Proyecciones Journal of Mathematics
Vol. 38, ${ }^{o}$ 1, pp. 13-30, March 2019.
Universidad Católica del Norte
Antofagasta - Chile

3-product cordial labeling of some snake graphs

P. Jeyanthi
Govindammal aditanar college for women, India
A. Maheswari
Kamaraj college of engineering and technology, India and
M. Vijayalakshmi
Dr. G. U. Pope college of engineering, India
Received: March 2016. Accepted : October 2018

Abstract

Let G be a (p, q) graph. A mapping $f: V(G) \rightarrow\{0,1,2\}$ is called 3-product cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for any $i, j \in\{0,1,2\}$, where $v_{f}(i)$ denotes the number of vertices labeled with $i, e_{f}(i)$ denotes the number of edges $x y$ with $f(x) f(y) \equiv$ $i(\bmod 3)$. A graph with 3-product cordial labeling is called 3-product cordial graph. In this paper we investigate the 3-product cordial behavior of alternate triangular snake, double alternate triangular snake and triangular snake graphs.

Keywords : cordial labeling, product cordial labeling, 3-product cordial labeling, 3-product cordial graph, alternate triangular snake, double alternate triangular snake, triangular snake graph.

AMS Subject Classification (2010) : 05C78.

1. Introduction

Let G be a graph with p vertices and q edges. All graphs considered here are simple, finite, connected and undirected. For basic notations and terminology, we follow [3]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a complete survey of graph labeling is available in [2]. Cordial labeling is a weaker version of graceful labeling and harmonious labeling introduced by Cahit in [1]. Let f be a function from the vertices of G to $\{0,1\}$ and for each edge $x y$ assign the label $|f(x)-f(y)| . f$ is called a cordial labeling of G if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1 , and the number of edges labeled 0 and the number of edges labeled 1 differ at most by 1 . Let f be a function from $V(G)$ to $\{0,1\}$. For each edge $u v$, assign the label $f(u) f(v)$. Then f is called product cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(i)$ and $e_{f}(i)$ denotes the number of vertices and edges respectively labeled with $i(i=0,1)$. Sundaram et al. introduced the concept of EP-cordial labeling in [9]. A vertex labeling $f: V(G) \rightarrow\{-1,0,1\}$ is said to be an EP-cordial labeling if it induces the edge labeling f^{*} defined by $f^{*}(u v)=f(u) f(v)$ for each $u v \in E(G)$ and if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for any $i \neq j i, j \in\{-1,0,1\}$, where $v_{f}(x)$ and $e_{f}(x)$ denotes the number of vertices and edges of G having the label $x \in\{-1,0,1\}$. In [8] it is remarked that any EP-cordial labeling is 3-product cordial labeling. A mapping $f: V(G) \rightarrow\{0,1,2\}$ is called 3 -product cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for any $i, j \in\{0,1,2\}$, where $v_{f}(i)$ denotes the number of vertices labeled with $i, e_{f}(i)$ denotes the number of edges $x y$ with $f(x) f(y) \equiv i(\bmod 3)$. A graph with 3-product cordial labeling is called 3 -product cordial graph. Jeyanthi and Maheswari [4][7] proved that the graphs $\left\langle B_{n, n}: w\right\rangle, C_{n} \cup P_{n}, C_{m} \circ \overline{K_{n}}$ if $m \geq 3$ and $n \geq 1, P_{m} \circ \overline{K_{n}}$ if $m, n \geq 1$,duplicating arbitrary vertex of a cycle C_{n}, duplicating arbitrary edge of a cycle C_{n}, duplicating arbitrary vertex of a wheel W_{n}, middle graph of P_{n}, the splitting graph of P_{n}, total graph of $P_{n}, P_{n}\left[P_{2}\right], P_{n}^{2}, K_{2, n}$, vertex switching of C_{n}, ladder L_{n}, triangular ladder $T L_{n}$, graph $\left\langle w_{n}^{(1)}, w_{n}^{(2)} \ldots w_{n}^{(k)}\right\rangle$, splitting graphs $S^{\prime}\left(K_{1, n}\right), S^{\prime}\left(B_{n, n}\right)$, shadow graph $D_{2}\left(B_{n, n}\right)$, square graph $B_{n, n}^{2}$ and star graphs are 3 -product cordial graphs. Also they proved that a complete graph K_{n} is a 3 -product cordial graph if and only if $n \leq 2$.

In addition, they proved that if $G(p, q)$ is a 3 -product cordial graph (i) $p \equiv 1(\bmod 3)$ then $q \leq \frac{p^{2}-2 p+7}{3}$.(ii) $p \equiv 2(\bmod 3)$ then $q \leq \frac{p^{2}-p+4}{3}$ (iii)
$p \equiv 0(\bmod 3)$ then $q \leq \frac{p^{2}-3 p+6}{3}$ and if G_{1} is a 3 -product cordial graph with $3 m$ vertices and $3 n$ edges and G_{2} is any 3-product cordial graph then $G_{1} \cup G_{2}$ is also 3-product cordial graph.

We use the following definitions in the subsequent section.
Definition 1.1. A triangular snake T_{n} is obtained from a path P_{n} by replacing each edge of the path by a triangle C_{3}.

Definition 1.2. An alternate triangular snake $A\left(T_{n}\right)$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternately) to a new vertex v_{i}. That is every alternate edge of path is replaced by C_{3}. We have three types of alternate triangular snake namely (i). $A_{1}\left(T_{n}\right)$ - the triangle starts from u_{1} and ends with u_{n}, (ii). $A_{2}\left(T_{n}\right)$ - the triangle starts from u_{1} and ends with u_{n-1} (or the triangle starts from u_{2}, ends with u_{n}) and (iii). $A_{3}\left(T_{n}\right)$ - if the triangle starts from u_{2} and ends with u_{n-1}.

Definition 1.3. A double alternate triangular snake $D A\left(T_{n}\right)$ consists of two alternate triangular snakes that have a common path. That is, a double alternate triangular snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternately) to two new vertices v_{i} and w_{i}. We have three types of double alternate triangular snake namely (i). $D A_{1}\left(T_{n}\right)$ - the double triangle starts from u_{1} and ends with u_{n},
(ii). $D A_{2}\left(T_{n}\right)$ - the double triangle starts from u_{1}
and ends with u_{n-1} (or the triangle starts from u_{2}, ends with u_{n}) and
(iii). $D A_{3}\left(T_{n}\right)$ - the double triangle starts from u_{2} and ends with u_{n-1}. For any real number n, $\lceil n\rceil$ denotes the smallest integer $\geq n$ and $\lfloor n\rfloor$ denotes the greatest integer $\leq n$.

2. Main Results

In this section we investigate the 3 -product cordial behaviour of alternate triangular snake, double alternate triangular snake and triangular snake graphs.
Let $A\left(T_{n}\right)$ be an alternate triangular snake graph obtained from a path $u_{1}, u_{2} \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternately) to a new vertex v_{i} where $1 \leq i \leq n-1$ for even n and $1 \leq i \leq n-2$ for odd n.

Therefore, $V\left(A\left(T_{n}\right)\right)=\left\{u_{i}, v_{j}: 1 \leq i \leq n, 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

We note that $\left|V\left(A\left(T_{n}\right)\right)\right|=\left\{\begin{array}{cc}\frac{3 n}{2}, & n \equiv 0(\bmod 2) \\ \frac{3 n-1}{2}, & n \equiv 1(\bmod 2),\end{array}\right.$ and

$$
\left|E\left(A\left(T_{n}\right)\right)\right|= \begin{cases}2 n-1, & n \equiv 0(\bmod 2) \\ 2 n-2, & n \equiv 1(\bmod 2) .\end{cases}
$$

Theorem 2.1. (1). An alternate triangular snake graph $A_{1}\left(T_{n}\right)$ is a 3product cordial graph if and only if $n \equiv 0,1(\bmod 3)$.
(2). An alternate triangular snake graph $A_{2}\left(T_{n}\right)$ is a 3 - product cordial graph.
(3). An alternate triangular snake graph $A_{3}\left(T_{n}\right)$ is a 3 - product cordial graph.

Proof. (1). Define a vertex labeling $f: V\left(A_{1}\left(T_{n}\right)\right) \rightarrow\{0,1,2\}$ by considering the following two cases.

Case (i). $n \equiv 0(\bmod 3)$. Take $n=3 k$.
Then $\left|V\left(A_{1}\left(T_{n}\right)\right)\right|=\frac{9 k}{2}$ and $\left|E\left(A_{1}\left(T_{n}\right)\right)\right|=6 k-1$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k$,
$f\left(u_{i}\right)=\left\{\begin{array}{ll}1, & \text { if } j \equiv 0,1(\bmod 4) \\ 2, & \text { if } j \equiv 2,3(\bmod 4) ;\end{array}\right.$.
For $1 \leq i \leq \frac{k}{2}, f\left(v_{i}\right)=0$; For $i=\frac{k}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { ifj } \equiv 0(\bmod 2) \\ 2, & \text { ifj } \equiv 1(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)=v_{f}(2)=$ $\frac{3 k}{2}$ and $e_{f}(0)=e_{f}(1)+1=e_{f}(2)=2 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 0(\bmod 3)$.

Case (ii). $n \equiv 1(\bmod 3)$. Take $n=3 k+1$.
Then $\left|V\left(A_{1}\left(T_{n}\right)\right)\right|=\frac{9 k+3}{2}$ and $\left|E\left(A_{1}\left(T_{n}\right)\right)\right|=6 k+1$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
For $1 \leq i \leq \frac{k+1}{2}, f\left(v_{i}\right)=0$; For $i=\frac{k+1}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)=v_{f}(2)=$ $\frac{3 k+1}{2}$ and $e_{f}(0)-1=e_{f}(1)=e_{f}(2)=2 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 1(\bmod 3)$.

Conversely assume that $n \equiv 2(\bmod 3)$ and take $n=3 k+2$. Then $\left|V\left(A_{1}\left(T_{n}\right)\right)\right|=3\left(\frac{3 k+2}{2}\right)$ and $\left|E\left(A_{1}\left(T_{n}\right)\right)\right|=6 k+3$. Hence we have $v_{f}(0)=$ $v_{f}(1)=v_{f}(2)=\frac{3 k+2}{2}$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=2 k+1$. If either $f\left(u_{i}\right)=0$ or $f\left(v_{i}\right)=0$ for $1 \leq i \leq \frac{3 k}{2}+1$ then $e_{f}(0)=3 k+2$. If $f\left(u_{i}\right)=0$ for $1 \leq i \leq k+1$ and $f\left(v_{i}\right)=0$ for $1 \leq i \leq \frac{k}{2}$ then $e_{f}(0)=2 k+2$. If $f\left(u_{i}\right)=0$ for $1 \leq i \leq \frac{k}{2}$ and $f\left(v_{i}\right)=0$ for $1 \leq i \leq k+1$ then $e_{f}(0)=\frac{5 k}{2}+2$. In each case we get $e_{f}(0)>2 k+1$. Hence, f is not a 3 -product cordial labeling when $n \equiv 2(\bmod 3)$.
(2). Here $\left|V\left(A_{2}\left(T_{n}\right)\right)\right|=\frac{3 n-1}{2}$ and $\left|E\left(A_{2}\left(T_{n}\right)\right)\right|=2 n-2$.

Define a vertex labeling $f: V\left(A_{2}\left(T_{n}\right)\right) \rightarrow\{0,1,2\}$ by considering the following three cases.

Case (i). $n \equiv 0(\bmod 3), n=3 k$.
Then $\left|V\left(A_{2}\left(T_{n}\right)\right)\right|=\frac{9 k}{2}-1$ and $\left|E\left(A_{2}\left(T_{n}\right)\right)\right|=6 k-2$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
For $k>1,1 \leq i \leq \frac{k-1}{2}, f\left(v_{i}\right)=0$;
For $i=\frac{k-1}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)-1=$ $v_{f}(2)=\frac{3 k-1}{2}$ and $e_{f}(0)=e_{f}(1)+1=e_{f}(2)+1=2 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 0(\bmod 3)$.

Case (ii). $n \equiv 1(\bmod 3), n=3 k+1$.

Then $\left|V\left(A_{2}\left(T_{n}\right)\right)\right|=\frac{9 k+2}{2}$ and $\left|E\left(A_{2}\left(T_{n}\right)\right)\right|=6 k-1$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0,1(\bmod 4) \\ 2, & \text { if } j \equiv 2,3(\bmod 4) ;\end{cases}$
For $1 \leq i \leq \frac{k}{2}, f\left(v_{i}\right)=0$; For $i=\frac{k}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)=\left\{\begin{aligned} 1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) .\end{aligned}\right.$
In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)-1=$ $v_{f}(2)=\frac{3 k}{2}$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=2 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq$ 1 and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 1(\bmod 3)$.

Case (iii). $n \equiv 2(\bmod 3), n=3 k+2$.
Then $\left|V\left(A_{2}\left(T_{n}\right)\right)\right|=\frac{9 k+5}{2}$ and $\left|E\left(A_{2}\left(T_{n}\right)\right)\right|=6 k+2$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k+2$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
For $1 \leq i \leq \frac{k+1}{2}, f\left(v_{i}\right)=0$; For $i=\frac{k+1}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)=\left\{\begin{aligned} 1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) .\end{aligned}\right.$
In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)=v_{f}(2)-$ $1=\frac{3 k+1}{2}$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)+1=2 k+1$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 2(\bmod 3)$.
(3). Here $\left|V\left(A_{3}\left(T_{n}\right)\right)\right|=\frac{3 n-2}{2}$ and $\left|E\left(A_{3}\left(T_{n}\right)\right)\right|=2 n-3$.

Define a vertex labeling $f: V\left(A_{3}\left(T_{n}\right)\right) \rightarrow\{0,1,2\}$ by considering the following three cases.

Case (i). $n \equiv 0(\bmod 3), n=3 k$.
Then $\left|V\left(A_{3}\left(T_{n}\right)\right)\right|=\frac{9 k}{2}-1$ and $\left|E\left(A_{3}\left(T_{n}\right)\right)\right|=6 k-3$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$

For $k>2,1 \leq i \leq \frac{k-2}{2}, f\left(v_{i}\right)=0$;
For $i=\frac{k-2}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)=$ $v_{f}(2)=\frac{3 k}{2}$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=2 k-1$. Thus we have $\mid v_{f}(i)-$ $v_{f}(j) \mid \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3product cordial labeling when $n \equiv 0(\bmod 3)$.

Case (ii). $n \equiv 1$ ($\bmod 3$), $n=3 k+1$.
Then $\left|V\left(A_{3}\left(T_{n}\right)\right)\right|=\frac{9 k+1}{2}$ and $\left|E\left(A_{3}\left(T_{n}\right)\right)\right|=6 k-1$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0,1(\bmod 4) \\ 2, & \text { if } j \equiv 2,3(\bmod 4) ;\end{cases}$
For $k>1,1 \leq i \leq \frac{k-1}{2}, f\left(v_{i}\right)=0$;
For $i=\frac{k-1}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1(\bmod 2) \\ 2, & \text { if } j \equiv 0(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)=$ $v_{f}(2)=\frac{3 k+1}{2}$ and $e_{f}(0)+1=e_{f}(1)=e_{f}(2)=2 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 1(\bmod 3)$.

Case (iii). $n \equiv 2(\bmod 3), n=3 k+2$.
Then $\left|V\left(A_{3}\left(T_{n}\right)\right)\right|=\frac{9 k+4}{2}$ and $\left|E\left(A_{3}\left(T_{n}\right)\right)\right|=6 k+1$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
$f\left(u_{n}\right)=2$;
For $1 \leq i \leq \frac{k}{2}, f\left(v_{i}\right)=0$; For $i=\frac{k}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)=\left\{\begin{aligned} & 1, \quad \text { if } j \equiv 0(\bmod 2) \\ & 2, \text { if } j \equiv 1(\bmod 2) .\end{aligned}\right.$
In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)=$ $v_{f}(2)=\frac{3 k}{2}+1$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)-1=2 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 2(\bmod 3)$.

An example of 3 -product cordial labeling of $A_{1}\left(T_{10}\right)$ is shown in Figure 1.

Figure 1

An example of 3-product cordial labeling of $A_{2}\left(T_{9}\right)$ is shown in Figure 2.

Figure 2

Theorem 2.2. (1). A double alternate triangular snake graph $D A_{1}\left(T_{n}\right)$ is a 3 -product cordial graph.
(2). A double alternate triangular snake graph $D A_{2}\left(T_{n}\right)$ is a 3 - product cordial graph if and only if $n \equiv 0,1(\bmod 3)$.
(3). A double alternate triangular snake graph $D A_{3}\left(T_{n}\right)$ is a 3 - product cordial graph.

Proof. (1). Here $\left|V\left(D A_{1}\left(T_{n}\right)\right)\right|=2 n$ and $\left|E\left(D A_{1}\left(T_{n}\right)\right)\right|=3 n-1$.
Define a vertex labeling $f: V\left(D A_{1}\left(T_{n}\right)\right) \rightarrow\{0,1,2\}$ by considering the
following two cases.

Case (i). $n \equiv 0(\bmod 3)$. Take $n=3 k$.
Then $\left|V\left(D A_{1}\left(T_{n}\right)\right)\right|=6 k$ and $\left|E\left(D A_{1}\left(T_{n}\right)\right)\right|=9 k-1$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
For $1 \leq i \leq \frac{k}{2}, f\left(v_{i}\right)=f\left(w_{i}\right)=0$;
For $i=\frac{k}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) ;\end{cases}$
and

$$
f\left(w_{i}\right)\left\{\begin{array}{l}
1, \quad \text { ifj } \equiv 1(\bmod 2) \\
2, \quad \text { if } j \equiv 0(\bmod 2)
\end{array}\right.
$$

In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)=v_{f}(2)=$ $2 k$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)+1=3 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 0(\bmod 3)$.

Case (ii). $n \equiv 1(\bmod 3)$. Take $n=3 k+1$.

Then $\left|V\left(D A_{1}\left(T_{n}\right)\right)\right|=6 k+2$ and $\left|E\left(D A_{1}\left(T_{n}\right)\right)\right|=9 k+2$.
For $k>1,1 \leq i \leq k-1, f\left(u_{i}\right)=0$; For $i=k-1+j, 1 \leq j \leq 2 k+2$;
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
For $1 \leq i \leq \frac{k+1}{2}, f\left(v_{i}\right)=f\left(w_{i}\right)=0$;
For $i=\frac{k+1}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) ;\end{cases}$
and

$$
f\left(w_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1(\bmod 2) \\ 2, & \text { if } j \equiv 0(\bmod 2)\end{cases}
$$

In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)=$ $v_{f}(2)=2 k+1$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)+1=3 k+1$. Thus we have
$\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 1(\bmod 3)$.

Case (iii). $n \equiv 2(\bmod 3)$. Take $n=3 k+2$.
Then $\left|V\left(D A_{1}\left(T_{n}\right)\right)\right|=6 k+4$ and $\left|E\left(D A_{1}\left(T_{n}\right)\right)\right|=9 k+5$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k+2$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
For $1 \leq i \leq \frac{k}{2}, f\left(v_{i}\right)=0$; For $i=\frac{k}{2}+j, 1 \leq j \leq k+1$,
$f\left(v_{i}\right)=\left\{\begin{aligned} 1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) ;\end{aligned}\right.$
For $1 \leq i \leq \frac{k}{2}+1, f\left(w_{i}\right)=0$; For $i=\frac{k}{2}+1+j, 1 \leq j \leq k$,
$f\left(w_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)-1=$ $v_{f}(2)=2 k+1$ and $e_{f}(0)=e_{f}(1)+1=e_{f}(2)=3 k+2$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 2(\bmod 3)$.
(2). Suppose that $n \equiv 2(\bmod 3), n=3 k+2$.

Hence $\left|V\left(D A_{2}\left(T_{n}\right)\right)\right|=6 k+3$ and $\left|E\left(D A_{2}\left(T_{n}\right)\right)\right|=9 k+3$.
Assume that f is a 3 -product cordial labeling. Hence we have $v_{f}(0)=$ $v_{f}(1)=v_{f}(2)=2 k+1$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 k+1$. If $f\left(u_{i}\right)=0$ for $1 \leq i \leq 2 k+1$ then $e_{f}(0)=6 k+3$.
If $f\left(v_{i}\right)=0$ for $1 \leq i \leq k+1$ and $f\left(w_{i}\right)=0$ for $1 \leq i \leq k$ then $e_{f}(0)=4 k+2$. If $f\left(u_{i}\right)=0$ for $1 \leq i \leq k, f\left(v_{i}\right)=0$ for $1 \leq i \leq \frac{k+1}{2}$ and $f\left(w_{i}\right)=0$ for $1 \leq i \leq \frac{k+1}{2}$ then $e_{f}(0)=3 k+2$. In either case we get a contradiction. Hence, f is not a 3 -product cordial labeling if $n \equiv 2(\bmod 3)$.

Define a vertex labeling $f: V\left(D A_{2}\left(T_{n}\right)\right) \rightarrow\{0,1,2\}$ by considering the following two cases.

Case (i). $n \equiv 0(\bmod 3)$. Take $n=3 k$.

Then $\left|V\left(D A_{2}\left(T_{n}\right)\right)\right|=6 k-1$ and $\left|E\left(D A_{2}\left(T_{n}\right)\right)\right|=9 k-3$. For $k \succ$ $1,1 \leq i \leq k-1, f\left(u_{i}\right)=0$; For $i=k-1+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 2,3(\bmod 4) \\ 2, & \text { if } j \equiv 0,1(\bmod 4) ;\end{cases}$
For $k \succ 1,1 \leq i \leq \frac{k-1}{2}, f\left(v_{i}\right)=0$; For $i=\frac{k-1}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { ifj } \equiv 0(\bmod 2) \\ 2, & \text { ifj } \equiv 1(\bmod 2) ;\end{cases}$
and

$$
f\left(w_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { ifj } \equiv 1(\bmod 2)\end{cases}
$$

For $1 \leq i \leq \frac{k+1}{2}, f\left(w_{i}\right)=0$; For $i=\frac{k+1}{2}+j, 1 \leq j \leq k-1$,
$f\left(w_{i}\right)= \begin{cases}1, & \text { ifj } \equiv 0(\bmod 2) \\ 2, & \text { ifj } \equiv 1(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)=$ $v_{f}(2)=2 k$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 k-1$. Thus we have $\mid v_{f}(i)-$ $v_{f}(j) \mid \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 product cordial labeling when $n \equiv 0(\bmod 3)$.

Case (ii). $n \equiv 1(\bmod 3)$. Take $n=3 k+1$.
Then $\left|V\left(D A_{2}\left(T_{n}\right)\right)\right|=6 k+1$ and $\left|E\left(D A_{2}\left(T_{n}\right)\right)\right|=9 k$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
For $1 \leq i \leq \frac{k}{2}, f\left(v_{i}\right)=f\left(w_{i}\right)=0$;
For $i=\frac{k}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)=\left\{\begin{aligned} 1, & \text { if } j \equiv 1(\bmod 2) \\ 2, & \text { if } j \equiv 0(\bmod 2) ;\end{aligned}\right.$
and

$$
f\left(w_{i}\right)=\left\{\begin{array}{lc}
1, & \text { if } j \equiv 0(\bmod 2) \\
2, & \text { if } j \equiv 1(\bmod 2)
\end{array}\right.
$$

In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)=$ $v_{f}(2)+1=2 k+1$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 1$ (mod 3).
(3). Here $\left|V\left(D A_{3}\left(T_{n}\right)\right)\right|=2 n-2$ and $\left|E\left(D A_{3}\left(T_{n}\right)\right)\right|=3 n-5$.

Define a vertex labeling $f: V\left(D A_{3}\left(T_{n}\right)\right) \rightarrow\{0,1,2\}$ by considering the following three cases.

Case (i). $n \equiv 0(\bmod 3)$. Take $n=3 k$.
Then $\left|V\left(D A_{3}\left(T_{n}\right)\right)\right|=6 k-2$ and $\left|E\left(D A_{3}\left(T_{n}\right)\right)\right|=9 k-5$. For $1 \leq i \leq$ $k-1, f\left(u_{i}\right)=0$; For $i=k-1+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 2,3(\bmod 4) \\ 2, & \text { if } j \equiv 0,1(\bmod 4) ;\end{cases}$
For $1 \leq i \leq \frac{k}{2}, f\left(v_{i}\right)=f\left(w_{i}\right)=0$;
For $i=\frac{k}{2}+j, 1 \leq j \leq k-1$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) ;\end{cases}$
and
$f\left(w_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1(\bmod 2) \\ 2, & \text { if } j \equiv 0(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)+1=$ $v_{f}(2)=2 k$ and $e_{f}(0)-1=e_{f}(1)=e_{f}(2)=3 k-2$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 0(\bmod 3)$.

Case (ii). $n \equiv 1(\bmod 3)$. Take $n=3 k+1$.
Then $\left|V\left(D A_{3}\left(T_{n}\right)\right)\right|=6 k$ and $\left|E\left(D A_{3}\left(T_{n}\right)\right)\right|=9 k-2$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $i=k+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 2,3(\bmod 4) \\ 2, & \text { if } j \equiv 0,1(\bmod 4) ;\end{cases}$
For $k>1,1 \leq i \leq \frac{k-1}{2}, f\left(v_{i}\right)=0$;
For $i=\frac{k-1}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)=\left\{\begin{aligned} 1, \quad \text { if } j & \equiv 0(\bmod 2) \\ 2, \quad \text { if } j & \equiv 1(\bmod 2) ;\end{aligned}\right.$
For $1 \leq i \leq \frac{k+1}{2}, f\left(w_{i}\right)=0$; For $i=\frac{k+1}{2}+j, 1 \leq j \leq k-1$,
$f\left(w_{i}\right)=\left\{\begin{array}{lr}1, & \text { ifj } \equiv 1(\bmod 2) \\ 2, & \text { if } j \equiv 0(\bmod 2) .\end{array}\right.$

In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)=v_{f}(2)=$ $2 k$ and $e_{f}(0)=e_{f}(1)+1=e_{f}(2)+1=3 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 1(\bmod 3)$.

Case (iii). $n \equiv 2(\bmod 3)$. Take $n=3 k+2$.

Then $\left|V\left(D A_{3}\left(T_{n}\right)\right)\right|=6 k+2$ and $\left|E\left(D A_{3}\left(T_{n}\right)\right)\right|=9 k+1$.

For $1 \leq i \leq k, f\left(u_{i}\right)=0 ;$ For $i=k+j, 1 \leq j \leq 2 k+2$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 2,3(\bmod 4) \\ 2, & \text { if } j \equiv 0,1(\bmod 4) ;\end{cases}$

For $1 \leq i \leq \frac{k}{2}, f\left(v_{i}\right)=f\left(w_{i}\right)=0$;

For $i=\frac{k}{2}+j, 1 \leq j \leq k$,
$f\left(v_{i}\right)=\left\{\begin{array}{lr}1, & \text { if } j \equiv 1(\bmod 2) \\ 2, & \text { if } j \equiv 0(\bmod 2) ;\end{array}\right.$
and

$$
f\left(w_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2)\end{cases}
$$

In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)=$ $v_{f}(2)=2 k+1$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)-1=3 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 2(\bmod 3)$.

An example of 3 -product cordial labeling of $D A_{3}\left(T_{10}\right)$ is shown in Figure 3.

Figure 3

An example of 3 -product cordial labeling of $D A_{2}\left(T_{7}\right)$ is shown in Figure 4.

Figure 4

Theorem 2.3. A triangular snake T_{n} admits 3-product cordial labeling if (i). $n \equiv 0(\bmod 3)$. (ii). $n \equiv 1(\bmod 3), n$ is odd. Also T_{n} is not a 3-product cordial graph if $n \equiv 2(\bmod 3)$.

Proof. Let P_{n} be the path $u_{1}, u_{2}, \ldots u_{n}$. Let $V\left(T_{n}\right)=V\left(P_{n}\right) \cup\left\{v_{i} / 1 \leq\right.$ $i \leq n-1\}$ and $E\left(T_{n}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v_{i}, v_{i} u_{i+1} / 1 \leq i \leq n-1\right\}$. In this graph $\left|V\left(T_{n}\right)\right|=2 n-1$ and $\left|E\left(T_{n}\right)\right|=3 n-3$.
Define a vertex labeling $f: V\left(\left(T_{n}\right)\right) \rightarrow 0,1,2$ by considering the following cases.

Case (i). $n \equiv 0(\bmod 3)$. Take $n=3 k$.
Then $\left|V\left(T_{n}\right)\right|=6 k-1$ and $\left|E\left(T_{n}\right)\right|=9 k-3$.
For $1 \leq i \leq k, f\left(u_{i}\right)=0$; For $1 \leq i \leq k-1, f\left(v_{i}\right)=0$;

For $i=k+j, 1 \leq j \leq 2 k-1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
and

$$
f\left(u_{3 k}\right)=2 ;
$$

For $i=k-1+j, 1 \leq j \leq 2 k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2), k \text { is even } \\ 2, & \text { if } j \equiv 1(\bmod 2), k \text { is even } ;\end{cases}$
and
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1(\bmod 2), k \text { is odd } \\ 2, & \text { if } j \equiv 0(\bmod 2), k \text { is odd. }\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)+1=v_{f}(1)=$ $v_{f}(2)=2 k$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 k-1$. Thus we have $\mid v_{f}(i)-$ $v_{f}(j) \mid \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 product cordial labeling when $n \equiv 0(\bmod 3)$.

Case $(i i) . n \equiv 1(\bmod 3)$, Take $n=3 k+1, k$ is even.
Then $\left|V\left(T_{n}\right)\right|=6 k+1$ and $\left|E\left(T_{n}\right)\right|=9 k$.
For $1 \leq i \leq k, f\left(u_{i}\right)=f\left(v_{i}\right)=0 ;$
For $i=k+j, 1 \leq j \leq 2 k+1$,
$f\left(u_{i}\right)= \begin{cases}1, & \text { if } j \equiv 1,2(\bmod 4) \\ 2, & \text { if } j \equiv 0,3(\bmod 4) ;\end{cases}$
For $i=k+j, 1 \leq j \leq 2 k$,
$f\left(v_{i}\right)= \begin{cases}1, & \text { if } j \equiv 0(\bmod 2) \\ 2, & \text { if } j \equiv 1(\bmod 2) .\end{cases}$
In view of the above labeling pattern we have $v_{f}(0)=v_{f}(1)-1=$ $v_{f}(2)=2 k$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 k$. Thus we have $\left|v_{f}(i)-v_{f}(j)\right| \leq$ 1 and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, f is a 3 -product cordial labeling when $n \equiv 1(\bmod 3)$ if k is even.

Case (iii). $n \equiv 2(\bmod 3)$. Take $n=3 k+2$.
Then $\left|V\left(T_{n}\right)\right|=6 k+3$ and $\left|E\left(T_{n}\right)\right|=9 k+3$. Assume that f is a 3product cordial labeling. We have $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 k+1$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=3 k+1$. If we assign $f\left(u_{i}\right)=0$ for $1 \leq i \leq k+1$ and $f\left(v_{i}\right)=0$ for $1 \leq i \leq k$ then $e_{f}(0)=3 k+2$.

If we assign $f\left(v_{i}\right)=0$ for $1 \leq i \leq k$ and $f\left(v_{i}\right)=0$ for $1 \leq i \leq k+1$ then $e_{f}(0)=3 k+2$.

In either case we get a contradiction. Hence, f is not a 3-product cordial labeling if $n \equiv 2(\bmod 3)$.
An example of 3 -product cordial labeling of T_{7} is shown in Figure 5 .

Figure 5

An example of 3 -product cordial labeling of T_{9} is shown in Figure 6.

Figure 6

References

[1] I. Cahit, Cordial Graphs :A weaker version of graceful and harmonious graphs, Ars Combinatoria, Vol. 23, pp. 201-207, (1987).
[2] Joseph A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, (2017), \# DS6.
[3] F. Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
[4] P. Jeyanthi and A. Maheswari, 3-Product cordial labeling, SUT Journal of Mathematics, 48, pp. 231-140, (2012).
[5] P. Jeyanthi and A. Maheswari, 3-Product cordial labeling of some graphs, International Journal on Mathematical Combinatorics, Vol. 1, pp. 96-105, (2012).
[6] P. Jeyanthi and A. Maheswari, 3-Product cordial labeling of star graphs, Southeast Asian Bulletin of Mathematics, Vol. 39 (3), pp. 429-437, (2015).
[7] P. Jeyanthi and A. Maheswari, Some results on 3-Product cordial labeling, Utilitas Math., Vol. 99, pp. 215-229, (2016).
[8] R. Ponraj, M. Sivakumar and M. Sundaram, k-Product Cordial Labeling of Graphs, Int. J. Contemp. Math. Sciences, Vol. 7 (15), pp. 733-742, (2012).
[9] M. Sundaram, R. Ponraj and S. Somasundaram, EP-cordial labelings of graphs, Varahmihir Journal of Mathematical Sciences,Vol. 7 (1), pp. 183-194, (2007).

P. Jeyanthi
Research Centre
Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur 628215, Tamilnadu
India
e-mail : jeyajeyanthi@rediffmail.com

A.Maheswari

Department of Mathematics
Kamaraj College of Engineering and Technology
Virudhunagar,
India
e-mail : bala_nithin@yahoo.co.in
and

M. Vijayalakshmi

Department of Mathematics
Dr. G. U. Pope College of Engineering
Sawyerpuram, Thoothukudi District
Tamil Nadu,
India
e-mail: viji_mac@rediffmail.com

