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Abstract

The aim of this paper is to obtain the spectrum, fine spectrum, ap-
proximate point spectrum, defect spectrum and compression spectrum
of the operator

i ap b() 0 0 0 0 T
0 aq bl 0 0 0
0 0 a9 b2 0 0
Ulag, a1, az;bo, b1, bz) = 8 8 8 %0 22 bol (bo,b1,b2 #0)
0O 0 0 0 0 ao

on the sequence space cy where by, by, by are nonrzero and the non-
zero diagonals are the entries of an oscillatory sequence.

Subjclass : J7A10; 47B37; 15A18.

Keywords : upper triangular band matriz, spectrum, fine spectrum,
approximate point spectrum, defect spectrum, compression spectrum.
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1. Introduction

The spectral theory is one of the most useful tools in science. There are
many applications in mathematics and physics which involves matrix the-
ory, control theory, function theory, differential and integral equations, com-
plex analysis, and quantum physics. For example, atomic energy levels are
determined and therefore the frequency of a laser or the spectral signature
of a star are obtained by it in quantum mechanics.

Let L : X — Y be a bounded linear operator where X and Y are
Banach spaces. Denote the range of L, R (L) and the set of all bounded
linear operators on X into itself B (X).

Assume that X be a Banach space and L € B(X). The adjoint operator
L* € B(X*) of L is defined by (L*f) (z) = f (Lx) for all f € X*and z € X
where X™ is the dual space X.

Let X is a complex normed linear space and D(L) C X be domain of L
where L : D (L) — X be a linear operator. For L € B(X) we determine a
complex number A by the operator (Al — L) denoted by Ly which has the
same domain D(L), such that I is the identity operator. Recall that the
resolvent operator of L is Ly ' := (A — L™t

Let A e C. If L;l exists, is bounded and, is defined on a set which is
dense in X then A is called a regular value of L.

The set p(L, X) of all regular values of L is called the resolvent set of
L. o(L,X) := C\p(L, X) is called the spectrum of L where C is complex
plane. Hence those values A € C for which L) is not invertible are contained
in the spectrum o(L, X).

The spectrum o (L, X) is union of three disjoint sets as follows: The
point spectrum o, (L, X) is the set such that L;l does not exist. Further
A € op(L, X) is called the eigen value of L. We say that A € C belongs
to the continuous spectrum o.(L, X) of L if the resolvent operator L;l
is defined on a dense subspace of X and is unbounded. Furthermore, we
say that A € C belongs to the residual spectrum o, (L, X) of L if the
resolvent operator L;l exists, but its domain of definition (i.e. the range
R(M — L)) of (M — L) is not dense in X; in this case L, ' may be bounded
or unbounded. Together with the point spectrum, these two subspectra
form a disjoint subdivision

(1.1) o(L,X)=0,(L,X)Uo.(L,X)Uo,(L,X)

of the spectrum of L.
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1.1. Goldberg’s Classification of Spectrum

If T € B(X), then there are three possibilities for R(T):
(D) R(T) = X,

(I1) R(T) = X, but R(T') # X,
(1) R(T) # X

and three possibilities for 771
(1) T~ exists and continuous,
(2) T~! exists but discontinuous,
(3) T~ does not exist.

If these possibilities are combined in all possible ways, nine different
states are created. These are labelled by: Iy, Is, I3, 111, 11y, 113, I114,
I115, I113. If an operator is in state 115 for example, then R(T) # X and
T exists but is discontinuous (see [9]).

If X\ is a complex number such that 7' = A — L € Iy or T = Al —
L € I, then A € p(L,X). All scalar values of A not in p(L, X) com-
prise the spectrum of L. The further classification of o(L, X) gives rise
to the fine spectrum of L. That is, o(L,X) can be divided into the
subsets lro(L,X) = 0, Is0(L,X), IIy0(L,X), II30(L,X), III1o(L,X),
I1Iy0(L,X), I1I30(L, X). For example, if T'= Al — L is in a given state,
II1; (say), then we write A € I11y0(L, X).

Let w be the space of all real or complex valued sequences. The space of
all bounded, convergent, null and bounded variation sequences are denoted
by ¢, ¢, co and bv, respectively. Also by ¢1, £,, bv, we denote the spaces of
all absolutely summable sequences, p—absolutely summable sequences and
p—bounded variation sequences, respectively.

Many researchers have investigated the spectrum and the fine spectrum
of linear operators defined by some determined limitation matrices over
certain sequence spaces. There are a lot of studies about spectrum and
fine spectrum. For instance, the fine spectrum of the Cesaro operator has
been examined by Gonzalez [10] on the sequence space £, for (1 < p <
00). Also, Wenger [23] has studied the fine spectrum Hélder summability
operator over ¢, and Rhoades [14] generalized this result to the weighted
mean methods. Reade [13] has investigated the spectrum of the Cesaro
operator on the sequence space cg. The spectrum of the Rhaly operators
on the sequence spaces ¢ and ¢ has examined by Yildirim [21] and the fine
spectrum of the Rhaly operators on the sequence space ¢y has examined by
Yildirim [22].

In [19], Tripathy and Das determined the spectrum and fine spectrum
of the upper triangular matrix U(r, s) on the sequence space
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n
cs = {z = (zp) €Ew: nh_)ngozgsZ exists} ,

1=0

which is a Banach space with respect to the norm ||z||., = sup,, |> i i
Also they determined the subdivisions of the spectrum of the operator
U(r,s) on the same space. In [16], the norm and spectrum of the Cesaro
matrix considered as a bounded operator on bvg N £y were studied by
Tripathy and Saikia. In [17], Tripathy and Paul examined the spectra of
the operator D(r,0,0,s) on sequence spaces ¢y and c¢. In [11], Paul and
Tripathy investigated the spectrum of the operator D(r,0,0,s) over the
sequence spaces ¢, and bv,. In [18], the spectra of the Rhaly operator on
the class of bounded statistically null bounded variation sequence space was
determined by Tripathy and Das. In [12], Paul and Tripathy investigated
the fine spectrum of the operator D(r, 0,0, s) over a sequence space bvg. In
[4], the spectrum and fine spectrum of the lower triangular matrix B (r, s, t)
on the sequence space cs were studied by Das and Tripathy. In [6], the fine
spectrum of the lower triangular matrix B(r,s) over the Hahn sequence
space was investigated by Das.

2. Fine Spectrum

The upper triangular matrix U(ag, a1, ag; bo, b1,b2) is an infinitite matrix
with the non-zero diagonals are the entries of an oscillatory sequence of the
form

[ ag b() 0 0 0 0 T
0 agz b6 0 0 O
0 0 ag b2 0 0
(2.1) U(ao,al,ag;bo,bl,bg) = 0 0 0 a b O
0 0 0 0 al bl
0 0 0 0 0 a2

where bg, b1, ba are nonrzero. The matrix A = (a,) gives rise to a bounded
linear operator T' € B(cp) from ¢y to itself if and only if
(i) the rows of A in ¢; and their ¢; norms are bounded,
(ii) the columns of A are in ¢y.
The operator norm of T is the supremum of /1 norm values of the rows.
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Corollary 1. U(ag, a1, as;bo,b1,b2) : co — ¢o is a bounded linear operator
and [|U(ao, a1, az; bo, b1, ba) = max {|ao| + |bo|, |a1| + [b1], az| + [b2]}.

||(cozco)
Lemma 1 (Golberg [9, p.59]). T has a dense range if and only if T* is
1-1.

Lemma 2 (Golberg [9, p.60]). T" has a bounded inverse if and only if
T™ is onto.

Theorem 1. 0,(U(ao, a1, az; by, b1, b2), co)
= {)\ cC: |/\ — CL()| |)\ — a1| |)\ — (12’ < ’bo’ |b1’ |b2’}

Proof. If A be an eigenvalue of the operator U(ag, a1, a2; bo, b1, ba), then
there exists z # 6 = (0,0, 0, ...) in ¢o such that U(ag, a1, ag; by, b1, ba)x = .
Then we have

agro +bor1 = Axg
a1x] + b1$2 = /\331
ao9 +bors = Axo
aprs +bory = Axg ”
a1r4 +b1zs = Axg

From here, we get

T3 ((A*a2)(b/\2;1‘;)10)(>\*a0))n$0’
Tanil = ()\goao)((>\*az)(bégl‘zlo)()\*ao))nxo7 n> 0.
Tanys = (/\_aggl(yl\_al) ( (A—a2)(b/\2;1ab10)(>\—ao) )z

The subsequences (x3;,), (z3,+1) and (x3,4+2) of x = (z,) are in ¢q if
and only if |\ — ag| |A — a1] [A — az| < |bo| |b1] |b2] and so, x = (zy) € ¢ if
and only if |\ — ag| |A — a1| |A — az| < |bo] |b1||b2|. Thus,

O'p(U(ao,al,az; b(),bl,bg),Cg) = {/\ € C: ’)\ - CLO‘ ’/\ — al\ ‘)\ - CLQ’ < ’bo’ ‘bly ‘bz’} .
Oa

We will use the following Lemma to find the adjoint of a linear transform
on the sequence space cg.

Lemma 3. [23, p.266] Let T : ¢y —— co be a linear map and define
T :ly— 4y, byT*g=goT, g € cj =1, then T must be given with the
matriz A, moreover, T* must be given with the matriz Al.
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Theorem 2. 0,(U(ag, a1, az; by, b1, b2)*, cg=(1) = 0.

Proof. From Lemma 3, the matrix of U(ay, a1, az; by, b1, b2)* is transpose
of matrix of U(ag, a1, az2;bg,b1,b2). If A be an eigenvalue of the operator
Ul(ag, a1, a2; by, b1,b2)*, then there exists x # 6 = (0,0,0,...) in ¢; with
U(ao, ai, a; b(], bl, bg)*.x = A\zx.

Then, we get
apgxo = /\ZL‘O
boxg +a1x1 = Axq
bix1 +asxrs = Axo
boxo +agrs = Ax3 -
boxs +a1xs = Axa

If n = 3k, then byzy, + a1Tp11 = ATpt1, £ > 0. If n = 3k + 1, then
b1y + a2Tpt1 = AMept1, k> 0. If n = 3k + 2, then boxy, + agTpr1 = ATpt1,
k > 0. Let xj be the first non-zero of the sequence (x,). If & = 3n + 2,
then we get ag = A\ since boxr_1 + apxr = Axp. Then from the relation
boxk+1 + Apxgra = ATpy2, we have xpr1 = 0. But from bz, + aprpy1 =
AZp+1, we have baxz,, = 0 which implies z; = 0 as by # 0, a contradiction.
Similarly, if K =3n + 1 and k£ = 3n we get a contradiction.

Thus, 0,(U(ao, a1, az; bo, b1, b2)*, cy=¢1) = 0. O

Theorem 3. o,(U(ag, a1, az; by, b1,b2),co) = 0.

Proof.  Since, 0,(A) = 0,(A*, 1)\0op(A, cp), Theorems 1 and 2 give us
required result. O

Lemma 4. § (32% akbnk) = kijo ak (§ bnk)

n=0 \k=0 n=~k

where

(ar) and (b,x) are nonnegative real numbers.

Proof.

[e'e) 3n 0 3 6 9
5 (z akbnk> S et S i S s+ 3 by -
k=0 k=0 k=0 k=0

n=0 \k=0
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= agpboo + (apbio + aibi1 + azbi2 + azbiz)
+ (agbao + a1bo1 + agba + - - - + agbag) + - - -

= ag (boo + b1o + bag + - ) +ay (b1y + bar +b31 +---)
+as (b1a +bog +bgo+ )+ -+

o0 o0 o0
= a0 bpo+ar Yy bp+azd buat -
n=0 n=1 n=2

_ é’“ @@

Lemma 5. Let a, = ay, by = by for x = y(mod3). Then

T b _ 3 b2b1bo n—j—1
m=0 a3n—m — A (CL2 — )\) (a1 — )\) (ao — )\)
where
babyb o
@ -A@=n =3
B: (a27)§((1117>\) 3 k:3j_1
(T k=372

Proof. The required result is obtained by calculating finite product. O

Theorem 4. o.(U(ag, a1, az2;bp,b1,b2),c0) = {X € C: |\ —ap| |\ — a1| |\ — az| = |bo||b1] |b2|}
aHdU(U(a(),al,ag;bo,bl,bg),CO) = {)\ e C: ’)\ - a0| |)\ - CL1’ |)\ — ag‘ < ’b()‘ ’bl‘ ’bg‘} .

Proof. Lety = (y,) € {1 be such that (U(ag, a1, az;bo, b1,b2)—A)*x =y
for some x = (x,).
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Then we get system of linear equations:

(a0 — N)zo = %
bozo + (a1 — A)xy = wn
biz1 + (a2 — A)xo )
bawa + (ap — \)x3 = Y3
bors + (a1 — \)xg = Y
. ,m>0
bozzn + (a1 — N)T3ny1 = Y3nt1
b1x3n+1 + (a2 — A)Tant2 = Ysnt2
bo3nt2 + (@0 — A\)T3043 = Y3043
Solving these equations, we have
o = GO%A?JO
_ 1 b
1 = g3V T o @y Yo
| b bob
T2 = G2 T e @Y T =@ Yo
_ 1 b by b bobyb
T3 = Y T lon@m Y2 T e @ Y T (e )@= Yo
Then, we get
" _ 1 _ by I byby
3n ag—AY3n (a0=X)(a %) Y3n—1 T Tag—N(a1-N(az—N) yl?"nb;?)"
boby b 3
~ (a0—-N)? (?M1 A)(az—2) Y3n-3+ -+ (_1) n(aof)\)mrl((;lllfi)”(azf)\)” Yo
T _ 1 _ bo + bobz
3ntl = GrAYBntl T Tag—n)(ai—n I3 T (o=~ (a1—N(az—x) I3n—1 .
bob1b 3n+1 by by ™ by~
_(ao—A)(a?—l)\§2(a2—)\)y3N—3 + -+ (—1) " (ao—n)" (al )\)n 1(a2 N TY0

_ 1 bo
T3n+2 = GxY3n+2 — (a1—N)(az— A)y3n+1+(a0 )\)(al )\)(a2 /\)y3n

bobib 3n+2 .
- (ao—/\)(a(i—l)j(ag—k)Q Y3n—1+ -+ (—1) " (ao—N" (!11 /\)n(a2 DR Yo-

Thus we obtain that

3n+t 3n+t—k—1

3 t— k
T3n+t = )\ a H
m=0

b3n+t—m

—, t=0,1,2.
A3n4t—m — A
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Herein a, = ay, by = b, for x = y(mod3).
Therefore we get

o0
Z |zy| = |xo| + |z1| + |z2] + |23 + -+
v=0
[o¢]
= Z ‘-’E3n+t’
n=0
[e's) 1 3In+t N 3n+t—k—1 b3 »
_ _q )3tk ntt—m
D) ey OB ] Y e va——

oo |i$n+t 3n+t—k—1

e D DO |

n=0 L k=0 m=0

A3n+t—m — A

) . 00 3n 3n—k—1 b
Now, let us take ¢ = 0 and consider the series 3 lye] 11 %‘ .
— = 3n+t—m
n=0 | k=0 m=0
' Bnbt—k—1,
In Lemma 5 if we take a; = yi and b, = IT a‘”‘"*%’ then we
m=0 3n+t—m
have
0o 3n 3n—k—1 b3 00 00 3n—k—1 b3
n+t—m n+t—m
>[5l T[]l = S S T[]
n=0 Lk=0 m=0 | “3ntt—m k=0 Ln=k m=0 |@3ntt—m
[e%9) oo 3n—k—1 b3
n+t—m
- [y T e
k=0 n=k m=0 |"3ntt—m
3n—k—1 b bobib n—j—1
; n—m __ _ 2b1bg
Also since mllo pE—— B [(ar)\)(ali)\)(aoi)\)} from Lemma

5, the last equation turns into the series

[e's) o b2b1b0 e
(2.2) B};) [‘yk‘nz—:k [(a2_)\) (a1 — ) (ao—A)} 1 .

&)
Since y = (yn) € {1, the series Y |y| is convergent. Hence the series
k=0

(a2_,\)(l;2fili{))(a0_/\)‘ < 1. Consequently, if

(2.2) is convergent if and only if
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for X € C, |ag — A| a1 — Allao — A| > |b2||b1] |bol|, then (x,) € ¢;1. There-

fore, the operator (U (ag, a1, az; by, b1, ba)—AI)* is onto if |\ — ag| [N — a1| A — az| >

|bo| |b1] |b2]. Then by Lemma 2 U(ag, a1, az; bo, b1, b2) — Al has a bounded

inverse if |\ — ag| |A — a1| |A — az| > |bo| |b1]| |b2].
SO, O‘C(U(ao,al,ag; bo,bl,bg),CO) g {)\ S C: ‘)\ - CL()’ ’)\ — al\ ’)\ — a2] S ‘b()‘ ‘bl‘ ‘bg‘}
Since o (L, cp) is the disjoint union of o,,(L, ¢o), or(L, cp) and o.(L, o),

therefore

J(U<a0,a1,a2;bo,bl,bg),CO) g {)\ cC: |)\ - CL()’ |)\ - al\ ’)\ - a2| S |b0| |b1| ‘b2|}

By Theorem 1, we get
{Ae C: A —ag| [X —ar|[A — az| < bo| ba] [b2}= op(U(ao, a1, az; bo, b1, b2), co) C
a(U(ao, a1, az; bo, b1, b2), co).

Since, o(L, cp) is a compact set, so it is closed and thus,

{Ae C: X —aol|X = a1] A = az| < |bol [ba]|b2]} < o (Ul(ao,ar,az;bo,b1,b2),co)
= o(U(ao, a1, a2;bo,b1,b2), co)

and {\ € C: |X—ap| |\ —a1] |\ —az| < |bol|b1]|b2]} C o(U(ag, a1, as2;bo,b1,b2),co).

Hence, o(U(ao, a1, a2;bo, b1, b2), co) = {A € C: [A = ao| |A — ar| |X — ag| < [bo| [b1][b2]}
and so o.(U (ag, a1, az; b, b1,b2),c0) = {A € C: |\ —ag| |\ — a1| |A — az2| = |bo]| |b1] |b2]} -
O

Theorem 5. If|)\ — (Io’ |/\ — a1| |)\ - a2| < |bo| |b1| |b2|, then \ € IgO'(U(a(),al,ag;bo,bl,bg),CO).

Proof.  Suppose that |A — ag| |A — a1 | |\ — az| < |bo||b1]|b2| and so from
Theorem 1, X € 0,(U(ag, a1, az2;bo, b1,b2),cp). Hence, A satisfies Golberg’s
condition 3.We shell show that Ul(ag, a1, a9;bg,b1,b2) — Al is onto when
|A = aol A = ax] [A — az| < [bo| 1] |ba] -

Let y = (yn) € ¢o be such that (U(ag, a1, as2;bg,b1,b2) — A )x = y for
x = (x). Then,

(ap — Nzo +box1 = yo
(a1 —N)z1+bize = y

(an—l - )\)xn—l + bn—lxn = Yn-1
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and so

(23) zp, = [ SR

ot S T 2 [ 250

v=1

where a; = ay, by = by for x = y(mod3).

n—k—1

A\ —
0§|$n|< |yn 1|+Z|yk| H
\b _1] b bn_yo1
(2.4)
1/3

If we take q := (az—/\)(gb:b/\o)(ao—/\)) / , then for ¢ < 1 from Stolz Theo-

rem we have
n—2
lyel
ket A —ap_y =2 k—1 k=0 : ‘yn’
Zlykl II |5——|~M> lla"" = M= ~ M= n > 00
=1 n—v—1 k=0 q —4q
(2 5)
n
since [] m ~ Mq", n — oo. If we take limit as n — oo in (2.5),
V= 1 n v
—k—1

then we get lim Z Ykl v]jl % = 0 since (yn) € ¢o. Thus, it must
be ’()‘ ao)(;)%lb);) a2 )‘ ‘ < 1to (z,) be in ¢y from (2.4).

Therefore,

U(ao, a1, a2;bg, b1, b2) — Al is onto. So, A € I. Hence we get the required
result. O

3. Partition of the Spectrum

Also the spectrum o(L, X) is partitioned into three sets which are not
necessarily disjoint as follows:

If there exists a sequence (xy,) in X shuch that ||z,| = 1 and ||Lz,| — 0
as n — oo then (z,,) is called Weyl sequence for L.

We call the set

(3.1) ogp(L, X) := {X € C : there exists a Weyl sequence for \I — L}
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the approximate point spectrum of L. Moreover, the set

(3.2)

is called defect spectrum of L. Finally, the set

(3.3)

0eo(L, X) ={Ae C: RN - L) # X}

is called compression spectrum in the literature.
The following Proposition is quitly useful for calculating the separation
of the spectrum of linear operator in Banach spaces.

o5(L,X):={N€o(L,X): Al — L is not surjective}

Proposition 1 ([2], Proposition 1.3). The spectra and subspectra of
an operator L € B(X) and its adjoint L* € B(X™*) are related by the

following relations:

(a) o(L*, X*) =0(L,X), (b) 0o(L*, X*) C 04p(L, X),

(c) oap(L*, X*) = 05(L, X), (d) 05(L*, X*) = 04p(L, X),
(e) op(L*, X*) = 0co(L, X), (f) 0co(L*, X*) D 0p(L, X),
(g) o(L, X) = 04p(L, X) Uop(L*, X*) = 0p(L, X) Uogp(L*, X*).

By the definitions given above, we can write following table

1 2 3
L;l exists L;l exists L;l
and is bounded | and is unbounded | does not exists
A€ op(L, X)
I |RAM-L)=X A€ p(L, X) - A€ ogp(L, X)
A€o (L, X) A€ op(L, X)
II | RAM-L)=X A€ p(L, X) A€ ogp(L, X) A€ ogp(L, X)
)xEO’g(L,X) )\EO’5(L,X)
A€o (L, X) A€o (L, X) A€ op(L, X)
I | RAI—L)#X A€ os(L,X) A€ ogp(L, X) A€ ogp(L, X)
A€ os(L, X) A€ os(L,X)
A€ 0oL, X) A€ oeo(L, X) A€ 0oL, X)

Table 1: Subdivisions of the spectra of a linear operator.

Quite recently, many authors have examined spectral divisions of gen-
eralized difference matrices. For example, Akhmedov and El-Shabrawy, [1]
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have studied the spectrum and fine spectrum of the generalized lower tri-
angle double-band matrix A, on the sequence spaces ¢y, ¢ and ¢,, where
1 <p<oo.

The above-mentioned articles, concerned with the decomposition of the
spectrum which defined by Goldberg. However, in [7] Durna and Yildirim
have investigated subdivision of the spectra for factorable matrices on cqg
and in [3] Basar, Durna and Yildirim have investigated subdivisions of the
spectra for generalized difference operator on the sequence spaces ¢y and ¢
and in [8] Durna, have studied subdivision of the spectra for the generalized
upper triangular double-band matrices A"V over the sequence spaces ¢y and
c. In [5], Das has calculated the spectrum and fine spectrum of the upper
triangular matrix U(ry, ra; s1, s2) over the sequence space cg. In [20], the
fine spectrum of the upper triangular matrix U(r, 0,0, s) over the squence
spaces ¢g and ¢ was studied by Tripathy and Das.

Corollary 2. I1110(U(ag,a1,as2;bg,b1,b2),co)
= I1130(U(ao, a1, az; bo, b1, b2), co) = 0.

Proof.  Since o,(L,co) = [II1o(L,cp) U IIIy0(L,co) from Table 1, the
required result is obtained from Theorem 3. O

Corollary 3. II30(U(ag,a1,asz;bg,b1,b2),co)
= I1130(U(ag, az, az; bo, b1, b2), co) = 0.

Proof. Since op,(L,co) = I30(L,co) U I1s0(L,co) U I1130(L,co) from
Table 1, the required result is obtained from Theorem 1 and Theorem 5.
O

Theorem 6.

(a) O'ap(U(a(),al,ag;bo,bl,bg),CO) = {)\ S C . |)\ — a0| |)\ — a1| ’/\ — CL2| S |b0| |b1| |b2|},
(b) Ug(U(ao,al,ag; bg,bl,bg),CO) = {)\ eC: ‘)\ - CLO’ ’)\ - al\ ’)\ — a2] B ‘bg‘ ‘bl‘ ‘bg‘},
(C) O'CO(U(ao,al,ag;bo,bl,bg),CQ) = @

Proof. (a) From Table 1, we get oqp(L,co) = o((L,co)\II1T1o(L,cp).
And so
O'ap(U(a(), ai, ag; b(), bl, bg), C()) == {/\ e C: |)\ - (Io’ |/\ - a1| |)\ - a2| < |b0| |b1| |b2|}
from Corollary 2. (b) From Table 1, we have o5(L, co) = o(L, co)\I30(L, cp).
So using Theorem 4 and 5, we get the required result. (c) By Proposition
1 (e), we have o,(L*, cf) = 0co(L, co).

Using Theorem 2, we get the required result. O
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Corollary 4. (a) o4y(U(ag, a1, az; bo, b1, b2)*, c§ = 41)
={ e C:|X—ag| A —a1| |\ — az| = |bo| |b1] |b2]}
(b) O’5(U<a0,al,ag;bo,bl,bg)*,q; = Hl)
={A e C:[A—ao||A —a1]|X — az| < [bol |br] |b2[}

Proof.  Using Proposition 1 (¢) and (d), we have
aap(U (a0, a1, az; bo, by, ba)*, ¢ = £1) = 05(U(ao, a1, az; b, b1, b2), co)
and
o5(U(ao, a1, az; bo, b1, ba)*, cf = £1) = 04p(U(ao, a1, az; bo, b1, b2), co).
Using Theorem 6 (a) and (b), we get the required results. O

4. Results

We have obtained subsequences sy, T3k41, T3k42 investigating subsets of
the spectrum in calculations which are in before sections. And we have
examined when these sequences belong to spaces ¢y or £1. For this, we
have proved Theorem 1 and Lemma 4.

Let the upper triangular matrix U(ag, a1, ..., an—1;bo,b1,...,bp—1) be
an infinitite matrix with the non-zero diagonals are the entries of an oscil-
latory sequence.of the form

1
S
=)
S
S
o
e}
e}

0

0 a1 by 0 0 0
0o o0 . 0 0

U(ao,al,...,an,l;bo,bl,...,bn,l) = 0 0 0 Ap—1 bnfl 0
0 0 0 0 ag b()
0 0 O 0 0 m

(4.1)

where bg, b1, ...,b,_1 are nonrzero.

For calculating subsets of spectrum of matrix
U(ag,ai,...,an—1;bo,b1,...,bn—1), we obtain subsequences
Tk, Tnk+1s - -Tnk+n—1 Using same techniques in before section. And for

investigating when these sequences belong to spaces ¢q or ¢1, if we generalize
Lemma 2 and Lemma 5, we get the following spectral decompositions:
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n—1
Theorem 7. Let S = {)\ eC: ] "\g—ka’“
k=0
set S and OS be the boundary of the set S. Then the following are provided

< 1}, § be the interior of the

1. op(U(ag,a1,...,an—15b0,b1,...,bn—1),c0) =8,

@
9

( )

2. 0p(U(ag,a1,...,an-1;bo, b1, ..., bn—1)*,c5=l1) =0,
+(U(ag,a1,...,an-1;b0,b1,...,bp—1),c0) =0,

4. o.(U(ag,a1y...,an—1;b0,b1,...,bn—1),co

5. U(U(ao,al,. . .,an,l;bo,bl, .. .,bnfl),CO) = S,

0. IgO‘(U(ao,al, ey p—1; bo,bl, .. .,bn_l),CO) :S,
7. IITo (U(ag,a1,---,an-1;b0,b1,...,bn-1),c0) =0,

8. IIIgO’ U(ao,al,...,an_l;bo,bl,...,bn_l),co) =V,
U

( 0

9. IIIs0(U(ag,a1,-..,an-1;bo,b1,...,bn_1),co) =0,

10. II30(U(ag, a1, -san-1;b0,b1,..,bp-1),c0) = 0,

11. 04p(U(ao, a1, ...,an—1;b0,b1,...,bp—1),c0) =S,

12. 05(U(ag, a1, ..., an—1;b0,b1,...,bp_1),co) = 08,

13. 0eo(U(ag,ai,...,an—1;b0,b1,...,bn—1),c0) =0,

14. 04p(U(ao, a1, ..., an-15b0,b1,...,bp—1)*, c5=01) = 0S5,

15. Ug(U(ao,al, ey Ap—1;4 b(),bl, .o .,bn,l)*,cééél) =S.
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