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1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph
without loops or multiple edges. The order and size of G are denoted by
p and q respectively. For basic graph theoretic terminology, we refer to
Harary [1, 2]. The neighborhood of a vertex v is the set N(v) consisting
of all vertices u which are adjacent with v. The closed neighborhood of a
vertex v is the set N [v] = N(v)

S{v}. A vertex v is an extreme vertex if the
subgraph induced by its neighbors is complete.

A chord of a path P is an edge joining two non-adjacent vertices of P.
A path P is called a monophonic path if it is a chordless path. A set S
of vertices of G is a monophonic set of G if each vertex v of G lies on a
x− y monophonic path for some elements x and y in S. The monophonic
number of G is the minimum cardinality of its monophonic sets and is
denoted by m(G). A vertex v of a connected graph G is said to be a
monophonic vertex of G if v belongs to every minimum monophonic set of
G. Let S be a minimum monophonic set of G, a subset T of a minimum
monophonic set S of G is a forcing monophonic subset for S if S is the
unique minimum monophonic set containing T . A forcing monophonic
subset for S of minimum cardinality is a minimum forcing monophonic
subset of S. The forcing monophonic number fm(S) in G is the cardinality
of a minimum forcing monophonic subset of S. The forcing monophonic
number of G is fm(G) = min{fm(S)}, where the minimum is taken over
all minimum monophonic sets S in G. The monophonic number of a graph
and its variants have been studied in [3, 4, 5]. A total monophonic set of a
graph G is a monophonic set S such that the subgraph G[S] induced by S
has no isolated vertices. The minimum cardinality of a total monophonic
set of G is the total monophonic number of G and is denoted by mt(G).
The total monophonic number of a graph was studied in [6]. There are
interesting applications of these concepts to the problem of designing the
route for a shuttle and communication network design.

For the graph G given in Figure 1.1, the minimum total monophonic
sets of G are S1 = {u,w, v} and S2 = {u,w, x} so that the total monophonic
number of G is mt(G) = 3.
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A connected graph G may contain more than one minimum total mono-
phonic set. For example, the graph G given in Figure.1.1 contains two min-
imum total monophonic sets. For each minimum total monophonic set S
in G there is always some subset T of S that uniquely determines S as the
minimum total monophonic set containing T. This motivated to introduce
and investigate the concept “forcing total monophonic subsets ”.

The following theorems will be used in the sequel.

Theorem 1.1. [5] Each extreme vertex of a connected graph G belongs to
every monophonic set of G.

Theorem 1.2. [3] Let G be a connected graph and let S be the set of all
monophonic vertices of G. Then fm(G) ≤ m(G)− |M |.

Theorem 1.3. [6] All extreme vertices and all support vertices of a con-
nected graph G belong to every total monophonic set of G.

Theorem 1.4. [6] For the complete graph Kp(p ≥ 2), mt(Kp) = p.

Theorem 1.5. [6] For any non-trivial tree T , the set of all endvertices and
support vertices of T is the unique minimum total monophonic set of T .

Theorem 1.6. [6] For any connected graph G, mt(G) = 2 if and only if
G = K2.

Throught this paper G denotes a connected graph with at least two
vertices.
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2. Forcing total monophonic number

Definition 2.1. Let G be a connected graph and let S be a minimum total
monophonic set of G. A subset T of a minimum total monophonic set S of
G is a forcing total monophonic subset for S if S is the unique minimum
total monophonic set containing T . A forcing total monophonic subset for
S of minimum cardinality is a minimum forcing total monophonic subset
of S. The forcing total monophonic number ftm(S) in G is the cardinality
of a minimum forcing total monophonic subset of S. The forcing total
monophonic number of G is ftm(G) = min{ftm(S)}, where the minimum
is taken over all minimum total monophonic sets S in G.

Example 2.2. For the graph G given in Figure 1.1, S1 = {u,w, v} and
S2 = {u,w, x} are the minimum total monophonic sets of G. It is clear
that ftm(S1) = 1 and ftm(S2) = 1 so that ftm(G) = 1. By Theorem 1.5,
for any non-trivial tree T , the set of all endvertices and support vertices of
T is the unique minimum total monophonic set of T and so ftm(T ) = 0.

The next result follows immediately from the definition of the total
monophonic number and forcing total monophonic number of a graph G.

Result 2.3. For a connected graph G, 0 ≤ ftm(G) ≤ mt(G) ≤ p.

Remark 2.4. The bounds in Result 2.3 are sharp. By Theorem 1.5, for
any non-trivial tree T , the set of all endvertices and support vertices of
T is the unique minimum total monophonic set of T and so ftm(T ) = 0.
By Theorem 1.4, for the complete graph Kp(p ≥ 2), mt(Kp) = p. The
inequalities in Result 2.3 can be strict. For the graph G given in Figure
1.1, mt(G) = 3 and ftm(G) = 1. Thus 0 < ftm(G) < mt(G) < p.

The following theorem is an easy consequence of the definitions of the
total monophonic number and forcing total monophonic number. In fact,
the theorem characterizes graphs G for which the lower bound in Result 2.3
is attained and also graphs G for which ftm(G) = 1 and ftm(G) = mt(G).

Theorem 2.5. Let G be a connected graph . Then
(i) ftm(G) = 0 if and only if G has a unique minimum total monophonic
set.
(ii) ftm(G) = 1 if and only if G has at least two minimum total monophonic
sets, one of which is a unique minimum total monophonic set containing
one of its elements, and
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(iii) ftm(G) = mt(G) if and only if no minimum total monophonic set of G
is the unique minimum total monophonic set containing any of its proper
subsets.

Definition 2.6. A vertex v of a connected graph G is said to be a total
monophonic vertex of G if v belongs to every minimum total monophonic
set of G.

We observe that if G has a unique minimum total monophonic set S,
then every vertex in S is a total monophonic vertex of G. Also, if x is an
extreme vertex or support vertex of G, then x is a total monophonic vertex
of G. For the graph G given in Figure 1.1, u and w are the total monophonic
vertices of G.

The next theorem and corollary are immediate consequence of the defi-
nitions of total monophonic vertex and forcing total monophonic subset of
G.

Theorem 2.7. Let G be a connected graph and let Ψtm be the set of
relative complements of the minimum forcing total monophonic subsets in
their respective minimum total monophonic sets in G. Then

T
F∈Ψtm

F is
the set of total monophonic vertices of G.

Corollary 2.8. Let G be a connected graph and let S be a minimum total
monophonic set of G. Then no total monophonic vertex of G belongs to
any minimum forcing total monophonic subset of S.

Theorem 2.9. Let G be a connected graph and let M be the set of all
total monophonic vertices of G. Then ftm(G) ≤ mt(G)− |M |.

Proof. Let S be any minimum total monophonic set of G. Then
mt(G) = |S|, M ⊆ S and S is the unique minimum total monophonic
set containing S−M . Thus ftm(G) ≤ |S−M | = |S|− |M | = mt(G)− |M |.
2

Corollary 2.10. If G is a connected graph with m extreme vertices and
n support vertices, then ftm(G) ≤ mt(G)− (m+ n).

Remark 2.11. The bound in Theorem 2.9 is sharp. For the graph G given
in Figure 1.1, mt(G) = 3 and ftm(G) = 1. Also, M = {u,w} is the set
of all total monophonic vertices of G and so ftm(G) = mt(G)− |M |. Also
the inequality in Theorem 2.9 can be strict. For the graph G given in
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Figure 2.1, the minimum total monophonic sets of G are S1 = {v, u, y}
and S2 = {v, w, x} and so mt(G) = 3. It is clear that ftm(S1) = 1 and
ftm(S2) = 1 so that ftm(G) = 1. Also, the vertex v is only total monophonic
vertex of G, we have ftm(G) < mt(G)− |M |.

Theorem 2.12. If G is a connected graph withmt(G) = 2, then ftm(G) =
0.

Proof. Ifmt(G) = 2 then by Theorem 1.6, we have G = K2. Thus V (G)
is the unique minimum total monophonic set of G. Also, by Theorem 2.5(i),
ftm(G) = 0. 2

Remark 2.13. The converse of Theorem 2.12 need not be true. For the
path P4 of order 4, the vertex set V (P4) is the unique minimum total
monophonic set of G and by Theorem 2.5(i), we have ftm(P4) = 0. But the
total monophonic number of P4 is 4.

3. Forcing total monophonic number of some standard graphs

Now, we proceed to determine the forcing total monophonic number of
certain classes of graphs.

Theorem 3.1. For any cycle Cn(n ≥ 3),

ftm(Cn) =

⎧⎪⎨⎪⎩
0 if n = 3
3 if n = 4
2 if n ≥ 5
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Proof. Let Cn : v1, v2, . . . , , vn, v1 be a cycle of order n. We prove this
theorem by considering two cases.

Case (i) n = 3. Since C3 is the complete graph of order 3, by Theorems
1.4 and 2.5(i), ftm(C3) = 0.

Case (ii) n ≥ 4. It is clear that no 2-element subset of V (Cn) is a to-
tal monophonic set of Cn. It is easy to verify that any minimum total
monophonic sets of Cn consists of three consecutive vertices of Cn so that
mt(Cn) = 3. For n = 4, it is clear that, no minimum total monophonic
set of C4 is the unique minimum total monophonic set containing any of
its proper subsets. Thus by Theorem 2.5(iii), we have ftm(C4) = 3. For
n ≥ 5, it is clear that the two non-adjacent vertices of any minimum total
monophonic set S of G is a minimum forcing total monophonic subset of
S and so ftm(S) = 2. Hence ftm(Cn) = 2. 2

Theorem 3.2. For any complete graph G = Kp(p ≥ 2) or any non-trivial
tree G = T , ftm(G) = 0.

Proof. Let G = Kp. By Theorem 1.4, the set of all vertices of G is
the unique minimum total monophonic set of G and so by Theorem 2.5
(i), ftm(G) = 0. If G is a non-trivial tree, then by Theorem 1.5, the set
of all endvertices and support vertices of G is the unique minimum total
monophonic set of G and so by Theorem 2.5 (i), ftm(G) = 0 . 2

Theorem 3.3. For the complete bipartite graph G = Km,n(2 ≤ m ≤ n),

ftm(G) =

⎧⎪⎨⎪⎩
1 if 2 = m < n
3 if 2 = m = n
4 if 3 ≤ m ≤ n.

Proof. Let U = {u1, u2, . . . , um} and W = {w1, w2, . . . , wn} be the
partite sets of G, where m ≤ n. We prove this theorem by considering four
cases.

Case 1. 2 = m < n. For any j(1 ≤ j ≤ n), Sj = U ∪ {wj} is a minimum
total monophonic set of G. Since n ≥ 3, then by Theorem 2.5(ii), we have
ftm(G) = 1.

Case 2. 2 = m = n. Since G is a cycle of order 4, the result follows from
Theorem 3.1.
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Case 3. If 3 = m = n, then any minimum total monophonic set of G is
of the following forms: (i) U ∪ {wj} for some j(1 ≤ j ≤ n), (ii) W ∪ {ui}
for some i(1 ≤ i ≤ m), or (iii) the minimum total monophonic set of G
formed by choosing any two elements from U as well as W. If 3 = m < n,
then any minimum total monophonic set of G is either U ∪ {wj} for some
j(1 ≤ j ≤ n), or the minimum total monophonic set of G formed by
choosing any two elements from U as well as W. Hence in both cases, we
have mt(G) = 4. Clearly, no minimum total monophonic set of G is the
unique minimum total monophonic set containing any of its proper subsets.
Then by Theorem 2.5(iii), we have ftm(G) = mt(G) = 4.

Case 4. 4 ≤ m ≤ n. Then any minimum total monophonic set is formed
by choosing any two elements from U as well as W, and G has at least two
minimum total monophonic sets. Hence mt(G) = 4. Clearly, no minimum
total monophonic set of G is the unique minimum total monophonic set
containing any of its proper subsets. Then by Theorem 2.5(iii), we have
ftm(G) = mt(G) = 4. 2

Theorem 3.4. For every pair a, b of positive integers with 0 ≤ a < b and
b ≥ a + 4, there exists a connected graph G such that ftm(G) = a and
mt(G) = b.

Proof. If a = 0, let G = K1,b−1. Then by Theorem 3.2, ftm(G) = 0
and by Theorem 1.5, mt(G) = b. Now, assume that 0 < a < b. Let
H be the graph formed by identifying the vertex w of the path P3 :
u, v,w with the central vertex x of the star K1,b−a−3, where V (K1,b−a−3) =
{x, z1, z2, · · · , zb−a−3}. Let Pi : xi, yi(1 ≤ i ≤ a) be ‘a’ copies of the path of
order 2. The graph G is obtained from H and Pi(1 ≤ i ≤ a) by joining each
xi of Pi to the vertex of v of H and joining each yi of Pi to the vertex of w of
H. The graph G is shown in Figure 3.1. Let S = {z1, z2, · · · , zb−a−3, u, v, w}
be the set of all endvertices and support vertices of G. By Theorem 1.3,
every total monophonic set of G contains S. It is clear that S is not a
total monophonic set of G. We observe that every minimum total mono-
phonic set of G contains exactly one vertex from the set {xi, yi} for every
i(1 ≤ i ≤ a). Thus mt(G) ≥ b. Since S1 = S ∪ {x1, x2, · · · , xa} is a total
monophonic set of G, it follows that mt(G) = b.
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Next, we show that ftm(G) = a. Since every minimum total mono-
phonic set of G contains S, it follows from Theorem 2.9 that ftm(G) ≤
mt(G) − |S| = b − (b − a) = a. Now, since mt(G) = b and every mini-
mum total monophonic set of G contains S, it is clear that every minimum
total monophonic set S0 of G is of the form S ∪ {u1, u2, · · · , ua}, where
ui ∈ {xi, yi} for every i(1 ≤ i ≤ a). Let T be any proper subset of
S0 with |T | < a. Then there is a vertex x ∈ S0 − S such that x /∈ T .
If x = xi(1 ≤ i ≤ a), then S00 = (S0 − {xi}) ∪ {yi} is a minimum to-
tal monophonic set containing T. Similarly, if x = yj(1 ≤ j ≤ a), then
S000 = (S0 − {yj}) ∪ {xj} is a minimum total monophonic set containing
T. Thus S0 is not the unique minimum total monophonic set containing T
and so T is not a forcing subset of S0. This is true for all minimum total
monophonic sets of G and so ftm(G) = a. 2

Theorem 3.5. For any two positive integers a, b with 1 ≤ a < b and b =
2a, there exists a connected graph G such that fm(G) = a and ftm(G) = b.

Proof. Let Ci : xi, yi, zi, ui, vi, xi (1 ≤ i ≤ a) be “a” copies of the cycle Ci

of order 5. Let H be the graph obtained from Ci by identifying the vertices
xi (1 ≤ i ≤ a), say x be identified vertex. Add a new vertex y to H, and
join y to x, thereby producing the graph G shown in Figure 3.2. Since y is
the only extreme vertex of G, by Theorem 1.1, every monophonic set of G
contains y. It is observed that any monophonic set of G contains exactly
one vertex from each set {ui, zi}(1 ≤ i ≤ a) so that m(G) ≥ a + 1. Since
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S1 = {u1, u2, · · · , ua, y} is a monophonic set of G, it follows that m(G) =
a + 1. Next, we show that fm(G) = a. Since y is the only monophonic
vertex of G, it follows from Theorem 1.2 that fm(G) ≤ m(G)− |{y}| = a.
It is easily seen that every minimum monophonic set S0 of G is of the form
{m1,m2, · · · ,ma, y}, where mi ∈ {ui, zi} for every i(1 ≤ i ≤ a). Let T be
any proper subset of S0 with |T | < a. Then there is a vertex u ∈ S0 − {y}
such that u /∈ T . If u = ui(1 ≤ i ≤ a), then S00 = (S0 − {ui}) ∪ {zi} is
a minimum monophonic set containing T. Similarly, if u = zj(1 ≤ j ≤ a),
then S000 = (S0 − {zj}) ∪ {uj} is a minimum monophonic set containing T.
Thus S0 is not the unique minimum monophonic set containing T and so
T is not a forcing subset of S0. This is true for all minimum monophonic
sets of G and so fm(G) = a.

By Theorem 1.3, every minimum total monophonic set of G contains
M = {y, x}. Clearly, M is not a total monophonic set of G. It is observed
that any minimum total monophonic set of G contains just the two vertices
of any of the set from the collection of sets {{ui, zi}, {ui, vi}, {yi, zi}, {vi, yi}}
for every i(1 ≤ i ≤ a) so that mt(G) ≥ 2a + 2. Since S2 = M ∪
{u1, u2, · · · , ua, v1, v2, · · · , va} is a total monophonic set of G, it follows that
mt(G) = 2a+2. Since x and y are the only total monophonic vertices of G,
it follows from Theorem 2.9 that ftm(G) ≤ mt(G)− |M | = 2a+2−2 = 2a.
Now, since mt(G) = 2a+2 and every minimum total monophonic set of G
containsM, it is easily seen that every minimum total monophonic set S01 of
G is of the form M ∪ {m1,m

0
1,m2,m

0
2, . . . ,ma,m

0
a}, where both mi,m

0
i be-

long to just one of the sets from {{ui, zi}, {ui, vi}, {yi, zi}, {vi, yi}} for every
i(1 ≤ i ≤ a). Let T 0 be any proper subset of S01 with |T 0| < 2a. Then there
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is a vertex u ∈ S01−M such that u /∈ T 0. If u = ui and u = ui(1 ≤ i ≤ a) is
adjacent to zi or adjacent to vi, then S11 = (S

0
1−{ui})∪{yi} is a minimum

total monophonic set containing T 0. If u = zi and u = zi(1 ≤ i ≤ a) is
adjacent to yi or adjacent to ui, then S12 = (S01 − {zi}) ∪ {vi} is a min-
imum total monophonic set containing T 0. If u = yi(1 ≤ i ≤ a), then
S13 = (S

0
1− {yi})∪ {ui} is a minimum total monophonic set containing T 0.

If u = vi(1 ≤ i ≤ a), then S14 = (S01 − {vi}) ∪ {zi} is a minimum total
monophonic set containing T 0. Thus S01 is not the unique minimum total
monophonic set containing T 0 and so T 0 is not a forcing subset of S01. This
is true for all minimum total monophonic sets of G and so ftm(G) = 2a = b.
2
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