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386 S. K. Patel and Jayesh Vasava

1. Introduction

All graphs considered in this paper are simple, finite and undirected. Through-
out the paper N(v) and deg(v) denote respectively the open neighborhood
and the degree of the vertex v of a given graph. Further, the Greek letters
∆ and δ denote respectively the maximum and the minimum degree of a
vertex in a given graph. We refer to Gross and Yellen [5] for the standard
graph theoretic terminology and notations. We begin with the definition of
distance magic labeling which naturally gives rise to the concept of (a, d)-
distance antimagic labeling.

Definition 1.1 (6). Let G = (V,E) be a graph of order N and f : V →
{1, 2, . . . , N} be a bijection. If there exists a positive integer k such thatP

u∈N(v) f(u) = k for every v ∈ V , then we say that f is a distance magic
labeling and the graph G is distance magic. Further, the number k is called
the magic constant of graph G.

The sum
P

u∈N(v) f(u) is called the weight of the vertex v and is denoted
by w(v). The distance magic labeling was first introduced by Vilfred [11]
under the name sigma labeling and it is believed to be motivated by the
construction of magic squares in which all the elements of any row, column
or diagonal add to a same number. This concept was also introduced by
Miller et al. [6] under the name 1-vertex-magic vertex labeling but the term
distance magic labeling was used first time by Sugeng et al. [10]. A natural
variant of distance magic labeling is distance antimagic labelings where
in, all the vertex weights are required to be distinct integers. Distance
magic and distance antimagic labeling have very interesting applications in
scheduling fair, equalized and handicap incomplete tournaments and they
are widely studied for this purpose. See for instance [2] and [3]. A complete
survey on the distance magic labeling and its variants is available in [4].

2. A quick review on (a, d)-distance antimagic labeling

(a, d)-distance antimagic labeling is one form of distance antimagic labeling
and it emerges in a logical way from distance magic labeling. Let Gc denote
the complement of a graph G. If G is a distance magic graph of order N
with magic constant k, then it is easy to verify that the set of all vertex
weights in Gc is {N(N+1)2 − k − i : 1 ≤ i ≤ N}, which is in an arithmetic
progression with common difference d = 1. This observation motivated
Arumugam and Kamatchi [1] to introduce the concept of (a, d)-distance
antimagic labeling.
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Some results on (a, d)-distance antimagic labeling 387

Definition 2.1 (1). Let G = (V,E) be a graph of order N and f : V →
{1, 2, . . . , N} be a bijection. If the set of all vertex weights is {a, a+ d, a+
2d, . . . , a + (N − 1)d}, where a and d are fixed positive integers, then f
is called an (a, d)-distance antimagic labeling and the graph G is called
(a, d)-distance antimagic graph.

Although Gc is (a, 1)-distance antimagic whenever G is distance magic,
the converse is not true in general. The counter example is the cycle graph
C6 which is not distance magic but its complement graph is (a, 1)-distance
antimagic [1]. The study of (a, d)-distance antimagic labeling for the graphs
Cn, Cn × K2 and paths is available in [1]. R. Simanjuntak and K. Wi-
jaya [9] proved: Wheel graph Wn is (a, d)-distance antimagic if and only
if 3 ≤ n ≤ 5; the fan graph Fn = Pn × K1 is (a, d)-distance antimagic if
and only n = 2 or n = 4; the friendship graph fn, which is obtained by
identifying a vertex from n copies of complete graphs of order 3 is (a, d)-
distance antimagic if and only n = 1 or n = 2. M. Nalliah [7] proved that
graph mCn is (a, d)-distance antimagic if and only if mn is odd and d = 1.
He also proved that the path Pn of order upto 15 except n = 3, 4 and 5 is
(a, d)-distance antimagic.

In this paper we add a few more results to the existing literature
on (a, d)-distance antimagic graphs. We show that the circulant graph
Circ(2n, {1, n}) is (2n + 2, 1)-distance antimagic for all even n. We show
that mK2n is (n(2mn − 2m + 1), 1)-distance antimagic for all m and n
whereas 3K2n+1 is (6n

2 + n − 1, 1)-distance antimagic for all n. Later we
show that certain graphs will never posses such a labeling. This include
2K2n+1, the Helm graph Hn, the book graph Bn and the graph Kn ¯K1.

3. Positive results about (a, d)-distance antimagic graphs

We begin with the result about circulant graph whose definition is as fol-
lows:

Definition 3.1. Let s1, s2, . . . , sm, n be positive integers such that 1 ≤
s1 < s2 < . . . < sm < n. Then the circulant graph Circ(n, {s1, s2, . . . , sm})
is the graph with vertex set {v1, v2, . . . , vn} and whose edges are of the type
vivi+sj for i = 1, 2, . . . , n, j = 1, 2, . . . ,m; where i+ sj is taken modulo n.

M. F. Semeniuta [8] showed that the circulant graph
Circ(2p+2, {2, 3, 4, . . . , p− 1, p+1}) is (2p2− p+5, 1)-distance antimagic.
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388 S. K. Patel and Jayesh Vasava

Here we show that the circulant graph Circ(2n, {1, n}) is (2n+2, 1)-distance
antimagic for all even n.

Theorem 3.2. The circulant graph Circ(2n, {1, n}) is (2n+2, 1)-distance
antimagic for all even n.

Proof. Let G denote the graph Circ(2n, {1, n}) whose vertex set is say
{v1, v2, . . . , v2n}. Define f : V (G)→ {1, 2, . . . , 2n} as

f(vi) =

⎧⎪⎨⎪⎩
i+1
2 , i = 1, 3, . . . , 2n− 1
3n−i
2 , i = 2, 4, . . . , n− 2

5n−i
2 , i = n, n+ 2, . . . , 2n

It is easy to check that f is a bijection. Also the vertex weights are given
by

w(vi) =

⎧⎪⎨⎪⎩
4n+i+2

2 , i = 2, 4, . . . , 2n
7n−i+1

2 , i = 1, 3, 5, . . . , n− 3
9n−i+1

2 , i = n− 1, n+ 1, . . . , 2n− 1

We observe that the above weights are in the arithmetic progression with
common difference d = 1 and first term as a = 2n + 2 in the following
sequence:
w(v2), w(v4), . . . , w(v2n), w(vn−3), w(vn−5), . . . , w(v3), w(v1), w(v2n−1),
w(v2n−3), . . . , w(vn+1), w(vn−1). Hence Circ(2n, {1, n}) is (2n+2, 1)-distance
antimagic for all even n. 2

A (22, 1)-distance antimagic labeling of Circ(20, {1, 10}) is illustrated in
Figure 1. In general when n is odd, it seems difficult to investigate for (a, d)-
distance antimagic labeling of the circulant graph Circ(2n, {1, n}). How-
ever, we have managed to show that Circ(10, {1, 5}) and Circ(14, {1, 7})
are (12, 1) and (16, 1)-distance antimagic respectively. This is illustrated
in Figure 2 and Figure 3 respectively. In all the figures the vertex label is
indicated in the usual font and its weight in the bold font.
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390 S. K. Patel and Jayesh Vasava

It is quite easy to show that for a complete graph Kn of order n, every
bijection f from its vertex set into the set of first n positive integers is
(a, d)-distance antimagic labeling with a = (n−1)n

2 and d = 1. But things
are non-trivial and very interesting when we consider union of complete
graphs. We get positive as well as negative results as we shall see now. We
use the notation mKn in general to denote the graph which is (disjoint)
union of m copies of Kn.

Theorem 3.3. The graphmK2n is (n(2mn−2m+1), 1)-distance antimagic
for all m and n.

Proof. Let G = mK2n. Let the vertices of j
th copy of K2n be

{vj1, v
j
2, v

j
3, . . . , v

j
2n}, where j = 1, 2, . . . ,m. Define f : V (G)→ {1, 2, . . . , 2mn}

as

f(vji ) =

(
n(j − 1) + i, i = 1, 2, . . . , n and j = 1, 2, . . . ,m,
n(2m− j − 1) + i, i = n+ 1, n+ 2, . . . , 2n and j = 1, 2, . . . ,m.

It is not difficult to see that f is onto and since the cardinalities of the
domain and range sets of f are the same, it follows that f is bijective. Also
observe that for each j,

2nX
i=1

f(vji ) = n2(2m− 2) +
2nX
i=1

i = n2(2m− 2) + n(2n+ 1) = n(2mn+ 1).

Therefore the vertex weights are given by the formula

w(vji ) = n(2mn+ 1)− f(vji )

and since f(vji ) takes each and every value in the set {1, 2, . . . 2mn}, it fol-
lows that the weights are in the arithmetic progression with first term as
a = n(2mn − 2m + 1) and the common difference as d = 1. Additionally,
it may be verified that the weights are in the arithmetic progression as per
the sequence given below:

w(v12n), w(v
1
2n−1), . . . , w(v

1
n+1), w(v

2
2n), w(v

2
2n−1), . . . , w(v

2
n+1), . . . ,

w(vm2n), w(v
m
2n−1), . . . , w(v

m
n+1), w(v

m
n ), w(v

m
n−1), . . . ,

w(vm1 ), w(v
m−1
n ), w(vm−1n−1 ), . . . , w(v

m−1
1 ), . . . , w(v1n), w(v

1
n−1), . . . , w(v

1
1). 2

We have shown that the union of any given number of copies of a complete
graph of even order is (a, d)-distance antimagic. But this is not always true
in case of complete graphs of odd order as we shall prove that the graph
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Some results on (a, d)-distance antimagic labeling 391

3K2n+1 is (6n
2 + n − 1, 1)-distance antimagic for all n whereas 2K2n+1 is

never (a, d)-distance antimagic.

Theorem 3.4. The graph 3K2n+1 is (6n
2 + n − 1, 1)-distance antimagic

for all n.

Proof. Let G = 3K2n+1. Let the vertices of j
th copy of K2n+1 be

{vj1, v
j
2, v

j
3, . . . , v

j
2n+1}, where j = 1, 2, 3. The strategy here is to assign

the labels in such a way that the sum of all the labels in each of the
three copies of K2n+1 is a fixed constant. We do this formally by defining
f : V (G)→ {1, 2, . . . , 6n+ 3} as per the following cases:

Case I: n ≡ 1 (mod 3)
Let A1 = {1, 4, . . . , 2n−1}, A2 = {2, 5, . . . , 2n} and A3 = {3, 6, . . . , 2n+1}.

f(vji ) =

⎧⎪⎨⎪⎩
3i− 2, j = 1 and i ∈ A1; j = 2 and i ∈ A3; j = 3 and i ∈ A2
3i− 1, j = 1 and i ∈ A2; j = 2 and i ∈ A1; j = 3 and i ∈ A3
3i, j = 1 and i ∈ A3; j = 2 and i ∈ A2; j = 3 and i ∈ A1

Case II: n ≡ 2 (mod 3)
Let B1 = {1, 4, . . . , 2n}, B2 = {2, 5, . . . , 2n−2} and B3 = {3, 6, . . . , 2n−1}.

f(vji ) =

⎧⎪⎨⎪⎩
3i− 2, j = 1 and i ∈ B1; j = 2 and i ∈ B3; j = 3 and i ∈ B2

S{2n+ 1}
3i− 1, j = 1 and i ∈ B2; j = 2 and i ∈ B1

S{2n+ 1}; j = 3 and i ∈ B3
3i, j = 1 and i ∈ B3

S{2n+ 1}; j = 2 and i ∈ B2; j = 3 and i ∈ B1

Case III: n ≡ 0 (mod 3)
Let C1 = {1, 4, . . . , 2n−2}, C2 = {2, 5, . . . , 2n−4} and C3 = {3, 6, . . . , 2n−
3}.

f(vji ) =

⎧⎪⎨⎪⎩
3i− 2, j = 1 and i ∈ C1

S{2n}; j = 2 and i ∈ C3; j = 3 and i ∈ C2
S{2n− 1, 2n+ 1}

3i− 1, j = 1 and i ∈ C2; j = 2 and i ∈ C1
S{2n− 1, 2n, 2n+ 1}; j = 3 and i ∈ C3

3i, j = 1 and i ∈ C3
S{2n− 1, 2n+ 1}; j = 2 and i ∈ C2; j = 3 and i ∈ C1

S{2n}.
Given the above definition of f , it may be verified that depending on the
values of n and j, there exist constants an,j and bn,j so that 2an,j + bn,j =
2n+ 1 and

2n+1X
i=1

f(vji ) = 3
2n+1X
i=1

i− 2an,j − bn,j .
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392 S. K. Patel and Jayesh Vasava

This means that

2n+1X
i=1

f(vji ) = 3(2n+ 1)(n+ 1)− (2n+ 1) = 6n2 + 7n+ 2.

Consequently

w(vji ) = 6n
2 + 7n+ 2− f(vji ), for all i and j.

Since f(vji ) takes each and every value in the set {1, 2, . . . 6n+3}, it follows
that the weights are in the arithmetic progression with first term as a =
6n2 + n− 1 and the common difference d = 1. 2
We include the negative result about the graph 2K2n+1 in the next section
which deals with graphs that are not (a, d)-distance antimagic.

4. Graphs that are not (a, d)-distance antimagic

Theorem 4.1. The graph 2K2n+1 is not (a, d)-distance antimagic for all
n.

Proof. If possible, suppose 2K2n+1 is (a, d)-distance antimagic graph
for some a, d and suppose the associated antimagic labeling is mapping f .
Let {v11, v12, v13, . . . , v12n+1} and {v21, v22, v23, . . . , v22n+1} be the sets of vertices
of the 1st and the 2nd copy of K2n+1 respectively. Then there exists a pair
of distinct vertices v1i0 and v1k0 such that

|w(v1i0)− w(v1k0)| ≥ (2n)d.

But v1i0 and v1k0 being the distinct vertices of the same copy of a complete
graph K2n+1, we have

|f(v1i0)− f(v1k0)| = |w(v
1
i0)− w(v1k0)| ≥ 2nd.

Thus, if d ≥ 3, then we get |f(v1i0) − f(v1k0)| ≥ 6n which is not possible
because the range set of f is {1, 2, . . . , 4n + 2}. Next we show that the
choice d = 2 or d = 1 also leads to a contradiction.

Case I: d = 2
If d = 2, then the weights are either all even or all odd. Therefore |f(vji )−
f(vjk)| = |w(vji ) − w(vjk)| implies that |f(v

j
i ) − f(vjk)| is always an even

number for all i, k and j = 1, 2. Thus, without loss of generality, if we

rvidal
Cuadro de texto
368

rvidal
Cuadro de texto



Some results on (a, d)-distance antimagic labeling 393

assume that f(v11) is odd then it follows that f(v
1
i ) is odd for every i and

as a result f(v2i ) is even for every i. Hence

P2n+1
i=1 f(v1i ) = 1 + 3 + 5 + · · ·+ (4n+ 1) = (2n+ 1)2,

whereas P2n+1
k=1 f(v2k) = 2 + 4 + 6 + · · ·+ (4n+ 2)

= (2n+ 1)(2n+ 2)
= (2n+ 1)2 + (2n+ 1).

This implies that for the vertices v1i0 and v2k0 for which f(v1i0) = 1 and
f(v2k0) = 2n+ 2, we shall have

w(v1i0) = w(v2k0) = (2n+ 1)
2 − 1.

But this is not possible because the weights are in arithmetic progression
with a positive common difference.

Case II: d = 1

Here

P2
j=1

P2n+1
i=1 w(vji ) = a+ (a+ 1) + (a+ 2) + · · ·+ (a+ (4n+ 1))

= (4n+ 2)
³
a+ (4n+1)

2

´
.

(4.1)

Moreover every vertex of the graph 2K2n+1 is adjacent to exactly 2n vertices
and so

P2
j=1

P2n+1
i=1 w(vji ) = 2n(1 + 2 + 3 + ·+ (4n+ 2)) = n(4n+ 2)(4n+ 3).

(4.2)

Therefore in view of (4.1) and (4.2)

a = n(4n+ 3)− (4n+1)
2

= 2n(4n+1)−1
2

which is not possible as a is an integer. 2

Next we derive certain necessary conditions for the existence of (a, d)-
distance antimagic labeling of a graph. These conditions are often useful in
proving that certain graphs do not admit (a, d)-distance antimagic labeling.
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394 S. K. Patel and Jayesh Vasava

Lemma 4.2. If G is an (a, d)-distance antimagic graph of order N and if

G has k(> 1) vertices of degree m, then d ≤ m(2N−m+1)−δ(δ+1)
2(k−1) .

Proof. LetG be an (a, d)-distance antimagic graph of orderN for some a
and d. Then there exists a bijection f : V (G)→ {1, 2, . . . , N} such that the
set of all vertex weights is {a, a+d, . . . , a+(N −1)d}. Let {u1, u2, . . . , uk},
1 ≤ k ≤ N be a set of vertices of G of degree m. Then for 1 ≤ i ≤ k,

w(ui) ≤ N + (N − 1) + · · ·+ (N − (m− 1)).
= m

2 (2N −m+ 1).
(4.3)

Also in view of pigeonhole principle,

max{w(ui) : 1 ≤ i ≤ k} ≥ a+ (k − 1)d.(4.4)

In view of (4.3) and (4.4),

a+ (k − 1)d ≤ m

2
(2N −m+ 1).

Also, a ≥ 1 + 2 + · · ·+ δ = δ(δ+1)
2 . So it follows that

δ(δ + 1)

2
+ (k − 1)d ≤ m

2
(2N −m+ 1).

Consequently

d ≤ m(2N −m+ 1)− δ(δ + 1)

2(k − 1) .

2

In particular, if m = δ then we get the following corollary which will be
used quite often in the subsequent results.

Corollary 4.3. If G is an (a, d)-distance antimagic graph of order N and

the number of vertices of degree δ is k(> 1), then d ≤ δ(N−δ)
k−1 .

Lemma 4.4. If G is an (a, d)-distance antimagic graph of order N and if

G has k vertices of degree ∆, then a ≥ ∆(∆+1)
2 − (N − k)d
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Some results on (a, d)-distance antimagic labeling 395

Proof. LetG be an (a, d)-distance antimagic graph of orderN for some a
and d. Then there exists a bijection f : V (G)→ {1, 2, . . . , N} such that the
set of all vertex weights is {a, a+d, . . . , a+(N −1)d}. Let {u1, u2, . . . , uk},
1 ≤ k ≤ N be a set of vertices of G of degree ∆. Then for 1 ≤ i ≤ k,

w(ui) ≥ 1 + 2 + · · ·+∆.
= ∆(∆+1)

2 .
(4.5)

Now due to pigeonhole principle

min{w(ui) : 1 ≤ i ≤ k} ≤ a+ (N − k)d.(4.6)

Therefore in view of (4.5) and (4.6), we get

a ≥ ∆(∆+ 1)
2

− (N − k)d

2

The helm graph Hn is the graph obtained from the wheel graph Wn =
Cn + K1 by attaching the pendant edge at each vertex of the cycle Cn.
Using the lemmas above, we prove that it is not (a, d)-distance antimagic.

Theorem 4.5. The helm graph Hn is not (a, d)-distance antimagic for any
n.

Proof. Let u0 be a center vertex, {u1, u2, . . . , un} be a set of consecutive
vertices of cycle Cn and {u01, u02, . . . , u0n} be a set of consecutive pendant
vertices such that ui and u0i are adjacent for 1 ≤ i ≤ n. Suppose Hn

is (a, d)-distance antimagic graph for some a and d. Then there exists a
bijection f : V (Hn) → {1, 2, . . . , 2n + 1} such that the set of all vertex
weights is {a, a + d, . . . , a + 2nd}. Since for 1 ≤ i ≤ n, f(ui) = w(u0i) ∈
{a, a+ d, . . . , a+ 2nd}, we see that

w(u0) = f(u1) + f(u2) + · · ·+ f(un)
≥ a+ (a+ d) + · · ·+ (a+ (n− 1)d)
= na+ (n−1)n

2 d.

But a+ 2nd ≥ w(u0) and hence

a+ 2nd ≥ na+
(n− 1)n

2
d.(4.7)
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Consequently

0 ≥ (n− 1)a+
³
(n−1)n
2 − 2n

´
d

= (n− 1)a+ n2−5n
2 d

= (n− 1)a+ n(n−5)
2 d

which is not possible if n ≥ 5 because a and d are positive integers. Thus
Hn is not (a, d)-distance antimagic for n ≥ 5. Now we prove the same when
n = 3 and n = 4.

It follows from Corollary 4.3 that

d ≤ δ(N−δ)
k−1

= 1((2n+1)−1)
n−1

= 2n
n−1

= 2 + 2
n−1 .

So d ≤ 3 for n = 3 and d ≤ 2 for n = 4.

Case I: n = 3.

Sub-case 1: d = 1.
Observe that when n = 3, order of the graph Hn is 7, ∆ = 4 and k (i.e.
the number of vertices of degree ∆ = 4) is equal to 3. Therefore in view
of Lemma 4.4, we get a ≥ 6. On the other hand when n = 3 and d = 1,
equation (4.7) reduces to 2a ≤ 3 and so H3 is not (a, 1) distance antimagic.

Sub-case 2: d = 2.
In this case equation (4.7) reduces to a ≤ 3. Also using Lemma 4.4, we get
a ≥ 2 and so the only possible values of a are 2 and 3. Now when a = 2,
the set of all vertex weights is {2, 4, 6, 8, 10, 12, 14}. For 1 ≤ i ≤ 3, since
deg(ui) = 4,

w(ui) ≥ 1 + 2 + 3 + 4 = 10.

Therefore the set of vertex weights of vertices u0, u
0
1, u

0
2 and u

0
3 is {2, 4, 6, 8}.

But this is not possible because w(u0)=f(u1) + f(u2) + f(u3)=w(u
0
1) +

w(u02) + w(u03), where as none of the integers in the set {2, 4, 6, 8} is the
sum of other three integers. Further, if a = 3, the set of all vertex weights
is {3, 5, 7, 9, 11, 13, 15} and so a similar argument rules out this possibility
also. Therefore H3 is not (a, 2) distance antimagic.
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Some results on (a, d)-distance antimagic labeling 397

Sub-Case 3: d = 3.
In this case the set of all vertex weights is {a, a + 3, . . . , a + 18} and also
for 1 ≤ i ≤ 3, f(ui) = w(u0i) ∈ {a, a+ 3, . . . , a+ 18}. Therefore

max{f(ui) : 1 ≤ i ≤ 3} ≥ a+ 6.

But f(ui) ≤ 7, for 1 ≤ i ≤ 3 and hence 7 ≥ a + 6, which gives only one
possibility a = 1. Once again it may now be verified that for 1 ≤ i ≤ 3,
w(u0i) ∈ {1, 4, 7}. But then w(u0) = w(u01) + w(u02) + w(u03) = 12, which
does not belong to the set of vertex weights. So H3 is not (a, 3) distance
antimagic.

Case II: n = 4.

Sub-case 1: d = 1.
Here the set of all vertex weights is {a, a+1, . . . , a+8}. Since for 1 ≤ i ≤ 4,
f(ui) = w(u0i) ∈ {a, a+ 1, . . . , a+ 8} and w(u0) = f(u1) + f(u2) + f(u3) +
f(u4), we must have

a+ (a+ 1) + (a+ 2) + (a+ 3) ≤ a+ 8.

Consequently a ≤ 2
3 , which is not possible.

Sub-case 2: d = 2.
Here the set of all vertex weights is {a, a+2, . . . , a+16} and so arguing as
above, we must have

a+ (a+ 2) + (a+ 4) + (a+ 6) ≤ a+ 16.

This gives a ≤ 4
3 and consequently a = 1. In this case the set of vertex

weights is {1, 3, 5, 7, 9, 11, 13, 15, 17}. But then w(u0) = w(u01) + w(u02) +
w(u03)+w(u04) is an even number which does not belong to the set of vertex
weights. So H4 is not (a, 2) distance antimagic. 2
Our next result is about the book graph which is defined with the help of
Cartesian product of graphs and so we introduce it here.

Definition 4.6. The Cartesian product G × H of graphs G and H is a
graph such that its vertex set is V (G×H) = {(u, v) : u ∈ V (G), v ∈ V (H)} ;
and any two vertices (u, v) and (u0, v0) are adjacent in G×H if and only if
either u = u0 and v is adjacent to v0 in H, or v = v0 and u is adjacent to u0

in G.
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With this definition of Cartesian product, we define the book graph Bn as
the Cartesian product of the star graph Sn and the path P2 and we show
that it is not (a, d)-distance antimagic

Theorem 4.7. The book graph Bn = Sn×P2 of order 2n+2 is not (a, d)-
distance antimagic for any n.

Proof. Clearly B1 is same as the cycle graph C4, which is not (a, d)-
distance antimagic as shown in [1]. So we assume that n > 1. Let
{u0, u1, . . . , un} and {v1, v2} be the sets of vertices of the star graph Sn
and the path P2 respectively, where u0 is the vertex of the star graph Sn
with degree n. Suppose Bn is (a, d)-distance antimagic graph for some a
and d. Then there exists a bijection f : V (Bn) → {1, 2, . . . , 2n + 2} such
that the set of all vertex weights is {a, a+ d, . . . , a+ (2n+ 1)d}.
Now observe thatN((u0, v1))

S
N((u0, v2)) = V (Bn) andN((u0, v1))

T
N((u0, v2)) =

∅. So

w((u0, v1)) + w((u0, v2)) = 1 + 2 + 3 + · · ·+ (2n+ 2)
= 2n2 + 5n+ 3.

(4.8)

Also for Bn,

(n+ 1)(1 + 2) + 2(3 + 4 + · · ·+ (2n+ 2))

≤Pn
i=0

P2
j=1w((ui, vj)) = (2n+ 2)a+ (2n+1)(2n+2)d

2
≤ (n+ 1)((2n+ 1) + (2n+ 2)) + 2(1 + 2 + · · ·+ 2n).

This implies that

4n2 + 13n+ 3 ≤ (2n+ 2)a+ (2n2 + 3n+ 1)d ≤ 8n2 + 9n+ 3.(4.9)

Now in view of Corollary 4.3, we have

d ≤ δ(N−δ)
k−1

= 2((2n+2)−2)
2n−1

= 4n
2n−1

= 2 + 2
2n−1 .

Therefore

d ≤ 2 for n > 1.(4.10)
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Case I: d = 1.
Here (4.9) reduces to

4n2 + 13n+ 3 ≤ (2n+ 2)a+ (2n2 + 3n+ 1)(1) ≤ 8n2 + 9n+ 3.

Since a is an integer&
n2 + 5n+ 1

n+ 1

'
≤ a ≤

$
3n2 + 3n+ 1

n+ 1

%
;

where dxe denotes the smallest integer ≥ x and bxc denotes the greatest
integer ≤ x. This implies that

n+ 4−
¹

3

n+ 1

º
≤ a ≤ 3n+

¹
1

n+ 1

º
.(4.11)

Now

w((u0, v1)) + w((u0, v2)) ≤ (a+ 2nd) + (a+ (2n+ 1)d)
= 2a+ (4n+ 1)d
≤ 2(3n) + (4n+ 1)(1)
= 10n+ 1.

But then due to (4.8), 2n2 + 5n + 3 ≤ 10n + 1, which is not possible for
n ≥ 3. Thus Bn is not (a, 1)-distance antimagic for n ≥ 3. Now we show
that Bn is not (a, 1)-distance antimagic for n = 2. When n = 2, (4.8)
implies that

w((u0, v1)) + w((u0, v2)) = 2(2)
2 + 5(2) + 3 = 21.(4.12)

Hence we also have

f((u0, v2))+f((u1, v1))+f((u2, v1))+f((u0, v1))+f((u1, v2))+f((u2, v2)) = 21.
(4.13)

Also by (4.11), 5 ≤ a ≤ 6.

Sub-case 1: a = 5.

Now,
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w((u0, v1)) + w((u0, v2)) ≤ 2a+ (4n+ 1)d
= 2(5) + (4(2) + 1)(1)
= 19.

But this is not possible due to (4.12).
Sub-case 2: a = 6.P2

i=0

P2
j=1w((ui, vj)) = 6a+ 15d

= 6(6) + 15(1) = 51.

Therefore since deg((u0, vj)) = 3 for j ∈ {1, 2}, deg((ui, vj)) = 2 for
i, j ∈ {1, 2} and due to (4.13), we have

3(f((u0, v1)) + f((u0, v2))) + 2(21− (f((u0, v1)) + f((u0, v2)))) = 51.

This gives f((u0, v1)) + f((u0, v2)) = 9.
Also for i ∈ {1, 2}, w(ui, v1) = f(u0, v1) + f(ui, v2), w(ui, v2) = f(u0, v2) +
f(ui, v1). Therefore w(ui, vj) 6= 9, for i, j ∈ {1, 2}}. Hence either w(u0, v1) =
9 or w(u0, v2) = 9. Consequently in view of (4.12), we have eitherw(u0, v1) =
12 or w(u0, v2) = 12, which is not possible because in this case the set of
vertex weights is {6, 7, 8, 9, 10, 11}.

Case II: d = 2.
Here (4.9) reduces to

4n2 + 13n+ 3 ≤ (2n+ 2)a+ (2n2 + 3n+ 1)(2) ≤ 8n2 + 9n+ 3.

Since a is an integer, this gives»
7n+ 1

2n+ 2

¼
≤ a ≤

$
4n2 + 3n+ 1

2n+ 2

%
,

which is same as

3 +
l
n−5
2n+2

m
≤ a ≤ 2n− 1 +

j
n+3
2n+2

k
.(4.14)

Now

w((u0, v1)) + w((u0, v2)) ≤ (a+ 2nd) + (a+ (2n+ 1)d)
= 2a+ (4n+ 1)d
≤ 2(2n− 1) + (4n+ 1)(2)
= 12n.
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But then due to (4.8), 2n2+5n+3 ≤ 12n, which is not possible for n ≥ 4.
Thus Bn is not (a, 2)-distance antimagic for n ≥ 4.

Sub-case 1: n = 2.

In view of (4.14), a = 3. So we have

2
i=0

P2
j=1w((ui, vj))

= 6a+ 15d

= 6(3) + 15(2) = 48.

As deg((u0, vj)) = 3 for j ∈ {1, 2}, deg((ui, vj)) = 2 for i, j ∈ {1, 2}; in
this case (4.13) gives

3(f((u0, v1)) + f((u0, v2))) + 2(21− (f((u0, v1)) + f((u0, v2)))) = 48.

Therefore f((u0, v1)) + f((u0, v2)) = 6 and so f((u0, v1)) and f((u0, v2))
are of same parity. Now since the set of vertex weights contains only odd
numbers, w((ui, vj)) is odd for i, j ∈ {1, 2}. Further for i, j ∈ {1, 2},
w((ui, v1)) = f((u0, v1))+f((ui, v2)) and w((ui, v2)) = f((u0, v2))+f((ui, v1)).
Now using the fact that w((ui, vj)) is odd for i, j ∈ {1, 2} and that f((u0, v1))
and f((u0, v2)) are of same parity, it follows that f((ui, vj)) are of same
parity for i, j ∈ {1, 2}. This is not possible because the range of f is
{1, 2, 3, 4, 5, 6}, which contains only three members with the same parity.

Sub-case 2: n = 3.
In view of (4.8), we have

w((u0, v1)) + w((u0, v2)) = 2(3)
2 + 5(3) + 3 = 36.(4.15)

Therefore

f((u0, v2)) +
3X

i=1

f((ui, v1)) + f((u0, v1)) +
3X

i=1

f((ui, v2)) = 36.(4.16)

Also due to (4.14), a = 3, 4, 5.

But if a = 3 or a = 4 then we obtain
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w((u0, v1)) + w((u0, v2)) ≤ 2a+ (4n+ 1)d
≤ 2(4) + (4(3) + 1)(2)
= 34.

Thich contradicts (4.15). Finally, if a = 5, we haveP3
i=0

P2
j=1w((ui, vj)) = 8a+ 28d

= 8(5) + 28(2) = 96.

As deg((u0, vj)) = 4 for j ∈ {1, 2}, deg((ui, vj)) = 2 for i ∈ {1, 2, 3},j ∈
{1, 2}; in this case (4.16) gives

4(f((u0, v1)) + f((u0, v2))) + 2(36− (f((u0, v1)) + f((u0, v2)))) = 96.

Therefore f((u0, v1)) + f((u0, v2)) = 12 and so f((u0, v1)) and f((u0, v2))
are of same parity. Since w((ui, vj)) are odd for i ∈ {1, 2, 3} and j ∈ {1, 2},
once again it can be shown that f((ui, vj)) are of same parity for i ∈ {1, 2, 3}
and j ∈ {1, 2}. But this is not possible because there are only four members
in the range of f with the same parity. 2

The corona G ¯ H of two graphs G and H is formed from one copy
of G and |V (G)| (i.e. the cardinality of the vertex set of G) copies of H
in which the ith vertex of G is joined to every vertex in the ith copy of
H, where 1 ≤ i ≤ |V (G)|. Sometimes G ¯H is also known as the corona
product of graphs G and H. Our next result is interesting especially from
the perspective that every complete graph is (a, d)-distance antimagic.

Theorem 4.8. The corona Kn ¯ K1 is not (a, d)-distance antimagic for
n > 1.

Proof. We note that when n = 2, Kn¯K1 is the graph P4. Arumugam
and Kamatchi [1] proved that if either a, d ≥ 2 or a = 1, then P4 is not
(a, d)-distance antimagic. Also Nalliah [7] proved that P4 is not (a, 1)-
distance antimagic. Hence P4 is not (a, d)-distance antimagic for any a and
d. Consequently, while proving the theorem we assume that n ≥ 3. Now if
Kn ¯K1 is (a, d)-distance antimagic then by Corollary 4.3,

d ≤ δ(N−δ)
k−1

= 1(2n−1)
n−1

= 2 + 1
n−1

≤ 2.
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Let {u1, u2, . . . , un, u01, u02, . . . , u0n} be the vertex set of the graphKn¯K1

in which deg(ui) = n and deg(u0i) = 1. As deg(ui) = n and deg(u0i) = 1, it
follows that w(ui) ≥ 1+ 2+ · · ·+ n and w(u0i) ≤ 2n for all i. Therefore for
i, j ∈ {1, 2, . . . , n}, we have

w(ui)− w(u0j) ≥ (1 + 2 + · · ·+ n)− 2n
= n2−3n

2 .

But it is easy to see that there exists at least one pair of vertices (ui0 , u
0
j0)

such that w(ui0)−w(u0j0) = d, and so we have

d ≥ n2 − 3n
2

.

Since d ≤ 2, this is not possible for n ≥ 5. This proves that Kn ¯K1

is not (a, d)-distance antimagic for n ≥ 5. We now prove the same when
n = 3, 4.

When n = 4, the set of vertex weights is {a, a + d, a + 2d . . . , a + 7d}.
Also f(ui) = w(u0i) ∈ {a, a+ d, a+2d . . . , a+7d}, for i ∈ {1, 2, 3, 4}. Since
deg(ui) = 4 and |N(ui)

T{u1, u2, u3, u4}| = 3, for i ∈ {1, 2, 3, 4}, we have
w(ui0) ≥ (a+d)+(a+2d)+(a+3d)+1, for some i0 ∈ {1, 2, 3, 4}. Therefore
a+7d ≥ (a+d)+(a+2d)+(a+3d)+1. As d ≤ 2, this inequality does not
give any (positive) integer value of a and so K4 ¯K1 is not (a, d) distance
antimagic. Finally, we show that K3 ¯K1 is not (a, d) distance antimagic
by considering the following two cases on d.

Case I: d = 1.
Here the set of vertex weights is {a, a + 1, . . . , a + 5} and for i ∈ {1, 2, 3},
f(ui) = w(u0i) ∈ {a, a+1, . . . , a+5}. Since deg(ui) = 3 and |N(ui)

T{u1, u2, u3}| =
2 for i ∈ {1, 2, 3}, we have w(ui0) ≥ (a + 1) + (a + 2) + 1 for some
i0 ∈ {1, 2, 3}. Therefore a + 5 ≥ (a + 1) + (a + 2) + 1 which implies
that a = 1 and hence w(ui) ≤ 6, for i ∈ {1, 2, 3}. But this is not possible
because max{w(ui) : i ∈ {1, 2, 3}} ≥ (1 + 2 + 3) + 2 = 8.

Case II: d = 2.
In this case the set of vertex weights is {a, a+2, . . . , a+10} and so arguing
as in the case d = 1, we first derive a ≤ 3. Now consider the following
sub-cases.
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