈ X∗ with f(x) = 1. By the previous step φ preserves rank-
one operators in both directions. Then there exist y ∈ X and g ∈ X∗ such
that φ(P ) = y ⊗ g. From 3.1 and hypothesis, we have

hxi = F (P ) = F (P rPP s)

= F (φ(P )rφ(P )φ(P )s)

= F (f(y)r+sy ⊗ g).(3.3)

Then hxi = hyi and so x and y are linearly dependant. Without loss of
generality we can assume that x = y and so φ(x⊗ f) = x⊗ g. By (3.3) we
obtain

g(x)r+s+1 = 1(3.4)

and so x /∈ ker(g). Thus we have

ker(f) ∪ hxi = X, ker(g) ∪ hxi = X

and its clear that

ker(f) ∩ hxi = {0}, ker(g) ∩ hxi = {0}
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which imply that ker(f) = ker(g) and so f and g are linearly dependant.
This and (3.4) yield that there exists a complex number α with αr+s+1 = 1
such that φ(P ) = αP .

Step 4. φ(A) = αA for every A ∈ B(X) and some scalar α ∈ C with
αr+s+1 = 1.
If A is a rank one operator, by Lemma 2.2 there exists a λ ∈ C \ {1} such
that

φ(A) = α(λI + (1− λ)A),

because by Lemma 2.1, A and φ(A) are non-scalar operators and by Step
3, φ(P ) = αP for every rank one idempotent P . Since φ(A) is a rank one
operator, we obtain λ = 0 and so φ(A) = αA for every rank one operator
A. Now if A is an arbitrary operator, the assertion follows from Lemma
2.4, then φ takes the desired form. 2

By taking r = s = 1 the main theorem of [7] becomes corollary
of Theorem 1.1.

Corollary 3.2.

Let φ : B(X) → B(X) be a surjective map. Then the following state-
ments are equivalent.

1. F (φ(A)φ(B)φ(A)) = F (ABA) for all A,B ∈ B(X).

2. There exists α ∈ C with α3 = 1 such that φ(A) = αA for all A ∈
B(X).
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