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Abstract

Let G = (V, E) be a simple graph. An edge e € E(G) edge-vertex
dominates a vertex v € V(QG) if e is incident with v or e is incident
with a vertex adjacent to v. A subset D C E(G) is an edge-vertex
dominating set of a graph G if every vertex of G is edge-vertex domi-
nated by an edge of D. A vertex cover of G is a set C CV such that
for each edge uv € E at least one of u and v is in C. We character-
ize trees with edge-vertex domination number equals vertex covering
number.
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1. Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G we
mean the set Ng(v) = {u € V(G):uwv € E(G)}. The degree of a vertex
v, denoted by dg(v), is the cardinality of its neighborhood. By a leaf, we
mean a vertex of degree one, while a support vertex is a vertex adjacent
to a leaf. We say that a support vertex is strong (weak, respectively) if it
is adjacent to at least two leaves (exactly one leaf, respectively). The path
on n vertices we denote by P,. Let T be a tree, and let v be a vertex of
T. We say that v is adjacent to a path P, if there is a neighbor of v, say
x, such that the subtree resulting from 7' by removing the edge vx and
which contains the vertex x as a leaf, is a path P,. By a star, we mean a
connected graph in which exactly one vertex has degree greater than one.

A vertex cover, abbreviated VC, of GG is a set C C V such that for each
edge uv € E at least one of uw and v is in C. Let a(G) be the vertex covering
number of GG, the minimum number of vertices required to cover all edges
of G.

An edge e € E(G) edge-vertex dominates a vertex v € V(G) if e is inci-
dent with v or e is incident with a vertex adjacent to v. A subset D C E(G)
is an edge-vertex dominating set, abbreviated EVDS, of a graph G if every
vertex of G is edge-vertex dominated by an edge of D. The edge-vertex
domination number of G, denoted by 7e,(G), is the minimum cardinality
of an edge-vertex dominating set of G. An edge-vertex dominating set of
G of minimum cardinality is called a 7., (G)-set. Edge-vertex domination
in graphs was introduced in [5] and studied further in [3, 4, 6].

Relating vertex covering number with other dominating parameters is
studied in [1, 2]. In this paper, we characterize trees with equal vertex
covering number and edge-vertex domination number.

2. Results
We begin with the following proposition.

Proposition 1. For any graph G, we have 7., (G) < a(G).

Proof. Let D be any a(G)-set. Let z1,x2,- -, x4 be the vertices in D.
Consider an edge e; incident with the vertex x;. Define A as the set of all
selected edges e;. Clearly the set A is an edge vertex dominating set. Thus
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We now characterize trees with equal edge-vertex domination number
and vertex covering number. For this purpose, we introduce the family 7°
of trees T' = T}, that can be obtained as follows. Let T} € {P», P3, P5}. If k
is a positive integer, then Tj; can be constructed recursively from 7} by
one of the following operations:

e Operation 07 : Attach a vertex by joining it to a support vertex of
Ty.

e Operation Oy : Attach a path P, by joining one of its vertex to a
vertex of T}, adjacent to path Ps.

e Operation Oz : Attach a path P; by joining one of its leaf to a vertex
of T}, adjacent to path Ps.

e Operation Oy : Attach a path Ps by joining one of its leaf to a support
vertex of T}.

We now prove that for every tree T of the family 7, the tree T has
equal edge-vertex domination number and vertex covering number.

Lemma 2. If T € T, then ve,(T) = o(T).

Proof. = We use induction on the number k of operations performed to
construct the tree T'. Suppose T' = P5 or P3, then 7., (T) =1 = (7). If
T = Ps, then v¢,(T) = 2 = a(T'). Let k be a positive integer. Assume
that the result is true for every tree 7" = T}, of the family 7 constructed
by k — 1 operations. Let T" = Tj11 be a tree of the family 7 constructed
by k operations.

Assume that T is obtained from 7" by operation O;. Let x be the
support vertex to which a leaf y is attached. Let z be a leaf different
from y adjacent to x. Let D be a «(T)-set. To cover the edges zz,xy
the vertex x € D. It is easy to see that D is a vertex cover of tree T".
Thus a(T") < «(T). Let D’ be a a(T")-set. To cover the edge zz the
vertex « € D. The vertex x also covers the edge zy in tree T. Thus
a(T") < a(T). This implies that «(T) = a(T"). Let S be a e (T)-set.
Suppose xy € S. Then xz ¢ S. It is easy to see that D \ {zy} U {zz} is
an EVDS of tree T'. If xy ¢ S then obviously S is an EVDS of tree 7".
Thus Yey(T7) < Yeu(T'). Let S’ be a ey (T7)-set. The edge which dominates
the vertex z dominates the vertex y in tree T. Thus, Ve, (T) < Yeu (T"). We
have y(T) = v(T") = a(T") = (T).
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Assume that T is obtained from 7" by operation Os. Let x be the vertex
to which a path P, : uv is attached. Let u be adjacent to z. Let yz be a
path different from uv adjacent to z. Let y be adjacent to x. Let D’ be a
Yeu(T")-set. Tt is easy to see that D' U {zu} is an EVDS of tree T. Thus
Yeu(T) < Yeu(T') + 1. Let D be a vep(T)-set. To dominate the vertices z
and v the edges xy, zu € D. Tt is obvious that D\ {zu} is an EVDS of tree
T'. Thus, Yey(T") < Yeu(T) — 1. This implies that Yey(T) < Yeo(T') + 1.
Let S" be a a(T")-set. It is clear that S’ U {u} is a vertex cover of tree T
Thus «(T) < a(T")+1. Let S be a a(T')-set. To cover the edges yz, xy, zu
and uv the vertices y,u € S. It is clear that S\ {u} is a vertex cover of
tree T". Thus, a(T") < a(T') — 1. This implies that «(T) = a(T") + 1. We
have ey (T) = Yeo (T") + 1 = a(T") + 1 = (T).

Assume that T is obtained from 7" by operation Q3. Let x be the
vertex to which a path P; : wyz is attached. Let w be adjacent to x. Let
abc be a path different from wyz adjacent to z. Let a be adjacent to x. Let
D' be a 7ep(T")-set. It is easy to see that D' U {wy} is an EVDS of tree
T. Thus Yeu(T) < Yeo(T') + 1. Let D be a e (T)-set. To dominate the
vertices z,w, ¥y, z,a,b and ¢ the edges wy, ab € D'. Tt is clear that D\ {zy}
is an EVDS of tree T”. Thus, vey(T") < 7ep(T) — 1. This implies that
Yeo(T) < Yeu(T") + 1. Let S" be a a(T”)-set. To cover the egdes be and ab
the vertex b € S’. To cover the edge ax the vertex b € S’. The vertex z
covers the edge zw in tree T. Thus S’ U {y} is a vertex cover of tree T.
Thus «(T) < «(T") + 1. Let S be a a(T)-set. To cover the edges zw and
xa the vertices y,b € S. It is clear that S\ {y} is a vertex cover of tree
T'. Thus a(T") < a(T) — 1. This imples that a(T") = «(7") + 1. We have
Yeo(T) = Yeo(T") + 1 = (T") + 1 = (7).

Assume that T is obtained from 7" by operation O4. Let x be a support
vertex to which a path Ps : uwvw is attached. Let u be adjacent to x. The
leaf adjacent to z is denoted by y. Let S’ be a a(T”)-set. To cover the edge
xy the vertex x € S§’. The vertex x covers the edge zu in tree T. It is easy
to see that S”\ {v} is a vertex cover of tree T. Thus a(T) < a(T") + 1.
Let S be a o(T)-set. To cover the edges vw,uv, zu and xy the vertices
v,z € S. It is obvious that S\ {v} is a vertex cover of tree 7. Thus
a(T") < a(T) — 1. This imples that a(T) = a(T’) + 1. Let D’ be a
Yeu(T")-set. It is easy to see that D' U {uv} is an EVDS of tree T. Thus
Yeu(T) < ew(T") + 1. Let D be a e, (T')-set. To dominate the vertex y the
edge incident with x other than xy and zu is in D. It is easy to see that
xy,zu € D. Tt is easy to see that D\ {uv} is an EVDS of tree T". Thus,
Yeu(T') < Yep(T) — 1. This implies that e, (T) < 7eu(T”) + 1. We have
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Yeo(T) = Ve (T') + 1 =a(T") + 1 =(T). O
We now prove that if T has equal edge-vertex domination number and
vertex covering number, then the tree belongs to the family 7.

Lemma 3. Let T be a tree. If e, (T) = o(T), then T € T.

Proof. If diam(T) =1, then T is P». We have ¢, (T) = 1 = «(T), thus
T eT. If diam(T') = 2, then T is star. If T'is P3, then T' € 7. If T is a
star other than Ps, then T is obtained from P3 by applying operation Oy
appropriately.

Now assume that diam(T") > 3. Thus the order n of the tree is at least
four. We obtain the result by induction on the number n. Assume that the
theorem is true for every T” of order n’ < n.

First assume that some support vertex of T, say x, is strong. Let y and
z be the two leaves adjacent to . Let 7" =T —y. Let D’ be a e, (T")-set.
It is obvious that D’ is an EVDS of tree T. Thus vey(T') < Yen(T”). Let S
be a a(T')-set. To cover the edges xy, yz the vertex z € S. It is easy to see
that S is a vertex cover of tree T”. Thus a(T") < «(T"). We have v, (T') <
TeolT") < a(T") < &(T). 1 7eo(T) = (T) then 7eu(T') = o(T’). By
inductive hypothesis T € 7. The tree T is obtained from 7" by operation
Oy. ThusT € 7.

We now root 1" at a vertex r of maximum eccentricity diam(T). Let ¢
be a leaf at maximum distance from r, v be the parent of ¢, u be the parent
of v in the rooted tree. If diam(T") > 4, then let w be the parent of u. If
diam(T) > 5, then let d be the parent of w. If diam(T) > 6, then let e be
the parent of d. By T}, we denote the subtree induced by a vertex x and its
descendants in the rooted tree T'.

Assume that some child of u there is a support vertex, say x, other
than v. Let y be the leaf adjacent to z. Let 7" = T — T,,. Let D’ be
a Yeu(T")-set. Tt is obvious that D' U {uz} is an EVDS of tree T. Thus
Yeu(T) < Yeu(T”) + 1. Let S be a a(T')-set. To cover the edges vt, uv the
vertex v € S. To cover the edges zy, ux the vertex x € 5. It is easy to
see that S\ {z} is a vertex cover of tree 7. Thus «(7") < a(T) — 1. We
have Yep(T) < Ve (T") + 1 < a(T") + 1 < a(T). If veo(T) = «(T) then
Yeo(T') = a(T"). By inductive hypothesis 7" € T. The tree T is obtained
from T” by operation Q. Thus T € 7.

Assume that some child of u, say x is a leaf. Let T/ =T —T,. Let D’ be
a Yeu(T")-set. It is easy to see that D' U {uv} is an EVDS of tree T'. Thus
Yeu(T) < Yeu(T") + 1. Let S be a a(T)-set. To cover the edges wu, ux, uv
and vt, the vertices u,v € S. It is obvious that S\ {u,v} is a vertex cover
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of tree T". Thus a(T") < a(T) — 2. We now get Yeu(T) < Yeu(T") +1 <
a(TY+1<a(T) - 1< a(T).

Assume dr(u) = 2. Assume that some child of w, other than u, say
such that the distance of w to the most distant vertex of T, is three. It
suffices to consider the case T}, is a path P3 = zyz. Let T' =T —T,,. Let D’
be a ey (T")-set. To dominate the vertices w, z,y an z the edge zy € D’. Tt
is clear that D'\ {uv} is an EVDS of tree T". Thus ey (T) < Yeo(T")+1. Let
S be a «(T)-set. To cover the edges yz, xy, wz, wu,uv and vt the vertices
y,w,v € S. Tt is clear that S\ {v} is a vertex cover of tree T’. Thus
a(T") < a(T) — 1. We have Yy (T) < Yo (T") + 1 < a(T") + 1 < (7). If
Yeu(T) = a(T') then e, (T7) = (T”). By inductive hypothesis 77 € 7. The
tree T' is obtained from 7" by operation O3. Thus T' € 7.

Assume that some child of w, other than wu, say x such that the distance
of w to the most distant vertex of T}, is two. It suffices to consider the case
T, is a path P, = xy. By operation Oy, we can assume that w is adjacent
to exactly one P, = xy. Thus, dp(w) = 3. Let 7" = T — T,,. Let D’
be a ey (T")-set. It is easy to observe that D'\ {wz,uv} is an EVDS of
tree T. Thus Yey(T) < Yeu(T') + 2. Let S be a a(T)-set. To cover the
edges wx, wu, wd,uv and vt the vertices x,w,v € S. It is easy to see that
S\ {z,w,v} is a vertex cover of tree T". Thus a(T") < a(T) — 3. We have
Yeo(T) < Yeo(T") +2 < a(T")+2 < a(T) —3+2 < a(T).

Assume that some child of w other than u, say x is a leaf. Let TV =
T —Ty,. Let D' be a vep(T")-set. It is easy to observe that D'\ {uv}
is an EVDS of tree T. Thus Yey(T) < 7eo(T”) + 1. Let S be a o(T)-
set. To cover the edges vt,uv and wzx the vertices v,w € S. It is clear
that S\ {v} is a vertex cover of tree T". Thus a(7’) < o(T) — 1. We
have y(T) < v(T") +1 < a(T") + 1 < o(T). If 4e(T) = «(T) then
Yeo(T') = a(T"). By inductive hypothesis 7" € 7. The tree T is obtained
from T” by operation Q4. Thus T € 7.

Assume dy(w) = 2. If dp(d) =1, then T = P5. We have ,(T) =2 =
a(T), thus T € 7. Assume dp(d) > 3. Let T" =T — Ty. Let D' be a
Yeu(T")-set. It is easy to see that D' U {uv} is an EVDS of tree T Thus,
Yeu(T) < Yeu(T") + 1. Let S be a a(T)-set. To cover the edges dw, wu, uv
and vt the vertices w,v € S. It is obvious that S\ {w,v} is a vertex cover
of tree T'. Thus, a(T") < a(T) — 2. We have Yep(T) < 7eo(T') +1 <
aT)+1<a(l)-2+1<a(T) O

As an immediate consequence of Lemma 2 and 3, we have the following
characterization of trees with edge-vertex domination number equals vertex
covering number.
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Theorem 4. Let T be a tree. Then e, (T) = a(T) if and only if T € T.
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