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Abstract

Let G = (V,E) be a simple graph. An edge e ∈ E(G) edge-vertex
dominates a vertex v ∈ V (G) if e is incident with v or e is incident
with a vertex adjacent to v. A subset D ⊆ E(G) is an edge-vertex
dominating set of a graph G if every vertex of G is edge-vertex domi-
nated by an edge of D. A vertex cover of G is a set C ⊆ V such that
for each edge uv ∈ E at least one of u and v is in C. We character-
ize trees with edge-vertex domination number equals vertex covering
number.
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1. Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we
mean the set NG(v) = {u ∈ V (G):uv ∈ E(G)}. The degree of a vertex
v, denoted by dG(v), is the cardinality of its neighborhood. By a leaf, we
mean a vertex of degree one, while a support vertex is a vertex adjacent
to a leaf. We say that a support vertex is strong (weak, respectively) if it
is adjacent to at least two leaves (exactly one leaf, respectively). The path
on n vertices we denote by Pn. Let T be a tree, and let v be a vertex of
T . We say that v is adjacent to a path Pn if there is a neighbor of v, say
x, such that the subtree resulting from T by removing the edge vx and
which contains the vertex x as a leaf, is a path Pn. By a star, we mean a
connected graph in which exactly one vertex has degree greater than one.

A vertex cover, abbreviated VC, of G is a set C ⊆ V such that for each
edge uv ∈ E at least one of u and v is in C. Let α(G) be the vertex covering
number of G, the minimum number of vertices required to cover all edges
of G.

An edge e ∈ E(G) edge-vertex dominates a vertex v ∈ V (G) if e is inci-
dent with v or e is incident with a vertex adjacent to v. A subset D ⊆ E(G)
is an edge-vertex dominating set, abbreviated EVDS, of a graph G if every
vertex of G is edge-vertex dominated by an edge of D. The edge-vertex
domination number of G, denoted by γev(G), is the minimum cardinality
of an edge-vertex dominating set of G. An edge-vertex dominating set of
G of minimum cardinality is called a γev(G)-set. Edge-vertex domination
in graphs was introduced in [5] and studied further in [3, 4, 6].

Relating vertex covering number with other dominating parameters is
studied in [1, 2]. In this paper, we characterize trees with equal vertex
covering number and edge-vertex domination number.

2. Results

We begin with the following proposition.

Proposition 1. For any graph G, we have γev(G) ≤ α(G).

Proof. Let D be any α(G)-set. Let x1, x2, · · · , xα be the vertices in D.
Consider an edge ei incident with the vertex xi. Define A as the set of all
selected edges ei. Clearly the set A is an edge vertex dominating set. Thus
γev(G) ≤ α(G). 2
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We now characterize trees with equal edge-vertex domination number
and vertex covering number. For this purpose, we introduce the family T
of trees T = Tk that can be obtained as follows. Let T1 ∈ {P2, P3, P5}. If k
is a positive integer, then Tk+1 can be constructed recursively from Tk by
one of the following operations:

• Operation O1 : Attach a vertex by joining it to a support vertex of
Tk.

• Operation O2 : Attach a path P2 by joining one of its vertex to a
vertex of Tk adjacent to path P2.

• Operation O3 : Attach a path P3 by joining one of its leaf to a vertex
of Tk adjacent to path P3.

• Operation O4 : Attach a path P3 by joining one of its leaf to a support
vertex of Tk.

We now prove that for every tree T of the family T , the tree T has
equal edge-vertex domination number and vertex covering number.

Lemma 2. If T ∈ T , then γev(T ) = α(T ).

Proof. We use induction on the number k of operations performed to
construct the tree T . Suppose T = P2 or P3, then γev(T ) = 1 = α(T ). If
T = P5, then γev(T ) = 2 = α(T ). Let k be a positive integer. Assume
that the result is true for every tree T 0 = Tk of the family T constructed
by k − 1 operations. Let T = Tk+1 be a tree of the family T constructed
by k operations.

Assume that T is obtained from T 0 by operation O1. Let x be the
support vertex to which a leaf y is attached. Let z be a leaf different
from y adjacent to x. Let D be a α(T )-set. To cover the edges xz, xy
the vertex x ∈ D. It is easy to see that D is a vertex cover of tree T 0.
Thus α(T 0) ≤ α(T ). Let D0 be a α(T 0)-set. To cover the edge xz the
vertex x ∈ D. The vertex x also covers the edge xy in tree T . Thus
α(T 0) ≤ α(T ). This implies that α(T ) = α(T 0). Let S be a γev(T )-set.
Suppose xy ∈ S. Then xz /∈ S. It is easy to see that D \ {xy} ∪ {xz} is
an EVDS of tree T 0. If xy /∈ S then obviously S is an EVDS of tree T 0.
Thus γev(T

0) ≤ γev(T ). Let S
0 be a γev(T 0)-set. The edge which dominates

the vertex z dominates the vertex y in tree T . Thus, γev(T ) ≤ γev(T
0). We

have γ(T ) = γ(T 0) = α(T 0) = α(T ).
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Assume that T is obtained from T 0 by operation O2. Let x be the vertex
to which a path P2 : uv is attached. Let u be adjacent to x. Let yz be a
path different from uv adjacent to x. Let y be adjacent to x. Let D0 be a
γev(T

0)-set. It is easy to see that D0 ∪ {xu} is an EVDS of tree T . Thus
γev(T ) ≤ γev(T

0) + 1. Let D be a γev(T )-set. To dominate the vertices z
and v the edges xy, xu ∈ D. It is obvious that D \{xu} is an EVDS of tree
T 0. Thus, γev(T 0) ≤ γev(T ) − 1. This implies that γev(T ) ≤ γev(T

0) + 1.
Let S0 be a α(T 0)-set. It is clear that S0 ∪ {u} is a vertex cover of tree T .
Thus α(T ) ≤ α(T 0)+1. Let S be a α(T )-set. To cover the edges yz, xy, xu
and uv the vertices y, u ∈ S. It is clear that S \ {u} is a vertex cover of
tree T 0. Thus, α(T 0) ≤ α(T )− 1. This implies that α(T ) = α(T 0) + 1. We
have γev(T ) = γev(T

0) + 1 = α(T 0) + 1 = α(T ).

Assume that T is obtained from T 0 by operation O3. Let x be the
vertex to which a path P3 : wyz is attached. Let w be adjacent to x. Let
abc be a path different from wyz adjacent to x. Let a be adjacent to x. Let
D0 be a γev(T

0)-set. It is easy to see that D0 ∪ {wy} is an EVDS of tree
T . Thus γev(T ) ≤ γev(T

0) + 1. Let D be a γev(T )-set. To dominate the
vertices x,w, y, z, a, b and c the edges wy, ab ∈ D0. It is clear that D \ {xy}
is an EVDS of tree T 0. Thus, γev(T 0) ≤ γev(T ) − 1. This implies that
γev(T ) ≤ γev(T

0) + 1. Let S0 be a α(T 0)-set. To cover the egdes bc and ab
the vertex b ∈ S0. To cover the edge ax the vertex b ∈ S0. The vertex x
covers the edge xw in tree T . Thus S0 ∪ {y} is a vertex cover of tree T .
Thus α(T ) ≤ α(T 0) + 1. Let S be a α(T )-set. To cover the edges xw and
xa the vertices y, b ∈ S. It is clear that S \ {y} is a vertex cover of tree
T 0. Thus α(T 0) ≤ α(T )− 1. This imples that α(T ) = α(T 0) + 1. We have
γev(T ) = γev(T

0) + 1 = α(T 0) + 1 = α(T ).

Assume that T is obtained from T 0 by operation O4. Let x be a support
vertex to which a path P3 : uvw is attached. Let u be adjacent to x. The
leaf adjacent to x is denoted by y. Let S0 be a α(T 0)-set. To cover the edge
xy the vertex x ∈ S0. The vertex x covers the edge xu in tree T . It is easy
to see that S0 \ {v} is a vertex cover of tree T . Thus α(T ) ≤ α(T 0) + 1.
Let S be a α(T )-set. To cover the edges vw, uv, xu and xy the vertices
v, x ∈ S. It is obvious that S \ {v} is a vertex cover of tree T 0. Thus
α(T 0) ≤ α(T ) − 1. This imples that α(T ) = α(T 0) + 1. Let D0 be a
γev(T

0)-set. It is easy to see that D0 ∪ {uv} is an EVDS of tree T . Thus
γev(T ) ≤ γev(T

0)+ 1. Let D be a γev(T )-set. To dominate the vertex y the
edge incident with x other than xy and xu is in D. It is easy to see that
xy, xu ∈ D. It is easy to see that D \ {uv} is an EVDS of tree T 0. Thus,
γev(T

0) ≤ γev(T ) − 1. This implies that γev(T ) ≤ γev(T
0) + 1. We have
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γev(T ) = γev(T
0) + 1 = α(T 0) + 1 = α(T ). 2

We now prove that if T has equal edge-vertex domination number and
vertex covering number, then the tree belongs to the family T .

Lemma 3. Let T be a tree. If γev(T ) = α(T ), then T ∈ T .

Proof. If diam(T ) = 1, then T is P2. We have γev(T ) = 1 = α(T ), thus
T ∈ T . If diam(T ) = 2, then T is star. If T is P3, then T ∈ T . If T is a
star other than P3, then T is obtained from P3 by applying operation O1
appropriately.

Now assume that diam(T ) ≥ 3. Thus the order n of the tree is at least
four. We obtain the result by induction on the number n. Assume that the
theorem is true for every T 0 of order n0 < n.

First assume that some support vertex of T , say x, is strong. Let y and
z be the two leaves adjacent to x. Let T 0 = T − y. Let D0 be a γev(T 0)-set.
It is obvious that D0 is an EVDS of tree T . Thus γev(T ) ≤ γev(T

0). Let S
be a α(T )-set. To cover the edges xy, yz the vertex x ∈ S. It is easy to see
that S is a vertex cover of tree T 0. Thus α(T 0) ≤ α(T ). We have γev(T ) ≤
γev(T

0) ≤ α(T 0) ≤ α(T ). If γev(T ) = α(T ) then γev(T
0) = α(T 0). By

inductive hypothesis T 0 ∈ T . The tree T is obtained from T 0 by operation
O1. Thus T ∈ T .

We now root T at a vertex r of maximum eccentricity diam(T ). Let t
be a leaf at maximum distance from r, v be the parent of t, u be the parent
of v in the rooted tree. If diam(T ) ≥ 4, then let w be the parent of u. If
diam(T ) ≥ 5, then let d be the parent of w. If diam(T ) ≥ 6, then let e be
the parent of d. By Tx we denote the subtree induced by a vertex x and its
descendants in the rooted tree T .

Assume that some child of u there is a support vertex, say x, other
than v. Let y be the leaf adjacent to x. Let T 0 = T − Tx. Let D

0 be
a γev(T

0)-set. It is obvious that D0 ∪ {ux} is an EVDS of tree T . Thus
γev(T ) ≤ γev(T

0) + 1. Let S be a α(T )-set. To cover the edges vt, uv the
vertex v ∈ S. To cover the edges xy, ux the vertex x ∈ S. It is easy to
see that S \ {x} is a vertex cover of tree T 0. Thus α(T 0) ≤ α(T ) − 1. We
have γev(T ) ≤ γev(T

0) + 1 ≤ α(T 0) + 1 ≤ α(T ). If γev(T ) = α(T ) then
γev(T

0) = α(T 0). By inductive hypothesis T 0 ∈ T . The tree T is obtained
from T 0 by operation O2. Thus T ∈ T .

Assume that some child of u, say x is a leaf. Let T 0 = T −Tu. Let D0 be
a γev(T

0)-set. It is easy to see that D0 ∪ {uv} is an EVDS of tree T . Thus
γev(T ) ≤ γev(T

0) + 1. Let S be a α(T )-set. To cover the edges wu, ux, uv
and vt, the vertices u, v ∈ S. It is obvious that S \ {u, v} is a vertex cover
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of tree T 0. Thus α(T 0) ≤ α(T ) − 2. We now get γev(T ) ≤ γev(T
0) + 1 ≤

α(T 0) + 1 ≤ α(T )− 1 < α(T ).

Assume dT (u) = 2. Assume that some child of w, other than u, say x
such that the distance of w to the most distant vertex of Tx is three. It
suffices to consider the case Tx is a path P3 = xyz. Let T 0 = T−Tw. Let D0

be a γev(T
0)-set. To dominate the vertices w, x, y an z the edge xy ∈ D0. It

is clear that D0\{uv} is an EVDS of tree T . Thus γev(T ) ≤ γev(T
0)+1. Let

S be a α(T )-set. To cover the edges yz, xy, wx,wu, uv and vt the vertices
y,w, v ∈ S. It is clear that S \ {v} is a vertex cover of tree T 0. Thus
α(T 0) ≤ α(T ) − 1. We have γev(T ) ≤ γev(T

0) + 1 ≤ α(T 0) + 1 ≤ α(T ). If
γev(T ) = α(T ) then γev(T

0) = α(T 0). By inductive hypothesis T 0 ∈ T . The
tree T is obtained from T 0 by operation O3. Thus T ∈ T .

Assume that some child of w, other than u, say x such that the distance
of w to the most distant vertex of Tx is two. It suffices to consider the case
Tx is a path P2 = xy. By operation O2, we can assume that w is adjacent
to exactly one P2 = xy. Thus, dT (w) = 3. Let T 0 = T − Tw. Let D

0

be a γev(T
0)-set. It is easy to observe that D0 \ {wx, uv} is an EVDS of

tree T . Thus γev(T ) ≤ γev(T
0) + 2. Let S be a α(T )-set. To cover the

edges wx,wu,wd, uv and vt the vertices x,w, v ∈ S. It is easy to see that
S \ {x,w, v} is a vertex cover of tree T 0. Thus α(T 0) ≤ α(T )− 3. We have
γev(T ) ≤ γev(T

0) + 2 ≤ α(T 0) + 2 ≤ α(T )− 3 + 2 < α(T ).

Assume that some child of w other than u, say x is a leaf. Let T 0 =
T − Tu. Let D0 be a γev(T

0)-set. It is easy to observe that D0 \ {uv}
is an EVDS of tree T . Thus γev(T ) ≤ γev(T

0) + 1. Let S be a α(T )-
set. To cover the edges vt, uv and wx the vertices v, w ∈ S. It is clear
that S \ {v} is a vertex cover of tree T 0. Thus α(T 0) ≤ α(T ) − 1. We
have γ(T ) ≤ γ(T 0) + 1 ≤ α(T 0) + 1 ≤ α(T ). If γev(T ) = α(T ) then
γev(T

0) = α(T 0). By inductive hypothesis T 0 ∈ T . The tree T is obtained
from T 0 by operation O4. Thus T ∈ T .

Assume dT (w) = 2. If dT (d) = 1, then T = P5. We have γev(T ) = 2 =
α(T ), thus T ∈ T . Assume dT (d) ≥ 3. Let T 0 = T − Tw. Let D

0 be a
γev(T

0)-set. It is easy to see that D0 ∪ {uv} is an EVDS of tree T . Thus,
γev(T ) ≤ γev(T

0) + 1. Let S be a α(T )-set. To cover the edges dw,wu, uv
and vt the vertices w, v ∈ S. It is obvious that S \ {w, v} is a vertex cover
of tree T 0. Thus, α(T 0) ≤ α(T ) − 2. We have γev(T ) ≤ γev(T

0) + 1 ≤
α(T 0) + 1 ≤ α(T )− 2 + 1 < α(T ) 2

As an immediate consequence of Lemma 2 and 3, we have the following
characterization of trees with edge-vertex domination number equals vertex
covering number.
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Theorem 4. Let T be a tree. Then γev(T ) = α(T ) if and only if T ∈ T .
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