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1. Introduction

Topological spaces has been expanded in different directions. The notion
of mixed topology was investigated by Alexiewicz and Semadeni [1]. Mixed
topology is a technique of combining two different topologies on a set to
get a third topology on that set. The works on mixed topology is due to
([3, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16]) and many others.

In 1965, Zadeh [17] introduced the concept of fuzzy set. The notion of
fuzzy topology was introduced by Chang [2]. Different properties of fuzzy
topological spaces have been investigated by Das and Baishya [6], Ganster
et al. [7], Ganguly and Singha [8] and others.

Mixed fuzzy topological spaces has also been studied from different
aspects by Das and Baishya [6], Tripathy and Ray [12| and others. This
concept is not the generalization of the concept of crisp mixed topology due
to Alexiewicz and Semadeni [1], Cooper ([4, 5]), Warren [15] and others.
Tripathy and Ray [12] studied and investigated the concept of mixed fuzzy
topological spaces in a slightly different way as introduced and investigated
by Das and Baishya [6]. The concept of fuzzy continuity and d-continuity
in fuzzy setting in fuzzy topological spaces has been introduced and investi-
gated by Ganguly and Saha [9] . Tripathy and Shravan [11] studied mixed
multiset topological spaces. The concept of fuzzy d-almost continuous and
fuzzy 6*-almost continuous functions between fuzzy topological spaces was
introduced and studied by Chilana [3]. In this paper we introduce the con-
cepts of fuzzy d*-almost continuous and fuzzy 0*-continuous functions in
mixed fuzzy topological spaces.

2. Preliminaries

Let X be a non-empty set and I, the unit interval [0, 1]. A fuzzy set A in
X is characterized by a function 4 : X — I, where p 4 is called the mem-
bership function of A, 4 (x) representing the membership grade of  in A,
one may refer to [16]. The empty fuzzy set is denoted by Ox, such that
px(x) =0 for all z € X. Also X can be regarded as a fuzzy set in itself
denoted by 1x such that pux(z) = 1 for all z € X. Further, an ordinary
subset A of X can also be regarded as a fuzzy set in X if its membership
function is taken as usual characteristic function of A that is pa(x) = 1,
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for all x € A and pa(z) =0, for all z € X — A. Two fuzzy set A and B
are said to be equal if pa(x) = pp(x), for all z € X. A fuzzy set A is said
to be contained in a fuzzy set B, written as A < B, if pa(z) < pp(x), for
all x € X. The complement of a fuzzy set A in X is a fuzzy set A in X
defined by pae(z) =1 — pa(x), for all z € X. We write A® = coA, if there
is no confusion. The union and intersection of a collection {A4; : i € A},

(where A is an index set) of fuzzy sets in X, to be written as ié/AAi and

; é\A A; respectively are defined as follows:
AV () = sup{pa,(x):ie A}, forall z € X,
iea
and p W (x) =inf{ua,(z) :i € A}, for all z € X.
N

We procure the following definitions, those will be used in this article.

Definition 2.1. A collection B of open fuzzy sets in a fts X is said to be
an open base for X if every open fuzzy set in X is a union of members of

B.

Definition 2.2. If A is a fuzzy set in X and B is a fuzzy set in Y then,
A X B is a fuzzy set in X x Y with the membership paxp, defined by
paxp(z,y) =min{ua(z), up(y)}, for all z € X and for all y € Y.

Definition 2.3. Let f be a function from X into Y. Then, for each fuzzy
set B in Y, the inverse image of B under f, written as f~1(B), is a fuzzy set
in X, whose membership is defined by ;1) (z) = pp(f(z)) forallz € X.

Definition 2.4. A fuzzy set A in a fuzzy topological space (X, 1) is called
a neighborhood of a point © € X if and only if there exists B € 7 such that
B < Aand pa(w), ps(x) > 0.

Definition 2.5 (see[6]). A fuzzy point z, is said to be quasi-coincident
with A, denoted by x,qA, if and only if o + A(z) > 1 or a > A(x))°.

Definition 2.6 (see[6]). A fuzzy set A is said to be quasi-coincident with
B and is denoted by AgB, if and only if there exists a x € X such that
A(x) + B(z) > 1.

It is clear that if A and B are quasi-coincident at = both A(x) and B(x)
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are not zero at x and hence A and B intersect at z.

Definition 2.7. A fuzzy set A in a fts (X, 7) is called a quasi-neighborhood
of a fuzzy point z) if and only if A; € 7 such that A1 C A and z)qA;. The
family of all @-neighborhood of the fuzzy point x) is called the system of
(Q-neighborhoods of x). The intersection of two quasi-neighborhood of
is a quasi-neighborhood of x}.

Definition 2.8 (see [12]). Let (X,71) and (X, 72) be two fuzzy topo-
logical spaces and let 7i(m2) = {A € IX : forevery fuzzy set B €
X with AgB, there exists a 79 — open set Ay, such that A1¢B and 7 —
closure, A; < B}.

It is proved that this family of fuzzy sets will form a topology on X
and this topology we call a mixed fuzzy topology on X (One may refer to
Tripathy and Ray [12]).

Definition 2.9. A fuzzy set A in a mixed fuzzy topological space (X, 71(72))
is said to be regularly open set in X if and only if int(clA) = A (closure
with respect to 7o and interior with respect to 71).

Definition 2.10. A mapping [ : (X, 71(m2)) — (Y,73(74)) is said to be
fuzzy d-continuous mapping if for every regularly open ¢g-neighbourhood U
of a fuzzy point yy of Y, there exists a regularly open ¢-neighbourhood V
of z) of X such that f(V) < U, where f(z) =y.

Definition 2.11. A mapping [ : (X, 71(12)) — (Y,73(74)) is said to be
fuzzy continuous mapping if for every open g-neighbourhood U of a fuzzy
point yy of Y, there exists an open ¢-neighbourhood V of z) of X such

that f(V) < U, where f(z)=y.

The following is an equivalence condition to definition 2.11.

A mapping f: (X, 71(12)) — (Y, 73(74)) is said to be fuzzy continuous
mapping if for any open fuzzy set U in Y, there exists an open fuzzy set

V € X such that f(V) < U, where f(z) =y.

Definition 2.12. (see [9]). A fuzzy set A in an fuzzy topological space
X is said to be d-preopen if A < int(d — clA). The complement of fuzzy
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d-preopen set is called fuzzy d-preclosed. The set of all fuzzy d-preopen sets
in X will be denoted by § — PO(X).

3. Fuzzy ¢*-almost continuous functions

In this section, we introduce the following definitions in mixed fuzzy topo-
logical spaces.

Definition 3.1. Let (X, 71(72)) be a mixed fuzzy topological space. A
fuzzy set A € X is said to be preopen set if A < 71 —int(m2 — cl(A)).

Definition 3.2. A fuzzy set A in a mixed fuzzy topological space (X, 71(72))
is said to be d-preopen set if A < 7 —int((r72 — —cl(A). The complement
of §-preopen set is said to be d-preclosed. The set of all fuzzy J-preopen
sets in X is denoted by 6§ — PO(X).

Definition 3.3. A fuzzy set A in a mixed fuzzy topological space (X, 71(72))
is called a fuzzy § — pre — ¢g-neighbourhood of a fuzzy point x in X if there
exists a fuzzy d-preopen set V in X such that x gV and V < A.

Definition 3.4. A fuzzy set A in a mixed fuzzy topological space (X, 71(72))
is said to be a d-pre-neighbourhood of a fuzzy point x in X if there exists
a fuzzy d-preopen set V € X such that )y € V and V < A.

Definition 3.5. A fuzzy J-interior of a fuzzy set A in a mixed fuzzy
topological space (X, 7(72)) is denoted by & — int(A) and is define by
d—int(A) =1—0 —clA). The union of all fuzzy §-preopen sets in a mixed
fuzzy topological space X, each contained in a fuzzy set A in X is called
the fuzzy 0-pre-interior of A and is denoted by § — pint(A).

Definition 3.6. A fuzzy point z) in a mixed fuzzy topological space
(X, 71(m2)) is called a fuzzy d-precluster point of a fuzzy set A in X if every
fuzzy 6 — pre — ¢ — nbd of the fuzzy point x) is g-coincident with A. The
union of all fuzzy Jd-precluster point of A is called fuzzy preclosure of A and
is denoted by 6 — pcl(A).

Definition 3.7. A function f : (X, 71(72)) — (Y, 73(74)) is said to be fuzzy
§*-almost continuous function if f=(V) is fuzzy d-preopen set in X, for
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every fuzzy d-preopen set V € Y.

Now, we establish some equivalent conditions of fuzzy J*-almost con-
tinuous functions.

Theorem 3.1. Let f: X — Y be a function from a mixed fuzzy topologi-
cal space (X, 71(m2)) into another mixed fuzzy topological space (Y, 73(74)),
the following conditions are equivalents.

(i) f is fuzzy §*-almost continuous function.

(ii) For each fuzzy point x in X and fuzzy d-prenbd V of f(zy), f~1(V)
is fuzzy 0-prenbd of x).

(#i7) For each fuzzy point =) in X and fuzzy d-prenbd V of f(zy), there is
a fuzzy d-prenbd U of x) such that f(U) < V.

(iv) For each fuzzy set B inY, f(d — pint(f—1(B)) < § — pint(B).

(v) For each fuzzy é-preclosed set F in Y, f~1(F) is fuzzy é-preclosed in X.

Proof.

(i) = (u) For any fuzzy point x) in X and a fuzzy §-prenbd V of f(x),),
there exists a fuzzy d-preopen set B such that f(z)) € B and B < V.
Since f is * almost continuous, therefore f~!(B) is fuzzy é-preopen set in
Y containing x ).

We have,

f(z\) € B=z)€ f~YB)

and

B<V= f4B)< V).

Hence, f~1(V) is fuzzy d-prenbd of x).

(i) = (4ii) Straightforward.

(#i) = (4v) Since § — pint(B) is fuzzy Jd-preopen set in Y, so & — pint(B)
is & — prenbd of each of its fuzzy points. Therefore for each fuzzy point
x) in X and each fuzzy § — prenbd, 0 — pint(B) of f(xy), by condition
(i), we have a fuzzy § — prenbd, (§ — pint(f~1(B))) of ) such that
f(0 —pint(f~1(B))) < § — pint(B).

Hence, f~(V) is fuzzy d-prenbd of ).

(iv) = (v) Let F be a fuzzy d-preclosed set in Y. Then 1 — F' is a fuzzy
d-preopen set in Y.

This implies, 1 — F = § —int(1 — F).

By the condition (iv) we have f~1(1 — F)) < §-pint(f~(1 — F)).
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= 1—fYF)<§—pint(f1(1-F)). [Since f}(1-F)=1-f"1(1-F)]
=1—fYF)<d§—pint(l - f1(F)).
= 1 — f~1(F) is fuzzy J-preopen in X.
= 1 — f~1(F)is fuzzy §-preclosed in X.

Let ) be a fuzzy point in f~1(1 — F) ie. x) € f71(1 - F)
:>f(.’L')\) €cl-F

= flzx) ¢ F

=ax ¢ [(F)

=zx)y€1-— fﬁl(F).

Hence, f~1(1 - F) <1 - f~Y(F).

Similarly, we can show that f~1(1 — F) > 1— f~1(F).

Thus we conclude that f~}(1 — F) =1— f~1(F).

(v) = (i) We have, for every fuzzy d-preclosed set F in Y, f~1(F) is fuzzy
d-preclosed set in X.

= 1 — f~1(F) is fuzzy d-preopen set in X

= f~}(1 — F) is fuzzy J-preopen set in X.

Hence for each fuzzy §-preopen set 1—F in Y, f~1(1—F) is fuzzy §-preopen
set in X.
Therefore f is fuzzy é*-almost continuous function.
Theorem 3.2. Let U be a fuzzy set in a mixed fuzzy topological space
(X, 71(72)), then § — pel(U) is the intersection of all fuzzy d-preclosed sets
containing U.
Proof. Let V =A{A € I%X: Ais§— preclosed and U < A}.

We have to show that V = § — pcl(U).

Let ) € V' be any fuzzy point in X.

Suppose, ) ¢ § —pcl(U). Then x) is not a fuzzy §-precluster point of
U, so there exists a fuzzy 6 — pre — g — nbdB of x) such that Ug¢B (U is

not quasi-coincident with B).

Therefore, there exists a fuzzy d-preopen set C' in X such that z € C
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and C' < B.
But U¢gB = UqC =<1-C.

Since, C is fuzzy J-preopen, so 1 — C is fuzzy J-preclosed set and
V <1—C as V is the smallest fuzzy d-preclosed set containing U.

Hence, z) ¢ V. This leads to a contradiction.
Thus, x) € § —pcl(U) and so V < 6 — pel(U).
Conversely, we shall show that V' > § — pcl(U).
Suppose z) € § —pcl(U), but x) ¢ V.

If z) ¢ V, then there exists a fuzzy d-preclosed set F' in X containing
U such that z) ¢ F.

= z) € 1-F and Uq(1—F). This contradicts to ) is fuzzy J-precluster
point of U.

Therefore, z) € V and so we get V > § — pcl(U).

Thus V =0 — pcl(U) i.e. for any fuzzy set U in a mixed fuzzy topolog-
ical space (X, 71(72)), d — pcl(U) is the intersection of all fuzzy d-preclosed
sets containing U.

Theorem 3.3. Let A and B be two fuzzy subsets in a mixed fuzzy topo-
logical space (X, 11(72)), the following results hold:

) A< B=0§—pcl(A) <é—pcl(B).
) A is fuzzy d-preclosed if and only if A =0 — pcl(A).
)

a
b
¢) 6 —pcl(A) is fuzzy d-preclosed in X.
d) & — pel(6 — pcl(A)) =6 — pcl(A).

Proof.

(a) Let A and B be two fuzzy subsets of a mixed fuzzy topological space
X and A < B.

Let z) € 6 — pcl(A). Then there exists a fuzzy 6 — pre — ¢ — nbd(U) of x)
such that AqU and U < A.
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We have A < B. Therefore, UgA and A < B = Uq¢B.

Hence, we get a fuzzy § — pre — ¢ — nbdU of x) such that BqU and U < B
i.e. xy is a fuzzy d-precluster point of B.

Therefore, x)\ € § — pc(B) and consequently we get § —pcl(A) < § —pcl(B).
(b) Let A be a fuzzy d-preclosed set in X.

Clearly, § — pcl(A) < A.

Also, A is fuzzy d-preclosed set = A contains all its §-precluster points

= A <§—pcl(A).

Hence, A =0 — pcl(A).

Converse part is straightforward from definition of §-preclosed set.

(¢) This result directly follows from Theorem 3.2.

(d) Follows from (b) and (c).

Theorem 3.4. The union of any collection of fuzzy d-preopen sets in a
mixed fuzzy topological space is fuzzy J-preopen.

Proof. Let (X, 71(72)) be a mixed fuzzy topological space.

Consider the collection {A, : @ € A} of fuzzy d-preopen sets in X, where
A is the index set.

We show that a\e/A A, is also fuzzy J-preopen set.

Since each A, is fuzzy a d-preopen set, so by definition of fuzzy §-preopen
set Ay <11 —int(re —§ — clA,) for each a € A.

We have,
a\E/AAa < a\e/A (11 — int(m2 — § — clAy)
<m- int(a\e/A (o — 0 — clAy)

<7 —int(ra— 5 —cl( Y, (Aa)

Hence, a\e/A A, is a fuzzy J-preopen set in X. Thus arbitrary union of
fuzzy d-preopen set is fuzzy d-preopen.

Theorem 3.5. Finite intersection of fuzzy d-preopen set is fuzzy J-preopen
set in mixed fuzzy topological spaces.

Proof: Suppose A,, be a fuzzy d-preopen set in a mixed fuzzy topological
space (X, 11(12)).
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Then by definition of fuzzy J-preopen set we have A, < 71 — int(rp —
d —clA,). To show that A\ A, <11 —int(re —d —cl( A Ap)).
1 n=1

n—

We have,

K(ﬁ—%Mh@—6—d@%D)=ﬁ—%M(Kﬁm—6—d@%»)

n=1 _

n=
(since intA \ int B = int(A A\ B), for any two fuzzy sets A and B in a fuzzy
topological space).

(3.1)= 7\ (11 —int(m2 — 6 — cl(Ay))) < 11 —int(m2 —d — cl( 7\ (An)))
n=1 n=1

From (3.1) and (3.2) it can be concluded that K Ap < (11 —int(ms —
n=1

5=l A An)).

n

Hence finite intersection of fuzzy dé-preopen set is fuzzy is fuzzy J-
preopen set.

4. Fuzzy 6*-continuous functions

In this section, we introduce the fuzzy é*-continuous functions between two
mixed fuzzy topological spaces.
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Definition 4.1. A fuzzy set A in a mixed fuzzy topological space (X, 71(72))
is said to be fuzzy d-regular open set (in short F'R — d-open) if 71 —int(mo —
d —cl(A)) = A and its complement is said to be fuzzy d-regular closed set.

Definition 4.2. A fuzzy set U in a mixed fuzzy topological space (X, 71(72))
is said to be fuzzy d-pre-neighbourhood (in short fuzzy J-pre-nbd.) of a
fuzzy point z, if there exists a fuzzy d-regular open set V' in X such that
zy€Vand U < V.

Definition 4.3. A function f : (X, 71(72)) — (Y, 73(74)) is said to be fuzzy
§*-continuous function if f~1(V) is fuzzy d-regular open set in X, for every
fuzzy d-preopen set V in Y.

From the above definition it is clear that a fuzzy d-regular open set is
always fuzzy d-preopen set. But the converse may not be true in general.

Example 4.1. Let us consider a non-empty set X = {z,y} and consider
the following fuzzy sets on X.

A ={(z,0.7),(y,0.3)} and B = {(«,0.3), (y,0.7)}. Then the collection
of fuzzy sets
71 = {0x,1x,B} and 7o = {Ox, 1x, A} are two fuzzy topologies on X.

Then we construct the mixed fuzzy topology on X from these two
fuzzy topologies 71 and 7o and we get 7 (m2) = {0x,1x,A}. If we con-
sider the fuzzy set C' in X defined by C(x) = 0.3 and C(y) = 0.7, then
T2 —0—cl(C)=N{F:Fisd—closed and C < F} =1x.

Also, 11 —int(lx) = 1x. Hence C < 1 —int(ra — d — cl(C)) = C'is
fuzzy é-preopen set. But C' is not fuzzy §-regular open set.

Theorem 4.1. For a function f: X — Y from a mixed fuzzy topological
space (X, 71(72)) into another mixed fuzzy topological space (Y, 73(74)), the
following conditions are equivalent.

(i) f is fuzzy §*-continuous function.

(#i) For each fuzzy point z) in X and fuzzy §-pre-nbd V of f(z,), f~1(V)
is fuzzy d-regular nbd of x).

(ii1) For each fuzzy point x) in X and fuzzy é-prenbd V of f(x)), there is
a fuzzy d-regular-nbh U of x) such that f(U) < V.
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(iv) For each fuzzy d-preclosed set F in Y, f~1(F) is fuzzy d-regular closed
set in X.

Proof. (i)= (i) Suppose f be a fuzzy §*-continuous function.

Let z be a fuzzy point in X and V' be the fuzzy d-prenbd of f(xy). Then
by definition of fuzzy J-prenbd of f(x)), there exists a fuzzy d-preopen set
A in Y such that f(zy) € A and A < V. Since f is fuzzy 0*-continuous
function, therefore by definition f~1(A) is fuzzy é-regular open set in X.
We have f(x)) € A= x) € f1(A)

and A<V = f~1}A) < fYV).

Hence, f~(V) is fuzzy d-regular open set in X.

(@) = (iit) Straightforward.

(ii1) = (iv) Let F be a fuzzy d-preclosed set in Y. Then 1 — F' is fuzzy
d-preopen set in Y.

Let =) be a fuzzy point in X such that f(z)) € 1 — F.

Then, 1 — F' itself a fuzzy d-prenbd of f(x)). Hence by the given condition
(#i7), we have a fuzzy d-regular-nbd V of z such that f(V) <1 — F. This
implies, V < f~4(1 - F).

=V <1-f14)=f1A) <A

Hence, f~1(A) is fuzzy é-regular open set in X.

(iv) = (7) Straightforward.

This completes the proof of the theorem.

From the above definitions of fuzzy ¢6*-almost continuity and fuzzy 0*-
continuity it is clear that fuzzy §*-continuous functions between two mixed
fuzzy topological spaces is always fuzzy d*-almost continuous function. But
every fuzzy d*-almost continuous function may not be fuzzy é*-almost con-
tinuous. This follows from the following example.

Example 4.2. Consider a non-empty set X = {z,y} and the following
fuzzy sets on X.

A= {(2,0.7),(y,0.3)} and B = {(«,0.3), (y,0.7)}. Then the collection
of fuzzy sets 71 = {0x,1x, B} and 7o = {0x, 1x, A} are two fuzzy topolo-
gies on X and from these two topologies we get the mixed fuzzy topology
T1(m2) = {0x,1x,A} on X.

Consider another mixed fuzzy topology on X defined as follows:
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Let the fuzzy sets on X be defined by

A = {(LE‘,O.Q), (ya 08)}a Ay = {(1370'2)7 (ya 0'2)}a Az = {(1370'8)7 (ya 0'2)}?
Ay = {(z,0.8), (y,0.8)}.

Then the collection 73 = {0x,1x, A1, Aa, Az, A4} will form a fuzzy
topology on X.

Also, consider the following fuzzy sets in X as follows:
Bl = {(x’ 0‘3)’ (y7 07)}’ B2 = {(xv 0'7)’ (yv 03)}7 B3 = {($, 0'3)7 (y, 03)}7
By ={(2,0.7), (y,0.7)}

Then the collection of fuzzy sets 74 = {Ox, 1x, B1, B2, B3, B4} will form
a fuzzy topology on X and from these two topologies we get the mixed fuzzy

topology 73(74) = {0x,1x} on X.

Consider the identity function f; : (X, 71(72)) — (X, 73(74)), then f; is
fuzzy d*-almost continuous function but not fuzzy §*-continuous. Consider
the fuzzy set C' = {(z,0.7),(y,0.5)}, then C is fuzzy J-preopen set in X
and f;1(C) = {(x,0.7), (y,0.5)}, the inverse image under f;, is not fuzzy
o-regular open. Hence f; is not fuzzy §*-continuous function.

Theorem 4.2. If f: X — Y is fuzzy §*-almost continuous function and
g :Y — Z is fuzzy §*-continuous function, then g o f is fuzzy §*-almost
continuous.

Proof. Since g is fuzzy §*-continuous so g~! (V') is fuzzy é-regular open set
in Y, for any fuzzy é-preopen set V in Z.

We have g~1(V) is fuzzy d-regular open set in Y.
= g~ 1(V) is fuzzy d-preopen set in Y.
= (g 1 (V)) is fuzzy d-preopen set in X. (Since f is fuzzy J*-almost
continuous)
= (go f)~Y(V) is fuzzy J-preopen set in X.
Hence, g o f is fuzzy 6*-almost continuous.
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