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1. Introduction

All graphs considered in this paper are simple, finite and undirected. Through-
out the paper N(v) and deg(v) denote respectively the open neighborhood
and the degree of the vertex v of a given graph. Further, the Greek letters
A and § denote respectively the maximum and the minimum degree of a
vertex in a given graph. We refer to Gross and Yellen [5] for the standard
graph theoretic terminology and notations. We begin with the definition of
distance magic labeling which naturally gives rise to the concept of (a, d)-
distance antimagic labeling.

Definition 1.1 (6). Let G = (V, E) be a graph of order N and f : V —
{1,2,..., N} be a bijection. If there exists a positive integer k such that
Yuen() f(u) =k for every v € V, then we say that f is a distance magic
labeling and the graph G is distance magic. Further, the number k is called
the magic constant of graph G.

The sum 3°,c vy f(u) is called the weight of the vertex v and is denoted
by w(v). The distance magic labeling was first introduced by Vilfred [11]
under the name sigma labeling and it is believed to be motivated by the
construction of magic squares in which all the elements of any row, column
or diagonal add to a same number. This concept was also introduced by
Miller et al. [6] under the name 1-vertex-magic vertex labeling but the term
distance magic labeling was used first time by Sugeng et al. [10]. A natural
variant of distance magic labeling is distance antimagic labelings where
in, all the vertex weights are required to be distinct integers. Distance
magic and distance antimagic labeling have very interesting applications in
scheduling fair, equalized and handicap incomplete tournaments and they
are widely studied for this purpose. See for instance [2] and [3]. A complete
survey on the distance magic labeling and its variants is available in [4].

2. A quick review on (a,d)-distance antimagic labeling

(a, d)-distance antimagic labeling is one form of distance antimagic labeling
and it emerges in a logical way from distance magic labeling. Let G denote
the complement of a graph G. If GG is a distance magic graph of order N
with magic constant k, then it is easy to verify that the set of all vertex
weights in G¢ is {w —k—14:1<¢< N}, which is in an arithmetic
progression with common difference d = 1. This observation motivated
Arumugam and Kamatchi [1] to introduce the concept of (a,d)-distance

antimagic labeling.
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Definition 2.1 (1). Let G = (V, E) be a graph of order N and f : V —
{1,2,..., N} be a bijection. If the set of all vertex weights is {a,a + d,a +
2d,...,a + (N — 1)d}, where a and d are fixed positive integers, then f
is called an (a,d)-distance antimagic labeling and the graph G is called
(a,d)-distance antimagic graph.

Although G¢ is (a, 1)-distance antimagic whenever G is distance magic,
the converse is not true in general. The counter example is the cycle graph
Cs which is not distance magic but its complement graph is (a, 1)-distance
antimagic [1]. The study of (a, d)-distance antimagic labeling for the graphs
Cp, Cp, x Ko and paths is available in [1]. R. Simanjuntak and K. Wi-
jaya [9] proved: Wheel graph W), is (a,d)-distance antimagic if and only
if 3 < n < 5; the fan graph F,, = P, x K is (a,d)-distance antimagic if
and only n = 2 or n = 4; the friendship graph f,, which is obtained by
identifying a vertex from n copies of complete graphs of order 3 is (a, d)-
distance antimagic if and only n = 1 or n = 2. M. Nalliah [7] proved that
graph mC, is (a, d)-distance antimagic if and only if mn is odd and d = 1.
He also proved that the path P, of order upto 15 except n = 3,4 and 5 is
(a,d)-distance antimagic.

In this paper we add a few more results to the existing literature
on (a,d)-distance antimagic graphs. We show that the circulant graph
Circ(2n,{1,n}) is (2n + 2,1)-distance antimagic for all even n. We show
that mKy, is (n(2mn — 2m + 1), 1)-distance antimagic for all m and n
whereas 3K, 11 is (6n? +n — 1,1)-distance antimagic for all n. Later we
show that certain graphs will never posses such a labeling. This include
2Kaon+1, the Helm graph H,, the book graph B,, and the graph K, ® Kj.

3. Positive results about (a,d)-distance antimagic graphs

We begin with the result about circulant graph whose definition is as fol-
lows:

Definition 3.1. Let si1,9,...,8m,n be positive integers such that 1 <
81 < 82 < ...< 8y <n. Then the circulant graph Circ(n,{s1,82,...,5m})
is the graph with vertex set {vy, va,...,v,} and whose edges are of the type
Viviys; fori=1,2,...,n, j=1,2,...,m; where i + s; is taken modulo n.

M. F. Semeniuta [8] showed that the circulant graph
Cire(2p+2,{2,3,4,...,p—1,p+1}) is (2p?> — p+5, 1)-distance antimagic.
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Here we show that the circulant graph Cire(2n, {1,n}) is (2n+2, 1)-distance
antimagic for all even n.

Theorem 3.2. The circulant graph Circ(2n,{1,n}) is (2n+2, 1)-distance
antimagic for all even n.

Proof. Let G denote the graph Circ(2n,{1,n}) whose vertex set is say
{v1,v2,...,v2,}. Define f:V(G) — {1,2,...,2n} as
Htoi=1,3,...,2n—1
flo) =4 3= §j=24,...,n—2

n—i .
5=, t=n,n+2,...,2n

It is easy to check that f is a bijection. Also the vertex weights are given
by

dntit2 - =124,...,2n
w(v;) = %, 1=1,3,5,...,n—3
Ioitl j=p—1,n+1,...,2n—1

We observe that the above weights are in the arithmetic progression with
common difference d = 1 and first term as a = 2n + 2 in the following
sequence:

w(ve), w(vy), ..., w(vey), wW(vp—3), W(Vp—5),...,w(v3), w(v1), w(vap—1),
w(v2p—3), - - ., W(Vp+1), w(vy—1). Hence Circ(2n, {1,n}) is (2n+2, 1)-distance
antimagic for all even n. O

A (22, 1)-distance antimagic labeling of C'irc(20, {1, 10}) is illustrated in
Figure 1. In general when n is odd, it seems difficult to investigate for (a, d)-
distance antimagic labeling of the circulant graph Circ(2n,{1,n}). How-
ever, we have managed to show that Circ(10,{1,5}) and Circ(14,{1,7})
are (12,1) and (16, 1)-distance antimagic respectively. This is illustrated
in Figure 2 and Figure 3 respectively. In all the figures the vertex label is
indicated in the usual font and its weight in the bold font.
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Figure 3 (16,1 distance antimagie labaling of Cére{14, {1, 7})


Marisol Martínez
fg-1
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It is quite easy to show that for a complete graph K, of order n, every
bijection f from its vertex set into the set of first n positive integers is
(a, d)-distance antimagic labeling with a = @Eﬁ and d = 1. But things
are non-trivial and very interesting when we consider union of complete
graphs. We get positive as well as negative results as we shall see now. We
use the notation mkK,, in general to denote the graph which is (disjoint)
union of m copies of K.

Theorem 3.3. The graph mKa,, is (n(2mn—2m+1), 1)-distance antimagic
for all m and n.

Proof. Let G = mKa,. Let the vertices of jth copy of Ko, be

{v],v],v,... v}, }, where j = 1,2,...,m. Define f : V(G) — {1,2,...,2mn}

as

f(vj)— n(j—1) 44 i=12,...,n and j=12,...,m,
n2m—j—1)+i, i=n+1n+2,...,.2nand j=1,2,...,m.

It is not difficult to see that f is onto and since the cardinalities of the
domain and range sets of f are the same, it follows that f is bijective. Also
observe that for each 7,

2n 2n

Zf(vf) =n?(2m —2) + Zz =n2(2m —2) +n(2n + 1) = n(2mn + 1).
i=1 i=1

Therefore the vertex weights are given by the formula

w(v)) =n(2mn +1) — f(v])
and since f (vf ) takes each and every value in the set {1,2,...2mn}, it fol-
lows that the weights are in the arithmetic progression with first term as
a = n(2mn — 2m + 1) and the common difference as d = 1. Additionally,
it may be verified that the weights are in the arithmetic progression as per
the sequence given below:

w(”%n)? ?U<U%n,1), 7w(v111+1)7 w(v%n)v w(vgnfl)7 . 7w(v72L+1)7 R
w(v%)7w(vg;bz—l)7 ,IUIUZ]H),W(U?T 71w(U7Tzn—1)7"'7
w(vf), w(vp ), wlvg ), w ), w(vg), w(vg ), w(v)

We have shown that the union of any given number of copies of a complete
graph of even order is (a, d)-distance antimagic. But this is not always true
in case of complete graphs of odd order as we shall prove that the graph
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3Kopy1 is (6n? +n — 1,1)-distance antimagic for all n whereas 2K, 11 is
never (a,d)-distance antimagic.

Theorem 3.4. The graph 3K, 1 is (6n? + n — 1,1)-distance antimagic
for all n.

Proof. Let G = 3Kan4+1. Let the vertices of 4t copy of Kopy1 be
{v{,vg,vg,...,vgnﬂ}, where 7 = 1,2,3. The strategy here is to assign
the labels in such a way that the sum of all the labels in each of the
three copies of Ks,41 is a fixed constant. We do this formally by defining
f:V(G) — {1,2,...,6n + 3} as per the following cases:

Case I: n=1 (mod 3)
Let A1 ={1,4,...,2n—1}, Ay ={2,5,...,2n} and A3 = {3,6,...,2n+1}.

' 3i—2,j=1landi€ Aj;j=2and i € Az;j =3 and ¢ € Ay
fw)=1< 3i—1,j=1landi € Ay;j=2and i € Aj;j =3 and i € As
3i, j=1landi€ A3;j=2andi € Ay;j=3 and i € A,

Case II. n =2 (mod 3)
Let By ={1,4,...,2n}, By = {2,5,...,2n—2} and B3 = {3,6,...,2n—1}.

‘ 3i—2,j=1landi€ By;j=2and i € Bs;j =3 and ¢ € BoJ{2n + 1}
fw)=4{ 3i—1, j=1landi€ By;j=2and i€ BiU{2n+1};j =3 and i € B3
3i, j=land i€ BsU{2n+1};j=2and i € By;j =3 and i € By

Case III: n =0 (mod 3)
Let C1 ={1,4,...,2n—2},C2 ={2,5,...,2n—4} and C3 = {3,6,...,2n—
3}.

4 3i—2, j=landie C1U{2n};j =2and i€ Cs;j =3 and i € CoU{2n — 1,2n + 1}
=< 3i—1,j=1landi€Cy;j=2andiec CyJ{2n — 1,2n,2n+ 1};j =3 and i € C3
i, j=landie CsU{2n — 1,2n + 1};j =2 and i € Cy;j = 3 and i € C1 | J{2n}.

Given the above definition of f, it may be verified that depending on the
values of n and j, there exist constants a, ; and b, ; so that 2a, ; + b, ; =

2n + 1 and
2n+1 2n+1

ST f) =33 i—2an; — bny.
=1 =1
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This means that

2n+1
Z f(vg) =32n+1)(n+1)— (2n+1) =60 + Tn + 2.
i=1

Consequently

w(vf) =6n%4+Tn+2— f(vzj), for all 4 and j.
Since f (vf ) takes each and every value in the set {1,2,...6n+ 3}, it follows
that the weights are in the arithmetic progression with first term as o =
6n2 +n — 1 and the common difference d = 1.
We include the negative result about the graph 2Ks,1 in the next section
which deals with graphs that are not (a, d)-distance antimagic.

4. Graphs that are not (a,d)-distance antimagic

Theorem 4.1. The graph 2K, is not (a,d)-distance antimagic for all
n.

Proof. If possible, suppose 2Ks,+1 is (a,d)-distance antimagic graph
for some a,d and suppose the associated antimagic labeling is mapping f.
Let {v],v3,v3,...,v3,. 1} and {v?,v3,v3,...,v3, .} be the sets of vertices
of the 15 and the 2" copy of Ky,.1 respectively. Then there exists a pair
of distinct vertices vilo and v,io such that

[w(vi,) — w(vg,)| 2 (2n)d.
But vilo and v,ﬁo being the distinct vertices of the same copy of a complete

graph Ko,11, we have

f(vh) = F(vp)] = [w(v}) — w(vf,)| > 2nd.

Thus, if d > 3, then we get |f(v)) — f(vi,)| > 6n which is not possible
because the range set of f is {1,2,...,4n + 2}. Next we show that the
choice d = 2 or d = 1 also leads to a contradiction.

Case I: d =2 ‘
If d = 2, then the weights are either all even or all odd. Therefore |f (v])—
f@)] = |w(v!) — w(v))| implies that |f(v]) — f(v])| is always an even

number for all 4,k and j = 1,2. Thus, without loss of generality, if we
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assume that f(v{) is odd then it follows that f(v}) is odd for every i and

as a result f(v?) is even for every i. Hence

S f(wl) =14345+-+(@dn+1) = (2n+1)?

whereas
Sl f(0) =24+44+6+-+ (4n+2)
=(2n+1)(2n+2)
=(2n+1)2+ (2n+1).

This implies that for the vertices v and v,%o for which f(vj,) = 1 and
f(v,%o) = 2n + 2, we shall have
1 2 2
w(v;,) = w(vg,) = 2n+1)° — 1.
But this is not possible because the weights are in arithmetic progression
with a positive common difference.

Case II: d =1

Here
4123212321“@0(@{) =a+(a+1)+(a+2)+ -+ (a+@dn+1))
(4.1) = (4n + 2) (a+—(4n2+1)).

Moreover every vertex of the graph 2K5,, 11 is adjacent to exactly 2n vertices
and so

Y2y w]) =2n(1+2+3+ -+ (@dn+2) =n(dn+2)(dn+3).
(4.2)

Therefore in view of (4.1) and (4.2)

in+1
a :n(4n+3)——( 2+ )
_ 2n(4n+1)—1
= 2

which is not possible as a is an integer.

Next we derive certain necessary conditions for the existence of (a,d)-
distance antimagic labeling of a graph. These conditions are often useful in
proving that certain graphs do not admit (a, d)-distance antimagic labeling.
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Lemma 4.2. If G is an (a, d)-distance antimagic graph of order N and if

G has k(> 1) vertices of degree m, then d < m(2N7;r(L,:r_li)76(5H).

Proof. Let G be an (a, d)-distance antimagic graph of order N for some a
and d. Then there exists a bijection f : V(G) — {1,2,..., N} such that the
set of all vertex weights is {a,a+d,...,a+ (N —1)d}. Let {uq,uz,...,ug},
1 <k < N be a set of vertices of G of degree m. Then for 1 <7 <k,

w(u;)) <N+ N —1)+ -+ (N —(m—1)).

(4:3) BN —m +1).

Also in view of pigeonhole principle,
(4.4) maz{w(u;):1<i<k}>a+(k—1)d.
In view of (4.3) and (4.4),

a+(k—1)d< —(2N —-m+1).

| 3

Also,a21+2+-‘-+5:w. So it follows that

(2N —m+1).

Consequently

m(2N —m+1)—0(6+1)
ds 20 —1)

In particular, if m = § then we get the following corollary which will be
used quite often in the subsequent results.

Corollary 4.3. If G is an (a, d)-distance antimagic graph of order N and

the number of vertices of degree § is k(> 1), then d < 5(2\77—15)‘

Lemma 4.4. If G is an (a,d)-distance antimagic graph of order N and if

G has k vertices of degree A, then a > w — (N —k)d
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Proof. Let G be an (a, d)-distance antimagic graph of order N for some a
and d. Then there exists a bijection f : V(G) — {1,2,..., N} such that the
set of all vertex weights is {a,a+d,...,a+ (N —1)d}. Let {uq,uz,...,ug},
1 <k < N be a set of vertices of G of degree A. Then for 1 <i <k,

w(w;) >1+2+---+A.
(4.5) (1) — A(A+])
= =5
Now due to pigeonhole principle
(4.6) min{w(u;): 1 <i<k} <a+ (N -—k)d.

Therefore in view of (4.5) and (4.6), we get

AA+1
0> % _(N—k)d
The helm graph H,, is the graph obtained from the wheel graph W,, =

C, + K1 by attaching the pendant edge at each vertex of the cycle C,.
Using the lemmas above, we prove that it is not (a, d)-distance antimagic.

Theorem 4.5. The helm graph H,, is not (a, d)-distance antimagic for any

n.
Proof. Let ug be a center vertex, {uy, ua,...,u,} be a set of consecutive
vertices of cycle C), and {uf,u,...,ul,} be a set of consecutive pendant

vertices such that u; and w] are adjacent for 1 < ¢ < n. Suppose H,
is (a, d)-distance antimagic graph for some a and d. Then there exists a
bijection f : V(H,) — {1,2,...,2n + 1} such that the set of all vertex
weights is {a,a + d,...,a + 2nd}. Since for 1 < i < n, f(u;) = w(u}) €
{a,a+d,...,a+ 2nd}, we see that

w(ug) = f(ur) + flug) + -+ f(un)
>a+(a+d)+---+(a+(n—1)d)
:na+wd.
2

But a + 2nd > w(up) and hence

(n—1)n

(4.7) a+ 2nd > na + d.
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Consequently
0 >(n—1a+ (@—271)6[
=(n-1a+ ”2—55"d
=(n-1a+ Md
which is not possible if n > 5 because a and d are positive integers. Thus

H,, is not (a, d)-distance antimagic for n > 5. Now we prove the same when
n =3 and n = 4.

It follows from Corollary 4.3 that

g < dN-9)

_ 1((2n+1)-1
- n—1
2n

—1

2
n—1-°

N3

Sod<3forn=3andd<2forn=4.
Case I. n = 3.

Sub-case 1: d =1.

Observe that when n = 3, order of the graph H, is 7, A = 4 and k (i.e.
the number of vertices of degree A = 4) is equal to 3. Therefore in view
of Lemma 4.4, we get a > 6. On the other hand when n = 3 and d = 1,
equation (4.7) reduces to 2a < 3 and so H3 is not (a, 1) distance antimagic.

Sub-case 2: d = 2.
In this case equation (4.7) reduces to a < 3. Also using Lemma 4.4, we get
a > 2 and so the only possible values of a are 2 and 3. Now when a = 2,
the set of all vertex weights is {2,4,6,8,10,12,14}. For 1 < i < 3, since
deg(u;) = 4,

w(u;) > 1424344 =10.

Therefore the set of vertex weights of vertices ug, v}, u5 and uj is {2, 4, 6, 8}.
But this is not possible because w(ug)=f(u1) + f(u2) + f(uz)=w(u}) +
w(uy) + w(us), where as none of the integers in the set {2,4,6,8} is the
sum of other three integers. Further, if a = 3, the set of all vertex weights
is {3,5,7,9,11,13,15} and so a similar argument rules out this possibility
also. Therefore Hs is not (a,2) distance antimagic.
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Sub-Case 3: d = 3.
In this case the set of all vertex weights is {a,a + 3,...,a + 18} and also
for 1 <i <3, f(u;) = w(u}) € {a,a+3,...,a+ 18}. Therefore

max{f(u;):1<i<3}>a+6.

But f(u;) <7, for 1 < i < 3 and hence 7 > a + 6, which gives only one
possibility a = 1. Once again it may now be verified that for 1 < i < 3,
w(u}) € {1,4,7}. But then w(ug) = w(u)) + w(uy) + w(uf) = 12, which
does not belong to the set of vertex weights. So Hs is not (a,3) distance
antimagic.

Case II: n = 4.

Sub-case 1: d = 1.

Here the set of all vertex weights is {a,a+1,...,a+8}. Since for 1 <i <4,
Flw) = (i) € {a,a+1,...,a+8} and w(ug) = f(ur) + fluz) + fluz) +
f(u4), we must have

at+(a+1)+(a+2)+(a+3) <a+8.

Consequently a < %, which is not possible.

Sub-case 2: d = 2.
Here the set of all vertex weights is {a,a+2,...,a+ 16} and so arguing as
above, we must have

a+(a+2)+(a+4)+ (a+6) <a+16.

This gives a < % and consequently ¢ = 1. In this case the set of vertex
weights is {1,3,5,7,9,11,13,15,17}. But then w(ug) = w(u)) + w(uh) +
w(ub) +w(ujy) is an even number which does not belong to the set of vertex
weights. So Hy is not (a,2) distance antimagic.

Our next result is about the book graph which is defined with the help of
Cartesian product of graphs and so we introduce it here.

Definition 4.6. The Cartesian product G x H of graphs G and H is a
graph such that its vertex set is V(Gx H) = {(u,v) : uw € V(G),v € V(H)};
and any two vertices (u,v) and (u',v") are adjacent in G x H if and only if
either w = v/ and v is adjacent to v’ in H, or v = v' and u is adjacent to v’

in G.
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With this definition of Cartesian product, we define the book graph B, as
the Cartesian product of the star graph S, and the path P, and we show
that it is not (a, d)-distance antimagic

Theorem 4.7. The book graph B,, = S,, X P of order 2n+2 is not (a, d)-
distance antimagic for any n.

Proof. Clearly Bj is same as the cycle graph Cy4, which is not (a,d)-
distance antimagic as shown in [1]. So we assume that n > 1. Let
{ugp,u1,...,un} and {vi,v2} be the sets of vertices of the star graph S,

and the path Ps respectively, where ug is the vertex of the star graph S,

with degree n. Suppose B, is (a,d)-distance antimagic graph for some a

and d. Then there exists a bijection f : V(B,) — {1,2,...,2n + 2} such

that the set of all vertex weights is {a,a +d,...,a+ (2n + 1)d}.

Now observe that N ((ug,v1)) U N ((uo,v2)) = V(By) and N ((ug,v1)) (N ((uo,v2)) =
. So

w((ug,v1)) + w((up,v2)) =14+24+3+---+(2n+2)

(4.8) =2n% + 5n + 3.

Also for B,,,

(n+1)(14+2)+2B+4+ -+ (2n+2))

2n+1)(2n+2)d
(2n+2)a + @n4l)@n+2)d )g )

<m+D)(2n+1)+2n+2)) +2(1+2+ -+ 2n).
This implies that

(4.9) 4n?2+13n+3 < (2n+2)a+ (2n? +3n+1)d < 8n% + 9n + 3.

Now in view of Corollary 4.3, we have

I(N—6
d <)

2((2n+2)—2)
2n—1
4n
2n—1 9
=2+ 53

Therefore
(4.10) d<2forn>1.
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Case I: d = 1.
Here (4.9) reduces to

4n? +13n+3 < (2n+2)a+ (2n* +3n +1)(1) < 8n? +9n + 3.

Since a is an integer

)

n2+5n+1 3n2+3n+1
_ (<< |—
n+1 == n+1

where [z] denotes the smallest integer > x and |z] denotes the greatest
integer < x. This implies that

3 1
. — <a< .
(4.11) n+4 LH_lJ_a_?m—i-LH_lJ

Now

(a+2nd) + (a+ (2n+ 1)d)
2a+ (4n+1)d

2(3n) + (4n+1)(1)

10n + 1.

w((ug,v1)) + w((ug,v2)) <
<

But then due to (4.8), 2n? + 5n + 3 < 10n + 1, which is not possible for
n > 3. Thus B, is not (a, 1)-distance antimagic for n > 3. Now we show
that B, is not (a,1)-distance antimagic for n = 2. When n = 2, (4.8)
implies that

(4.12) w((ug, v1)) + w((ug, v2)) = 2(2)? + 5(2) + 3 = 21.

Hence we also have

{4((%0)7 v2))+f((u1,v1))+f ((u2, v1))+f ((wo, v1))+f (w1, v2))+f((uz, v2)) = 21.
1
Also by (4.11), 5 < a < 6.

Sub-case 1: a = 5.

Now,
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w((up,v1)) + w((ug,v2)) <2a+ (dn+ 1)d
=2(5) + (4(2) + (1)
=19.

But this is not possible due to (4.12).
Sub-case 2: a = 6.

Yo Y o w((ui,v;)) = 6a+ 15d
= 6(6) + 15(1) = 51.

Therefore since deg((ug,v;j)) = 3 for j € {1,2}, deg((u;,v;)) = 2 for
i,7 € {1,2} and due to (4.13), we have

3(f((uo, v1)) + f((u0,v2))) +2(21 = (f (w0, v1)) + f((uo, v2)))) = 51.

This gives f((uo, v1)) + f((uo,v2)) = 9.

Also for i € {1,2}, w(uj,v1) = f(ug,v1) + flui,v2), w(ui,v2) = f(ug,ve) +

f(ui,v1). Therefore w(u;,vj) # 9, fori,j € {1,2}}. Hence either w(ug,v1) =
9 or w(ug, v2) = 9. Consequently in view of (4.12), we have either w(ug, v1) =
12 or w(ug,v2) = 12, which is not possible because in this case the set of

vertex weights is {6,7,8,9,10,11}.

Case II: d = 2.
Here (4.9) reduces to

4n? +13n4+3 < (2n+2)a+ (2n® +3n+1)(2) < 8n? +9n + 3.

Since a is an integer, this gives

2
[7n+1"<a< dn“+3n+1 ’
2n+2| — T

which is same as

(4.14) 3+ 5] <a<om—1+ |25

Now

A IA
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But then due to (4.8), 2n% + 5n + 3 < 12n, which is not possible for n > 4.
Thus B, is not (a, 2)-distance antimagic for n > 4.

Sub-case 1: n = 2.

In view of (4.14), a = 3. So we have

o X1 wl(ui, vy))
= 6a + 15d

= 6(3) + 15(2) = 48.

As deg((ug,v;)) = 3 for j € {1,2}, deg((u;,v;)) = 2 for 4,5 € {1,2}; in
this case (4.13) gives

3(f ((uo, v1)) + f((u0,v2))) + 2(21 = (f ((uo, v1)) + f((uo,v2)))) = 48.

Therefore f((ug,v1)) + f((ug,v2)) = 6 and so f((up,v1)) and f((ug,v2))
are of same parity. Now since the set of vertex weights contains only odd
numbers, w((u;,v;)) is odd for 4,5 € {1,2}. Further for 7,5 € {1,2},
w((ui,v1)) = f((uo,v1))+f((ui; v2)) and w((ui, v2)) = f((uo, v2))+f((us, v1)).
Now using the fact that w((u;,v;)) is odd for 4, j € {1, 2} and that f((uo,v1))
and f((ug,v2)) are of same parity, it follows that f((u;,v;)) are of same
parity for 4,5 € {1,2}. This is not possible because the range of f is
{1,2,3,4,5,6}, which contains only three members with the same parity.

Sub-case 2: n = 3.
In view of (4.8), we have

(4.15) w((ug,v1)) + w((ug, v2)) = 2(3)% + 5(3) + 3 = 36.
Therefore
3 3
(4.16) f((uo,v2)) + > f((wi,v1)) + f((uo,v1)) + D f((us, v2)) = 36.
i=1 =1

Also due to (4.14), a = 3,4, 5.

But if a = 3 or ¢ = 4 then we obtain
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w((up,v1)) + w((ug,v2)) < 2a+ (4n+1)d
<2(4) 4+ (4(3) + 1)(2)
= 34.

Thich contradicts (4.15). Finally, if a = 5, we have

ino 27— w(ui,vj)) = 8a+28d
— 8(5) + 28(2) = 96.

As deg((ug,v;)) =4 for j € {1,2}, deg((us,v;)) =2 for i € {1,2,3},j €
{1,2}; in this case (4.16) gives

4(f ((uo,v1)) + f((uo,v2))) +2(36 — (f((uo,v1)) + f((uo,v2)))) = 96.

Therefore f((uop,v1)) + f((uo,v2)) = 12 and so f((uo,v1)) and f((uo,v2))
are of same parity. Since w((u;,v;)) are odd for i € {1,2,3} and j € {1, 2},
once again it can be shown that f((u;,v;)) are of same parity for ¢ € {1,2,3}
and j € {1,2}. But this is not possible because there are only four members
in the range of f with the same parity.

The corona G ® H of two graphs G and H is formed from one copy
of G and |V (G)| (i.e. the cardinality of the vertex set of G) copies of H
in which the i*" vertex of G is joined to every vertex in the i*" copy of
H, where 1 < i < |V(G)|. Sometimes G ® H is also known as the corona
product of graphs G and H. Our next result is interesting especially from
the perspective that every complete graph is (a, d)-distance antimagic.

Theorem 4.8. The corona K, ® K, is not (a,d)-distance antimagic for
n> 1.

Proof. We note that when n =2, K, ® K7 is the graph P;. Arumugam
and Kamatchi [1] proved that if either a,d > 2 or a = 1, then P, is not
(a,d)-distance antimagic. Also Nalliah [7] proved that Py is not (a,1)-
distance antimagic. Hence Py is not (a, d)-distance antimagic for any a and
d. Consequently, while proving the theorem we assume that n > 3. Now if
K, ® K is (a,d)-distance antimagic then by Corollary 4.3,

g < SN=9)

k
1(2n-1)
n—1
24 Lo

2.

IN I
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Let {u1,ug, ..., un,uj,uh, ... ul} be the vertex set of the graph K, ®K;
in which deg(u;) = n and deg(u,) = 1. As deg(u;) = n and deg(u}) =1, it
follows that w(u;) > 1+2+---+n and w(u}) < 2n for all 7. Therefore for
i,7 €{1,2,...,n}, we have

w(u;) —w(uj) > (1+2+--+n)—2n
— n2—3n
5o
But it is easy to see that there exists at least one pair of vertices (uj,, ugo)
such that w(u;,) — w(u},) = d, and so we have

n? —3n
d> .
- 2

Since d < 2, this is not possible for n > 5. This proves that K,, ® K;
is not (a,d)-distance antimagic for n > 5. We now prove the same when
n=3,4.

When n = 4, the set of vertex weights is {a,a + d,a + 2d...,a + 7d}.
Also f(uw;) =w(u}) € {a,a+d,a+2d...,a+T7d}, for i € {1,2,3,4}. Since
deg(u;) = 4 and |N(u;) N{u1, u2, ug,usa}| = 3, for ¢ € {1,2,3,4}, we have
w(uy) > (a+d)+ (a+2d)+ (a+3d)+1, for some ig € {1,2,3,4}. Therefore
a+7d > (a+d)+(a+2d)+ (a+3d)+1. As d < 2, this inequality does not
give any (positive) integer value of a and so K4 ® K is not (a,d) distance
antimagic. Finally, we show that K3 ® K is not (a,d) distance antimagic
by considering the following two cases on d.

Case I: d = 1.

Here the set of vertex weights is {a,a + 1,...,a + 5} and for ¢ € {1,2,3},

f(u;) = wu}) € {a,a+1, ... ,a+5}. Since deg(u;) = 3 and | N (u;) N{u1, u2, us}| =
2 for i € {1,2,3}, we have w(u;,) > (a + 1) + (a + 2) + 1 for some

io € {1,2,3}. Therefore a +5 > (a + 1) + (a + 2) + 1 which implies

that @ = 1 and hence w(u;) < 6, for ¢ € {1,2,3}. But this is not possible
because max{w(u;) : i € {1,2,3}} > (1+2+3)+2=38.

Case II: d = 2.

In this case the set of vertex weights is {a,a+2,...,a+ 10} and so arguing
as in the case d = 1, we first derive a < 3. Now consider the following
sub-cases.
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Sub-case 1: a = 1.
Here the set of vertex weights is {1,3,5,7,9,11}. Since for ¢ € {1,2,3},
flui) = wu)) € {1,3,5,7,9,11} and also f(u;) < 6, we have 1,3,5 €

{f(u;) 3 € {1,2,3}}. Therefore 2,4,6 € {f(u}) : i € {1,2,3}}. But then
w(u;) will be even for ¢ € {1,2,3}, which is not possible.

Sub-case 2: a = 2.
Here the set of vertex weights is {2, 4,6, 8,10, 12} and so a similar argument
as above rules out this possibility.

Sub-case 3: a = 3.

In this case for i € {1,2,3}, f(u;) = w(u}) € {3,5,7,9,11,13} which is not
feasible because the range set of fis {1,2,3,4,5,6}.

Conclusion and Future scope: We have shown that the circulant graph
Cire(2n,{1,n}) admits (a,d)—distance antimagic labeling for all even n.
Interested readers may think of this problem for odd n. The circulant
graphs Clirce(n, S), for more general sets S are wide open for investigation
of (a,d)—distance antimagic labeling. Identifying the full set of values of m
and n so that m Koy, 1 admits (a, d)—distance antimagic labeling is another
problem to look at. We have obtained upper bound on d and lower bound
on a for the existence of (a, d)—distance antimagic labeling of a given graph.
These bounds are mainly used here to show that certain graph families do
not admit (a,d)—distance antimagic labeling. A similar investigation can
be carried out for some other graph families.
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