Proyecciones (Antofagasta. On line) | vol. 39, n. 1 (2020) | pp. 199-218.

0i)10.22199/issn.0717-6279-2020-01-0013

Journal of Mathematics

ISSN 0717-6279 (On line)

A new approach for solving linear fractional
integro-differential equations and multi
variable order fractional differential equations

F. Ghomanjani' @ orcid.org/0000-0002-5319-9389

Kashmar Higher Education Institute, Dept. of Mathematics, Kashmar, Iran.
f.ghomanjani@kashmar.ac.ir

Received: February2019 | Accepted: May 2019

Abstract:

In the sequel, the numerical solution of linear fractional inte-
grodifferential equations (LFIDEs) and multi variable order
fractional differential equations (MVOFDEs) are found by
Bezier curve method (BCM) and operational matrix. Some nu-
merical examples are stated and utilized to evaluate the good
and accurate results. een the Hélder inequality and the Cau-
chy-Schwarz inequality.

Keywords: Fractional integro-differential equations; Bezier
curve; Variable order fractional differential equation; Caputo’s
variable order fractional derivative.

MSC (2010): 65K10; 26A33; 49K15.

Cite this article as (IEEE citation style):

F. Ghomanjani, “A new approach for solving linear fractional
integro-difterential equations and multi variable order fractio-
nal differential equations”, Proyecciones (Antofagasta, On line),
vol. 39, no. 1, pp. 199-218, Feb. 2020, doi: 10.22199/issn.0717-
6279-2020-01-0013. [Accessed dd-mm-yyyy].

Article copyright: © 2020 F. Ghomanjani. This is an open access article distributed under the terms of
the Creative Commons Licence, which permits unrestricted use and distribution provided the original

author and source are credited. [cc



https://www.revistas.ucn.cl
https://www.revistaproyecciones.cl
https://doi.org/issn.0717-6279-2020-01-0013
https://portal.issn.org/resource/ISSN/0717-6279#
https://orcid.org/0000-0002-5319-9389
https://creativecommons.org/licenses/by/4.0/

200 F. Ghomanjani

1. Introduction

In this paper, the following linear fractional integro-differential equations
(LFIDESs) are considered

1
(D) Df@) =g(@)+ [ K@nf®) di 0<at<1,
0
f(i)(O):(Si, 1=0,1,...,n1—1, dm—-1<a<n;, ni€N,

where D® f(z) is the ath Caputo fractional derivative (CFD) of f(z), g(z)
and K (x,t) are given continues functions, = and ¢ are real variables vary-
ing in [0,1], and f(z) is the unknown function. We note that the initial
conditions are f((0) = §; (for i =0,1,...,n5 — 1).

By fractional integro-differential equations, various problems from various
sciences can be modeled. Recently, many numerical techniques to solve
LFIDEs have been given. Bhrawy and Alghamdi [1] applied collocation
method for solving the nonlinear fractional Langevin equation involving
two fractional orders in different intervals and fractional Fredholm integro-
differential equations. In [9], Mohammed proposed numerical solution of
LFIDEs by least squares method and shifted Chebyshev polynomial.

Additionally many papers manage the Bezier curves. In [3] and [4],
the authors utilized the Bezier curves for solving delay differential equation
(DDE) and optimal control of switched systems numerically. In [5], the
authors proposed the utilization of Bezier curves on some linear optimal
control systems with pantograph delays. Also, to solve the quadratic Ric-
cati differential equation and the Riccati differential-difference equation,
the Bezier control points strategy is utilized (see [6]). Some other uses of
the Bezier functions are found in (see [7],[10]). In this sequel, the Bezier
curve method are applied to solve LFIDEs of the form (1.1).

The organization of this study is classified as follows: In Section 2, Basic
Preliminaries is stated. Problem Statement is introduced in Section 3. Also
approximation technique is stated in Section 4. Some numerical examples
are solved in Section 5. Also, a remark is given for solving MVOFDEs,
then numerical applications for solving MVOFDESs is stated in Section 6.
Finally, Section 7 will give a conclusion briefly.

2. Basic Preliminaries
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Definition 2.1. Let f : [a,b] — R be a function, o > 0 a real number, and
n1 = «, where [«a] denotes the smallest integer greater than or equal to «
(see [13]). The left (left RLFD) and right (right RLFD) Riemann-Liouville
fractional derivatives are given according to

1 dam
I'(ny — a) dtm
(_1)n1 dm
['(ny — a) dtm

oD f(t) = /:(t —r)m=e=L¢(r) dr, (left RLFD),

(2.1) (D§f(t) = /t b(T —tym~"Lf(7) dr, (right RLFD),

3. Problem Statement

Our strategy is utilizing Bezier curves to approximate the solutions f(x)
where f(z) is given below. Define the Bezier polynomials of degree n over
the interval [z, z¢] as follows:

n
T—x
(3.1) flz) = ZaTBT,n(TO), rr=1, x9 =0,
r=0
where h = xf — x¢, and

T — xg

Bya(210) = (”) =2 o)

r

is the Bernstein polynomial of degree n over the interval [zg,z¢], and a,,
r=20,1,...,n, and they are unknown control points. By substituting f(x)
in (1.1), one may define Ry (x,ag,a1,...,a,) for € [xo,xf] as follows:

(3.2) Ri(w,a0,ar,...,an) = D“f(x)—g(x)—/olK(m,t)f(t) dt.

The convergence of this method is proven where n — oo (see [2]).
Now, we define the residual function over the interval [z, z ] as follows

(33) R:/ f(Rl(x7a07a17"'7an))2d$'
xo

Our aim is to solve the following optimization problem over the interval
[0, ] to find the entries of the vectors a,, for r =0,1,...,n:

min R.
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4. Approximation technique

We consider equation (1.1). Now by Eq. (3.1), one may have

(4.1) D° (f: aTBT,n(a:)> — g(2)+ / Ko t) (f: a,BT,n<t)> dt,
r=0 0 r=0

One may define

n 1 n
Ri(z,ap,a1,...,a,) = ZaTDO‘Bnn(:B) —g(z) — /0 K(x,t) (Z aTBT,n(t)> dt,
r=0

r=0

(4.2)

now, we have

2

1
R = / (Rl(w,ao,al,...,an)) dx
0

2
= /0 (ZarDaBr,n(w)—g(w)—/o K(x,t)<;)arBr7n(t)dt)) dz,

r=0
(4.3)

where (see [8])
1 ) (t)

x
DB o ™n
rn(®) = I'(n1 — ) /0 (z — t)atl-m dt, m < a <m,

Br’n(t) _ <n> tr(l _ t)nfr _ g(—l)j (’l’b) (’I’L — T) thrr’
r = T J

MO+ j—atl)
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because of
Bra(z) = (:f) (1 — )"
- (r)x:% ()
N

By Eq. (4.3) and multiplier lagrange method, to find a,, 7 = 0,1, ...

we have R is equivalent as follows:

OR
da,

(4.5) =0, r=0,1,...,n,

by Egs. (4.3) and (4.5), we can obtain

/OI(ZarD Brn(z) — /th Zar v )

r=0

1
(46)  x (DQBm(x) _ /0 K(z, t)Br,n(t)dt) ) dx = 0,

203

by Eq. (4.6), we can obtain a system of n + 1 linear equations with n + 1

unknown coefficients a,.

Now, the following problem is considered:

L(f(x),D%(x)) = Df(x / K(z, ) f(t)dt = F(z), 0 < 2,t < 1,

47 f0) = a,

where a is given real number.

Lemma 4.1. For a polynomial in Bezier form
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na
u(z) = Z iyng Biy (),
=0

where a; ny+m, is the Bezier coefficient of u(x) after being degree-elevated
to degree no + mj.

we have

ne 2 na+1 2 na+mi 2
>izo A ny > 220 Qi ng+1 > > >iZo A no+ma

ng+1 — ng + 2 =TT ngdmp+1

Proof. See [11].

Theorem 4.2. If the problem (4.7) has a unique C™[0, 1] continuous solu-
tion f, then the approximate solution obtained by the control-point-based
method converges to the exact solution f as the degree of the approximate
solution tends to infinity.

Proof. Given an arbitrary small positive number € > 0, by the Weier-
strass Theorem, one can find polynomials Qi n, (z) of degree Ny such that
(see [7])

- €
1Q1,n, (%) — f()][oo < GO

|1 D*Q1,n, (z) — D f(x)

€

< ——— <
o < T5TR G 0 =

€
16 ny—1<a<n,
where ||.||oo stands for the

Loo-norm over [0, 1], one may note K (z,t) is continues function on [0, 1]
therefore it is bounded. Now, we have

€

(4.8) la — Q1,35 (0)[|oc < 16K (2,00

In general, Q1 n, (x) does not satisfy the boundary conditions. After a
small perturbation with linear and constant polynomials /5 for Q1 n, (z), we
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can obtain polynomials P; n, (z) = Q1,n, (z) + [ such that Py n, (z) satisfy
the boundary conditions P; n, (0) = a.
Thus Q1,n, (0) + S = a, by utilizing (4.8), one have

€

o = Q1 OVl = 181l < gy

Now, we have

1P (@) = F@)lloo = Qum () + B — f(2)]lo

< Q1w () = (@)oo + 1Bl
< 2¢
~ 16]K(z, )]l
ID“Pi N, () = DYf(2)llc = [[D*Q1,3 (2) — D f(2) [0 < 1—66,
Now, let define
LPn(z) =L (Pl,Nl (z), D" Py, (fv)) = D*Pyy () —g(z)

- /01 K(z,t)Py N, (t)dt = F(1)

for every x € [0,1]. Thus for N > Nj, one may find an upper bound for
the following residual:

I1LPN(z) = F(2)]oo = HL<P1,N1(1J)»D°‘P1,N1($)>—F(l‘)Hoo

IN

1D* Py, (z) = D*f(2) oo

1 —
+ [ IR @)l P, () = FOllt
0

€ €
— Kz, t)]leo——"——<
16 T IR @ Dl TR o <€

IN

Since the residual R(Py) := LPy(z) — F(x) is a polynomial, we can
represent it by a Bezier form. Thus we have
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m

R(Py) :== ) dimBim(x).
=0

Then from Lemma 1 in [11], there exists an integer M (> N) such that
when m > M, we have

1 > 1
— N —/ R(PN))? d
|m+1; i,m O( (N)) $|<6,
which gives
(4.9) LS o +/1(R(P )2 dt <
. —— ; € €
m+ 1= Lm 0 N -

Suppose f(z) is approximated solution of (4.7) obtained by the control-
point-based method of degree k(k > m > M). Let

R(f(z),D%f(z)) = L(f(x), D"f(x)) - F(x)

k
= Y cirBir(x), k>m>M, z€l0,1].
=0

Define the following norm for difference approximated solution f () and
exact solution f(z):

(4.10) 1£(z) = F@)Il = £ (z) — f(2)].

It is easy to show that:

If (@) = F@)l < C(f(0) = FO)] + |R(f(x), D*f(2))]13)

1 k k
2 2
(4.11) = O SleuBual) dr < oy >y

Last inequality in (4.11) is obtained from Lemma 1 in [11] in which C
is a constant positive number. Now from Lemma 4.1 and (4.9), one can
easily show that:
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_ c F )
< = 2
i) = F@l < FT7 3
c X, c -,
< —_— < ... < ‘
= k‘—i—l;dz’k_ —m_i_l;)dz,m
(4.12) < C(e) =€, m> M,

where last inequality in (4.12) is coming from (4.9).
This completes the proof.

5. Numerical examples

Now, some numerical examples of LFIDEs are stated to illustrate the Bezier
curve method. All results are obtained by utilizing Maple 14.

Example 1. The following LFIDE:s is considered (see [9])

(8/3)x3/? — 221/2

D'2f(x) = 7

1
—2+/ xtf(t) dt, 0 <z, t <1,
0

where the exact solution is f(x) = x2—x. Applying the proposed technique
with n = 3,4,5, one may have

fapproac = —z+2%—6.6x10" 6y 3, forn =3,
fapproz = —x + 2% — 4.44 x 107423 +1.82 x 107 M2*,  forn =4,

Sapproz = % — z, forn=2>.

Table 1: The absolute error of the this method for Example 1

T error for n =4 error forn =3

0.1 5.925164873 x 10~ 1.734723476 x 107
0.2 T 112366252 x 10716 5551115123 x 10717
0.3 5724587471 x 1071 8.326672685 x 10~17
0.4 3.053113318 x 107 1,110223025 x 10716
0.5 8.326672685 x 10~17  1.387778781 x 10~16
0.6 6.938893904 x 10717 1.665334537 x 1071°
0.7 9.714451465 x 10717 1.665334537 x 10716
0.8 6.938893904 x 10717 1.110223025 x 10~1¢
0.9 2.775557562 x 10~17  6.938803904 x 10~17
1.0 0.0 2.225073859 x 10308
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st and approximated s
| 11} exact m— i) approximated |

—0.z2s

Figure 1: The graphs of approximated and exact solution f(x) (n = 5) for Example 1

Example 2. The following LFIDEs is considered (see [9])

1

DS f(z) = g(x) +/ we f(t) dt, 0<uz,t<1,
0

-3 20T (5/6)(—91 + 21622)

- - -2
f(0) =0,
where the exact solution is f(z) = —(z% — 2). Applying the proposed

technique with n = 4,5, we obtain

fapprow =« + 712 x 10722 — 23 4 3.56 x 1072,  for n = 4,

Jappros = T — 23, forn=5.


Marisol Martínez
figure-1
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Table 2: The absolute error of the this method for Example 2

x error for n =4 error for n =3

0.1 1.105886216 x 10~  4.510281038 x 10~17
0.2 1.301042607 x 1076  8.326672685 x 10~17
0.3 1.110223025 x 10716 1.110223025 x 10716
0.4 6.938893904 % 10717 1.110223025 x 10716
0.5 0.0 5.551115123 x 10~17
0.6 2.775557562 x 10717 5.551115123 x 10717
0.7 8326672685 x 10717 5551115123 x 10717
0.8 8.326672685 x 10717 1.665334537 x 10716
0.9 2775557562 x 10~ 1.387778781 x 10~16
1.0 0.0 2.220446049 x 10~16

—erT— T |

@1

Figure 2: The graphs of approximated and exact solution f(z) (n = 5) for Example 2

Example 3. The following LFIDEs is considered (see [9])

2V3r(2/3)z'® 1

D3 f(x) = N -

£(0) = £'(0) =0,

1 1
z? — Zx+/ (xt + 222 f(t) dt, 0 < x,t <1,
0

where the exact solution is f(z) = z2.

with n = 4,5, we have

Applying the proposed technique
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Japproa —6.661338148 x 10710 + 2 — 7.861338148 x 10~ %23, forn =3,
fappros = 3.108624469 x 10715 + 2% + 2.310587341 x 101423

— 1.066862447 x 10 24, forn =4,
Sapprow = —4.440892098 x 10" ++ 1.000000000 x z* — 2.664535259 x 10~ '*2?

+ 1.776356839 x 10~ z* — 4.440892098 x 10~ 152%, forn =5,

The graphs of approximated and exact solution f(z) are plotted in Fig.
3 (with n = 5).

exaed and approximated soluions

[ 1) cxne) =— i approximated ]

Figure 3: The graphs of approximated and exact solution f(x) with n =5 for Example 3

Table 3: The absolute error of the this method for Example 3

xr

error forn =4

error for n = 3

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.775516583 x 10716
1.693523793 x 10716
7.285838500 x 10~17
3.816391647 x 10717
1.110223025 x 10~16
1.110223025 x 10~16
2. 7THE57562 x 10~17
0.0
1.110223025 x 10~16
0.0

5.486062993 x 1017
8.500145032 x 10717
9.714451465 x 10717
9.714451465 x 10717
1.249000903 x 10~16
8.326672685 x 10~
1.110223025 x 1071
1.110223025 x 1016
2.220446049 x 10~
1.110223025 x 10716



Marisol Martínez
figure-3


Marisol Martínez
table-3


rvidal
Cuadro de texto
210


A new approach for solving linear fractional integro-differential ... 211

Remark 5.1. Any arbitrary fractional order can be derivative of fractional
calculus, therefore it may be a function of time [12] such as «(t) where
this problem exists in various physical problems [13]. In the recent years,
variable-order fractional derivatives were stated by different physical mod-
els. The advantages of utilizing these derivatives were studied in [13] when
it is a new study in the fractional calculus [13].

In [14], authors stated a technique based on second kind Chebyshev wavelets
(SKCWs) for solving a class of nonlinear Fredholm integro-differential equa-
tions of fractional order. Recently, In [15], authors have stated an efficient
SKCWs technique to solve the nonlinear diffusion equation for the steady-
state condition. In [16], a numerical method based on SKCWs was stated
to solve time fractional fifth-order Sawada-Kotera equation.

In the current work, the following MVOFDEs is considered

1
min T = /O F(t, (1), u(t)) dt,

such that

Da(t)gj(t) = H(t,x(t),u(t)), p—1< a(t) <p,pEN, te [O, 1]’

2(0) = zo, 2'(0) = af,...,a""1(0) = 2},
(5.1)
where g, z(, . .. 7378_1 are given constants, F' and H are continuous func-
tions, also

1 — _1dPz(s .
DO (t) = { Zép(t}(t_» Jo(t = s)pmeO1 L s ifp—1<a(t) <p
P if a(t) =p

Our strategy is to utilize BCM to approximate the solutions x(t) and
u(t). Define the Bezier polynomials of degree n over the interval [to,ts] as
follows:

" t—to
#(t) = 3 arBrn(——),
r=0

" t—t
(5.2) u(t) = Zerm(TO)’ tr=1, to=0,
r=0
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where h =ty — t, and

t— to n 1 _
5.3 Bn(———) = — (=)t —1to)"
(53) n(10) (T>hn<f Y o)
is the Bernstein polynomial of degree n over the interval [to,t¢], a, and b,
are the control points. Suppose that Mp is the coefficient matrix of B, p(t),
r=0,1,...,n, where Mp(i,j) is the coefficient of the B; ,(t) with respect
to the monomial /!, then by Eq. (5.3) we have

7 j—1
also
Brnlt) = (’j)ﬂa_tn—z‘)
n . n—r n—rp
() (k_o b
el . _]_ k n n—r t’f‘+k‘ — 1
k::()( ) (7“)( k »,r=0,1,...,m,
hence

Ara = 0.0,00,0, 1), DI (5 (D
where By, (t) = Ar1Ty(t), r =0,1,...,n, and

now

Ant1 | @i
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Bun(t)

—_
o
(e}
(e}
~

= AN'T’

where

—
]
o
]

AN=]10220 ... 0

T/

[
S S

tn;l

213
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B/

I
]

therefore

d ! o/
Zolt) = ANB(),

hence D = AA’B’ which is operational matrix of differentiation for Bezier
curve.

By substituting z(t) and u(t) in system (5.1), one may define R; (¢, ag, a1, . . .
for t € [to, tf] as follows:

min Ry (t,a9,a1,...,0n,b0,...,0n / F(t, ZQT o ( Zb Brn
t

such that D¢ 72)% o h tZaT o Zb BML

2(0) = w9, 2'(0) = xp,...,a""1(0) = wﬁ‘l,

(5.4)

using NLPSolve in Maple Software and stated operational matrix, one may
solve defined system new?2.

6. Numerical applications for MVOFDEs

In this section, we consider some numerical examples to illustrate the ef-
ficiency and reliability of the proposed method for MVOFDEs. Also, we
report the absolute errors of the proposed method for the under consider-
ation examples.

)7

7an>b07b17' .

)d?
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Example 4. First, the following MVOFDEs is considered (see [17])

6t3—a(t) 6 sin(t)t3—A®)
Td—a() | T(-A0)

+ 13 cos(t),

We achieve uapprox(t) = t3 with this technique by n = 3, so the error is
Zero.

Example 5. Second, the following MVOFDEs is considered

1 1
min/ (z— )+ (u—te™" + §etQ—t)2 dt
0

such that D% = e* + 2¢lu,

1
fora=1 then Tepget = t2, Uepaet = teF — §6t2_t,
O<a<l.
We obtain
Ugpproz(t) = —0.5(1 — 1)* — 0.0822318325083609¢(1 — t)?
+0.0252718969369193t2(1 — t) — 0.132120558828558t%, for n = 3,
Tapprox(t) = —2.355566179 x 10~ 4+ 1.000000007¢* — 4.711136179 x 109¢3

Table 4 demonstrates the absolute error of this technique.

Figure 4: The approximate and exact solution of x(t) for Example 5
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[ P Approsimaie]

Figure 5: The approximate and exact solution of w(t) for Example 5

Table 4: The absolute error of the this method for Example 5
t error of x error of u

0.1 1.696006452 x 10=1°  0.004583601100
0.2 2.261341739 % 1071 0.004448194400
0.3 1.978673857 x 10719  0.002516548200
0.4 1.130670557 x 10—10 0.0006850853
0.5 5551115123 x 10~17 0.0

0.6 1.130671300 x 1071 0.0007661945700
0.7 1.978675557 x 1071%  0.002600577980
0.8 2.261343335 x 107 0.004433618750
0.9 1.696006668 x 10=19  0.004456051330
1.0 0.0 0.0
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Conclusions

This paper deals with the approximate solution of LFIDEs and a class of
MVOFDEs via BCM and stated operational matrix. Illustrative examples
are included to demonstrate the validity and applicability of the technique.
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