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1. Introduction

In 1907, Lyapunov [6] proved a necessary condition for the existence of
a mnontrivial solution of Hill’s equation associated with Dirichlet
boundary conditions.

Theorem 1.1. [6] If the boundary value problem

(L.1) y'(t) +p(t)y(t) =0, a<t<b,

' y(a) =0, y(b) =0,
has a nontrivial solution, where p : [a,b] — R is a continuous function,
then

4
(b—a)

The Lyapunov inequality is useful in the study of spectral properties
of ordinary differential equations. It can also be used to establish suffi-
cient conditions on the existence of solutions for certain non-homogeneous
boundary value problems, study the zeros of solutions, and obtain bounds
on eigenvalues in certain eigenvalue problems. Due to its importance, the
Lyapunov inequality has been generalized in many forms. For more details
on Lyapunov-type inequalities and their applications, we refer [1, 8, 9,
11, 12, 13] and the references therein.

On the other hand, many researchers have derived Lyapunov-type in-
equalities for various classes of fractional boundary value problems during
the past six years. For the first time, in 2013, Ferreira [3] generalized The-
orem 1.1 to the case where the classical second-order derivative in BVP is
replaced by an a'P-order (1 < a < 2) Riemann-Liouville type derivative.

(12) [ ts)ids >

Theorem 1.2. [3] If the fractional boundary value problem

y(a) =0, y(b) =0,

has a nontrivial solution, where p : [a,b] — R is a continuous function,

then
/ab ip(s)|ds > F(a)(b . a>a1.

{ Doy(t) + pt)y(t) =0, a<t<b,
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Here D2 denotes the Riemann-Liouville type atP-order differential
operator. In 2014, Ferreira [4] replaced the Riemann-Liouville type
derivative in Theorem 1.2 with the Caputo one D2 and obtained the
following Lyapunov-type inequality for the resulting problem:

Theorem 1.3. [4] If the fractional boundary value problem

CDy(t) + p(t)y(t) =0, a<t<b,
y(a) =0, y(b) =0,

has a nontrivial solution, where p : [a,b] — R is a continuous function,
then

b I'(a)a®
J, s>

Recently, Ntouyas et al. [7] presented a survey of results on Lyapunov-
type inequalities for fractional differential equations associated with a va-
riety of boundary conditions. This article shows that a Lyapunov-type in-
equality for a two-point Riemann-Liouville type fractional boundary value
problem associated with anti-periodic boundary conditions is not yet re-
ported.

In 2016, Dhar et al. [2] derived Lyapunov-type inequalities for two-point
Riemann-Liouville type fractional boundary value problems associated with
fractional integral boundary conditions. This article stresses the impor-
tance of choosing well-posed boundary conditions for Riemann-Liouville
type fractional boundary value problems.

Motivated by these developments, in this article, we establish a Lyapunov-
type inequality for two-point Riemann-Liouville type fractional boundary
value problems associated with well-posed anti-periodic boundary condi-
tions.

2. Preliminaries

Throughout, we shall use the following notations, definitions and known
results of fractional calculus [5, 1(. Denote the set of all real numbers and
complex numbers by R and C, respectively.
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Definition 2.1. [5] The Euler gamma function is defined by
[(z) := /OOO t#~te7tdt, R(z) > 0.
Using the reduction formula
I(z+1)=2I'(z), R(z) >0,

the Euler gamma function can be extended to the half-plane R(z) < 0
except for z =0,—1,—-2,...

Definition 2.2. [5] Let o > 0 and a € R. The a'"-order Riemann-
Liouville fractional integral of a function y : [a,b] — R is defined by

(2.1) zmw—ﬁ%AE—Wwaaasmm

provided the right-hand side exists. For o = 0, define I to be the identity
map. Moreover, let n denote a positive integer and assumen — 1 < a < n.
The a'"-order Riemann-Liouville fractional derivative is defined as

(2.2) Dgy(t) = D™ %y(t), a<t<b,

where D™ denotes the classical n'*-order derivative, if the right-hand side
exists.

Definition 2.3. [5] We denote by L(a,b) the space of Lebesgue measurable
functions y : [a,b] — R for which

b
mmz/www<m

Definition 2.4. [5] We denote by C|a, b] the space of continuous functions
y : [a,b] — R with the norm

= t)|.
lyllc = max [y(®)]
Definition 2.5. 5] Let 0 < v < 1, y : (a,b] — R and define y,(t) =
(t—a)'y(t), t € [a,b]. We denote by C,[a, b] the weighted space of functions
y such that y, € [a,b], and

[yl =(tmaxa)y(0)]

tefab
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Lemma 2.1. 5/ If a > 0 and 8 > 0, then
Ig(t— )"t = qis (t — a)Ptot,

D2(t — a1t = (HO (¢ — )1,

Lemma 2.2. 5/ Let « > > 0 and y € C|a,b]. Then,
(2.3) DRIgy(t) = 17 y(t), t€ [a,b].

Lemma 2.3. [10] Let o > 0 and n be a positive integer such that n —1 <
a <n. Ify € C(a,b) N L(a,b), then the unique solution of the fractional
differential equation
DSy(t) =0, a<t<b,
is
y(t) = Cr(t—a)* T+ Colt —a)* 4 Cut — )",
where C; e R, 1 =1,2,---,n

Lemma 2.4. [10] Let o > 0 and n be a positive integer such that n —1 <
a<n. Ify e C(a,b) N L(a,b), then

IDYy(t) = y(t) + C1(t —a)* L+ Co(t —a)* 2+ -+ Cp(t —a)®™™,

for some C; € R, i =1,2,---,n

3. Main Results

In this section, we obtain a Lyapunov-type inequality for an anti-periodic
fractional boundary value problem using the properties of the corresponding
Green’s function.

Theorem 3.1. Let1 < a <2andh:[0,T] — R. The fractional boundary
value problem

<3n{< 39) (1) +h(t) =0, 0<t<T,
PO + ()(T) = 0. (DF~)(0) + (D ~3)(T) = 0.

has the unique solution

(3.2) /Gts s)ds, 0 <t <T,
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where

tafl ta_2(T72s)
(33) G(t9) ={ P e D 0<t<s<T,
’ a— a _9s _g)e
o) T A=) — T 0<s<t<T

Proof. Applying I§ on both sides of (3.1) and using Lemma 2.4, we
have

(3.4) y(t) = — (Igh) (t) + Ot 4 Cot™2,

for some C1, Co € R. Applying Igfo‘ on both sides of (3.4) and using
Lemma 2.1 and Lemma 2.2, we get

(35)  (Iy) () =~ /O t(t — $)h(s)ds + C1T'(a)t + Col'(a — 1).

Applying DS‘*1 on both sides of (3.4) and using Lemma 2.1 and Lemma
2.2, we get

(3.6) (D5 ~'y) (1) = - /O t h(s)ds + CiT(a).

Using (I3~%y)(0) + (Ig~*y)(T) = 0 in (3.5), we get
T
(3.7) /0 (T = $)h(s)ds = CiT(a)T + 2CsT(cr — 1).

Using (D§1y)(0) + (DY 'y)(T) = 0 in (3.6), we get

(3.8) /O " h(s)ds = 2017 ().

Solving (3.7) and (3.8) for C} and Cs, we have

1 T
¢ = 35 /0 h(s)ds,

Cy = m /OT <§ — s) h(s)ds.

Substituting C1 and Cs in (3.4), we obtain the unique solution of (3.1) as

and
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7 Jo (6 = 9)° " h(s)ds + fay Jo h(s)ds

e A s) h(s)ds

M(a—-1) Jo (2

a—l t"‘*z T-2 t—s)—1

= fo {2tr @) 4r((a—1)s) — r%) } h(s)ds
-1 taiQ(T—Qs):| h(S)dS

+ft[ &) T A a—D)
=fy ( s)h(s)ds.

The proof is complete. O
Now, we obtain an upper bound for the Green’s function

y(t) =

Theorem 3.2. For the Green'’s function G(t, s) defined in (3.3), we observe

that 3 Ve
2—a —a
< —_ .
#7G(t, 5)| < o) " (t,s) € [0,T] x [0,T]
Proof. Let us consider
t (T—2s)
—+ 0 <t<s< T7
(3.9 #G(ts) = T Y paggen o Z o
@) T Ay T 0sssts<T
Let us denote the functions
_ (7 - 25)
Gilt9) = o5y F e —
. (T=25) 050
t T —2s Yt — s)*
G2b8) = Sr) T e o)

For a fixed s € [0,T], we have
1

d
%G1<t7 S) - 2T(a) > 07

implying that G(¢, s) is an increasing function of ¢. Thus, we have

(53]}

Gi(t, s ‘—max{‘Gl (0, s)],

max
t€(0,s]

We observe that G1(s, s) is an increasing function of s, since

d
31 = 5
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Therefore, we have

max,ejo7) Ga(s,5) = max {|G1(0,0)], |G1(T,T)|}
_ T B=a)T
= MAX\ TT(a—1)* () }
_ (B3=a)T
= iT(a) -
Now, we consider
d -1
gGl(O,S) = m < 0.

So, G1(0, s) is a decreasing function of s. Thus, we have
maxse(o.7] |G1(0,s)] = max{|G1(0,0)[,[G1(0,T)[}

_ T T
= MAaX \ T(a—1)’ (a1
T

= M(a—1)
Hence, we have

_ B-aT
(3.10) tel0s)se[0,7] Grlt 9)l = 40(a)
For a fixed ¢ € [0, 7], we have
d (a=1)(t—s)r A2 2
35 2 (b s) = T'(a) AT — 1)
and
d? —(a—1)(a —2)(t — s)> 32—«
- = >
ds? Galt, ) I'(«) 20,

for s € [0,t]. So, %Gg (t,s) is an increasing function of s and

d -1

—Gg(t,t) = m <0,

ds

implying that Ga(¢, s) is a decreasing function of s. So,

max ’Gg(t, s)‘ = max{)Gg(t, 0)), )Gg(t,t)‘}.

s€[0,t]
Since ‘Gg(t,t)‘ = ‘Gl(t,t)) for ¢ € [0, T, we only consider Ga(t,0). Now,

~1
2I'(«)

d
B t =
dtG2( ,O) <0,
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implying that Ga(t,0) is a decreasing function of ¢. So, we have
maxeo 7 [Ga(t, 0)] = max {|G2(0,0)|,|Ga(T, 0)[}

_ T 3—a)T
= MaAX\ T(a—1)’ 4T(a)

_ B=a)T
- AT(a)
Therefore,
B3—a)T
A1 -
(3.11) se[O,Ig]l,%é{[O,T] ‘G2(t’ 8)’ AT ()

Hence, the result follows from (3.10) and (3.11). O

We are now able to formulate a Lyapunov-type inequality for a Riemann-
Liouville type fractional boundary value problem with anti-periodic bound-
ary conditions.

Theorem 3.3. If the following fractional boundary value problem

(312 (D8 () +p(0)y(t) =0, 0<i<T,
PO+ I )T) =0, (D57 )0) + (D)) =0,

has a nontrivial solution, then

4T ()

(3.13) /0 " a2 p(s)|ds > BT

Proof. Let B = Cy_,[0,7] be the Banach space of functions y endowed
with norm

_ 2—«
Illcs-. = maue [£2y()].

It follows from Theorem (3.12) that a solution to (3.12) satisfies the equa-
tion

i) = [ Gl plohu(s)ds.
Hence,
Ioller. = masicor |27 7 Gt s)p(s)u(s)ds|
< maxieppry [Jo |G 5)]Ip(s) ly(s) ds)
<lyllos.. [maxiepry Jy |20 G(t, )]s 2p(s)|ds]
<lyllos [maxiepr [20G(E 5)|| o 5% p(s)lds,
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or, equivalently,

1<

T
max ’t2 *G(t s)”/ 5972|p(s)|ds.
0

te[0,T]

An application of Theorem 3.2 yields the result. O

4. Application

In this section, we estimate a lower bound for the eigenvalue of the fractional
eigenvalue problem corresponding to (3.12).

Theorem 4.1. Assume that y is a nontrivial solution of the fractional
eigenvalue problem

] DO+ =0, 0<t<T,
D\ G290 + (B 29)(T) =0, (DF)(0) + (D ~)(T) =0,

where y(t) # 0 for each t € (0,T). Then,

Proof. From (3.13), we obtain

T a
(4.3) /0 s972|\|ds > %,

or, equivalently,

AN (o) (e — 1)
(44) |)\| > m

This proves the result (4.2). The proof is complete. O
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