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1. Introduction

The Solid Transportation Problem (STP) is an exclusive form of linear
programming model where we deal with condition of sources, stations, and
carriages. The classical Transportation Problem (TP) is an exclusive form
of STP if only one type of carriage is taken under consideration. TP is asso-
ciated with additional costs along with shipping cost. These fixed penalties
might be due to road taxes, toll charges etc. In this case it is called Fixed
Charged Solid Transportation Problem (FCSTP). During the transporta-
tion movement due to complex situation, a few important criterions in the
STP are always treated as uncertain variables to fit the realistic positions.
There are cases to form a transportation plan for the later months; the
amount of quantity at every origin, the requirement at every station, and
the carriage quantity are frequently necessary to be determined by experi-
enced knowledge or probability statistics as a result of no definite data. It
is much better to explore this issue by applying fuzzy or stochastic opti-
mization models. It is difficult to predict the exact transportation cost for a
certain time period. Fuzzy set theory is the one of the popular approaches
to deal with uncertainty. Type-2 fuzzy sets were proposed by Zadeh [20] as
a development of typical fuzzy sets [19]. Type-2 fuzzy sets have member-
ship functions as type-1 fuzzy sets. The advantage of type-2 fuzzy sets is
that they are helpful in some cases where it is uncertain to find the definite
membership functions for fuzzy sets.

The model of shipping multiple components from multiple sources to
multiple destinations over a few carriages is known as multi-item STP. A
situation that may arise while transporting multiple components from the
source where not all brands of components can be shipped over all brands
of carriages because of quality of components (e.g. liquid, breakable, etc.).
Multi-item Fixed Charged Solid Transportation Problem (MIFCSTP) with
condition on carriages is a model of shipping goods to a few destinations
over a particular carriage with additional fixed charge for that particular
route. Multi-item multi-objective solid transportation models are models
that are used to find optimal solutions of multiple objective functions of
shipping multiple components from multiple sources to multiple destina-
tions over a few carriages.

The motivation behind this paper is to study solid transportation ex-
ample with type-2 fuzzy parameters. Pandian et al. [16] found out a new
method to solve the STP. Li et al. [10] discussed a neural network method
to express bi-criteria STP, and Li et al. [11] also studied multi-objective
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Multi-item multi-objective fixed charged solid transportation... 581

STP with fuzzy numbers and used improved genetic algorithm to solve it.
Kundu et al. [8] investigated two models namely fixed charged transporta-
tion problem with type-2 fuzzy cost parameters and the same model with
costs, supplies and demands as type-2 fuzzy variables. Maiti et al. [9]
has solved one model with multi-item STP with restriction on conveyances
with the type-2 fuzzy variables. Kundu et. al. [7] investigated the multi-
objective STP under various uncertain environments. Amrit et al. [2]
investigated multi stage STP under budget with Gaussian type-2 fuzzy pa-
rameters. Anushree et al. [3] discussed STP under type-2 trapezoidal fuzzy
environment. Dhiman et al. [4]-[6] investigated a new method for the solu-
tion of the multi-item multi-objective fixed charged solid shipment model
with type-2 fuzzy variables.

The paper has 5 Sections: Section 2 where some basic preliminaries
relating to the notions of reductions of type-2 fuzzy variables are discussed
and in Section 3 where CV-based reduction methods for type-2 fuzzy vari-
ables are discussed. We have formulated a multi-item multi-objective fixed
charged solid transportation model with conditions on a few items and car-
riages in the sense that a few specific items are restricted to be shipped over
a few particular carriages in Section 4. We have taken transportation vari-
ables e.g. unit transportation penalty, fixed costs, amounts, requirements,
and carriage quantities as type-2 triangular fuzzy variables. The model is
investigated by developing a chance constrained programming model ap-
plying the CV based reduction in Section 5. Finally the model is solved nu-
merically in Section 6 applying fuzzy programming technique and LINGO
16 solver.

2. Preliminaries

Definition 2.1. [1] A triplet (η0, p0, Pos) is termed as a possibility space,
where η0 is non-empty set of points, p0 is power set of η0 and Pos : η0 7→ [0, 1]
is a mapping, called possibility measure explained as

1. Pos(∅) = 0 and Pos(η0) = 1.

2. For any {Aj |j ∈ J} ⊂ η0, Pos(
S
Aj) = sup

j
Pos(Aj).

Definition 2.2. [15] The possibility measure (Pos) of a fuzzy event {τ̃ 0 ∈
C 0}, C 0 ⊂ R is explained as Pos{τ̃ 0 ∈ C 0}= sup

y∈C0
µτ̃ 0(y), where µτ̃ 0(y) is

explained as a possibility distribution of τ̃ 0.
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582 Dhiman Dutta, Mausumi Sen and Biplab Singha

Definition 2.3. [12] The necessity (Nec) and credibility measure (Cr) of
a normalized fuzzy variable ( sup

y0∈R
µτ̃ 0(y

0) = 1) is explained as follows:

1. Nec{τ̃ 0 ∈ C 0} = 1− Pos{τ̃ 0 ∈ C 0c} = 1− sup
y0∈C0c

µτ̃ 0(y
0).

2. Cr{τ̃ 0 ∈ C 0} = (Pos{τ̃ 0 ∈ C 0}+Nec{τ̃ 0 ∈ C 0})/2.

Definition 2.4. [12] The generalised credibility measure of a fuzzy variable
is explained as C̃r{τ̃ 0 ∈ C 0} = ( sup

y0∈R
µτ̃ 0(y

0)+ sup
y0∈C0

µτ̃ 0(y
0)− sup

y0∈C0c
µτ̃ 0(y

0))/2.

Definition 2.5. [13] For a possibility space (η0, p0, Pos), a Regular Fuzzy
Variable (RFV) τ̃ 0 is explained as a mapping from η0 to [0, 1] in the sense
that for every s0 ∈ [0, 1], {δ0 ∈ η0|µτ̃ 0(δ0) ≤ s0} ∈ p0.

Definition 2.6. [13] If (η0, p0, Pos) is a fuzzy possibility space then a Type-
2 Fuzzy Variable (T2 FV) τ̃ is expressed as η0 7→ R such that for any t ∈ R
the set {δ0 ∈ η0|µτ̃ 0(δ0) ≤ s0} ∈ p0.

Definition 2.7. [20] A type-2 fuzzy set B̃ explained on the universe of
discourse Y is described by a membership function µ̃B̃ : Y 7→ F ([0, 1]) and

is expressed by the following set notation : B̃ = {
³
y, µ̃B̃(y)

´
: y ∈ Y }.

Example 2.1. [13] A type-2 triangular fuzzy variable τ̃ 0 is expressed by
(r01, r

0
2, r

0
3; θ

0
l, θ

0
r), where r

0
1, r

0
2, r

0
3 ∈ R and θ0l, θ

0
r are two criterion defining

the grade of ambiguity that τ̃ 0 takes a value x0 and the secondary possibility
distribution function µ̃τ̃ 0(x

0) of τ̃ 0 is defined as

µ̃τ̃ 0(x
0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
x0−r01
r02−r01

− θ0l
x0−r01
r02−r01

,
x0−r01
r02−r01

,
x0−r01
r02−r01

+ θ0r
x0−r01
r02−r01

), ifx0 ∈ [r01,
r01+r

0
2

2 ];

(
x0−r01
r02−r01

− θ0l
r02−x0
r02−r01

,
x0−r01
r02−r01

,
x0−r01
r02−r01

+ θ0r
r02−x0
r02−r01

), ifx0 ∈ ( r
0
1+r

0
2

2 , r02];

(
r03−x0
r03−r02

− θ0l
x0−r02
r03−r02

,
r03−x0
r03−r02

,
r03−x0
r03−r02

+ θ0r
x0−r02
r03−r02

), ifx0 ∈ (r02,
r02+r

0
3

2 ];

(
r03−x0
r03−r02

− θ0l
r03−x0
r03−r02

,
r03−x0
r03−r02

,
r03−x0
r03−r02

+ θ0r
r03−x0
r03−r02

), ifx0 ∈ ( r
0
2+r

0
3

2 , r03].

Example 2.2. The secondary possibility distribution of τ̃ 0 = (1, 2, 3; 0.5, 1)
is given by

µ̃τ̃ 0(x
0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0.5x0 − 0.5), (x0 − 1), (1.5x0 − 1.5)), ifx0 ∈ [1, 1.5];
((1.5x0 − 2), (x0 − 1), 0.5x0), ifx0 ∈ (1.5, 2];
((4− 1.5x0), (3− x0), (2− 0.5x0)), ifx0 ∈ (2, 2.5];
((4.5− 0.5x0), (3− x0), (4.5− 1.5x0)), ifx0 ∈ (2.5, 3].
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Multi-item multi-objective fixed charged solid transportation... 583

2.1. Critical Values for RFVs

The different kinds of Critical Values (CVs) [17] of a RFV τ̃ 0 is defined
below.
(i) the optimistic CV of τ̃ 0, denoted by CV ∗[τ̃ 0], is defined as

CV ∗[τ̃ 0] = sup
δ0 ∈ [0,1]

[δ0 ∧ Pos{τ̃ 0 ≥ δ0}]

(ii) the pessimistic CV of τ̃ 0, denoted by CV∗[τ̃ 0], is defined as
CV∗[τ̃ 0] = sup

δ0 ∈ [0,1]
[δ0 ∧Nec{τ̃ 0 ≥ δ0}]

(iii) the CV of τ̃ 0, denoted by CV [τ̃ 0], is defined as
CV [τ̃ 0] = sup

δ0 ∈ [0,1]
[δ0 ∧Cr{τ̃ 0 ≥ δ0}].

3. CV-based reduction method for T2 FVs

CV-based reduction approach was introduced by Qin et al. [17] which
reduces a T2 FV to a type-1 fuzzy variable. Let τ̃ 0 be a type-2 fuzzy variable
with secondary membership function ν̃τ̃ 0(y). The method is to propose the
CVs as a defining value for RFV ν̃τ̃ 0(y), i.e. CV ∗[ν̃τ̃ 0(y)], CV∗[ν̃τ̃ 0(y)] or
CV [ν̃τ̃ 0(y)]. Then these are accordingly called optimistic CV reduction,
pessimistic CV reduction and CV reduction method.

Theorem 3.1. [17] Suppose that τ̃ 0 = (s01, s
0
2, s

0
3; η

0
l, η

0
r) be a type-2 trian-

gular fuzzy variable. The following results are given below:
(a) The reduction of τ̃ 0 to τ 01 applying the optimistic CV reduction method
has the following possibility distribution

µτ 01(x
0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1+η0r)(x
0−s01)

s02−s01+η0r(x0−s01)
, ifx0 ∈ [s01,

s01+s
0
2

2 ];
(1−η0r)x0+η0rs02−s01
s02−s01+η0r(s02−x0)

, ifx0 ∈ ( s
0
1+s

0
2

2 , s02];
(−1+η0r)x0−η0rs02+s03
s03−s02+η0r(x0−s02)

, ifx0 ∈ (s02,
s02+s

0
3

2 ];
(1+η0r)(s

0
3−x0)

s03−s02+η0r(s03−x0)
, ifx0 ∈ ( s

0
2+s

0
3

2 , s03].

(b)The reduction of τ̃ 0 to τ 02 applying the pessimistic CV reduction method
has the following possibility distribution

µτ 02(x
0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x0−s01)
s02−s01+η0l(x0−s01)

, ifx0 ∈ [s01,
s01+s

0
2

2 ];
x0−s01

s02−s01+η0l(s02−x0)
, ifx0 ∈ ( s

0
1+s

0
2

2 , s02];
(s03−x0)

s03−s02+η0l(x0−s02)
, ifx0 ∈ (s02,

s02+s
0
3

2 ];
(s03−x0)

s03−s02+η0l(s03−x0)
, ifx0 ∈ ( s

0
2+s

0
3

2 , s03].

(c)The reduction of τ̃ 0 to τ 03 applying the CV reduction method has the
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584 Dhiman Dutta, Mausumi Sen and Biplab Singha

following possibility distribution

µτ 03(x
0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1+η0r)(x
0−s01)

s02−s01+2η0r(x0−s01)
, ifx0 ∈ [s01,

s01+s
0
2

2 ];
(1−η0l)x0+η0ls02−s01
s02−s01+2η0l(s02−x0)

, ifx0 ∈ (s
0
1+s

0
2

2 , s02];
(−1+η0l)x0−η0ls02+s03
s03−s02+2η0l(x0−s02)

, ifx0 ∈ (s02,
s02+s

0
3

2 ];
(1+η0r)(s

0
3−x0)

s03−s02+2η0r(s03−x0)
, ifx0 ∈ (s

0
2+s

0
3

2 , s03].

Theorem 3.2. [17] Let ξi be the reduction of the type-2 fuzzy variable ξ̃i =
(ri1, r

i
2, r

i
3; θl,i, θr,i) obtained by the CV reduction method for i = 1, 2, ..., n.

Let ξ1, ξ2, ...., ξn are freely independent, and ki ≥ 0 for i = 1, 2, ..., n.
(i) Assumed the generalized credibility level α ∈ (0, 0.5], if α ∈ (0, 0.25],
then C̃r{

nP
i=1

kiξi ≤ t} ≥ α is identical to
nP
i=1

(1−2α+(1−4α)θr,i)kiri1+2αkiri2
1+(1−4α)θr,i ≤ t,

and if α ∈ (0.25, 0.5], then C̃r{
nP
i=1

kiξi ≤ t} ≥ α is identical to

nP
i=1

(1−2α)kiri1+(2α+(4α−1)θl,i)kiri2
1+(4α−1)θl,i ≤ t.

(ii) Assumed the generalized credibility level α ∈ (0.5, 1], if α ∈ (0.5, 0.75],
then C̃r{

nP
i=1

kiξi ≤ t} ≥ α is identical to
nP
i=1

(2α−1)kiri3+(2(1−α)+(3−4α)θl,i)kiri2
1+(3−4α)θl,i ≤

t,

and if α ∈ (0.75, 1], then C̃r{
nP
i=1

kiξi ≤ t} ≥ α is identical to

nP
i=1

(2α−1+(4α−3)θr,i)kiri3+2(1−α)kiri2
1+(4α−3)θr,i ≤ t.

Corollary 3.1. The identical expression of C̃r{
nP
i=1

kiξi ≥ t} ≥ α are easily

obtained from the above theorem because

C̃r{
nP
i=1

kiξi ≥ t} ≥ α⇒ C̃r{
nP
i=1
−kiξi ≤ −t} ≥ α

⇒ C̃r{
nP
i=1

kiξ
0
i ≤ t0} ≥ α

where ξ0i = −ξi is the CV reduction of −ξ̃i = (−ri3,−ri2,−ri1; θr,i, θl,i) and
t0 = −t.
Assumed the generalized credibility level α ∈ (0, 0.5], if α ∈ (0, 0.25] from (i)
of the above theorem, then C̃r{

nP
i=1

kiξi ≥ t} ≥ α i.e. C̃r{
nP
i=1

kiξ
0
i ≤ t0} ≥ α

is identical to
nP
i=1

(1−2α+(1−4α)θl,i)ki(−ri3)+2αki(−ri2)
1+(1−4α)θl,i ≤ t0 = −t,
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Multi-item multi-objective fixed charged solid transportation... 585

⇒
nP
i=1

(1−2α+(1−4α)θl,i)kiri3+2αkiri2
1+(1−4α)θl,i ≥ t,

and if α ∈ (0.25, 0.5], then C̃r{
nP
i=1

kiξi ≥ t} ≥ α is identical to

nP
i=1

(1−2α)ki(−ri3)+(2α+(4α−1)θr,i)ki(−ri2)
1+(4α−1)θr,i ≤ −t

⇒
nP
i=1

(1−2α)kiri3+(2α+(4α−1)θr,i)kiri2
1+(4α−1)θr,i ≥ t.

The other values of α are similarly derived from other identical expressions.

4. Model: Multi-itemmulti-objective fixed charged solid trans-
portation problem with condition on conveyances

Suppose that k (k = 1, 2, ...,K) different modes of carriages are necessary
to transport l components from m sources Oi (i = 1, 2, ...,m) to n stations
Dj (j = 1, 2, ..., n) and also (t = 1, 2, ...., R) objectives are to be minimized.
In addition to that there are a few conditions on a few particular compo-
nents and carriages so that a few components can not be shipped over a few
carriages. Suppose that Ik be the set of components which can be shipped
over carriages k (k = 1, 2, ..,K). We use character p (= 1, 2, ..., l) to stand
for the items.

The fixed charged solid transportation problem is linked with two cat-
egories of penalties, unit transportation penalty for shipping unit amount
from origin i to station j and a fixed cost for the direction (i, j). We de-
velop a multi-item multi-objective fixed charged solid transportation model
with m sources, n stations, k carriages, direct penalty and fixed penalty
criterion as T2 FVs as follows:

MinZt =
lP

p=1

mP
i=1

nP
j=1

KP
k=1

dpijk(c
tp
ijkx

p
ijk) + etpijky

p
ijk, t = 1, 2, 3, ......R

subject to
nP

j=1

KP
k=1

dpijkx
p
ijk ≤ api , i = 1, 2, ...,m; p = 1, 2, ..., l,

mP
i=1

KP
k=1

dpijkx
p
ijk ≥ bpj , j = 1, 2, ..., n; p = 1, 2, ..., l,

lX
p=1

mX
i=1

nX
j=1

dpijkx
p
ijk ≤ fk, k = 1, 2, ...,K,(4.1)

xpijk ≥ 0, ∀i, j, k, p,
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586 Dhiman Dutta, Mausumi Sen and Biplab Singha

where dpijk is defined as

dpijk =

(
1, if p ∈ IK ∀ i, j, k, p;
0, otherwise,

and

ypijk =

(
1, if x > 0;
0, otherwise.

Here, xpijkis the decision variable representing the measure of p-th compo-

nent shipped from source i to station j, etpijk is the type-2 fuzzy fixed cost
linked with direction (i, j) for the objective Zt. The unit transportation
cost ctpijk(from i-th origin to j-th station by k-th carriage for p-th thing)

for the objective Zt, full supply of p-th component a
p
i at i-th source, full

demand of p-th component bpj at j-th station and full quantity fk of k-th
carriage are all type-2 fuzzy variables.

5. Solution Procedure (Chance Constrained programming us-
ing generalized credibility)

Let ctp0ijk, e
tp0
ijk, a

p0
i , b

p0
j and fk0 be the reduced fuzzy variables from type-2 fuzzy

variables ctpijk, e
tp
ijk, a

p
i , b

p
j and fk respctively based on CV-based reduction

method. We develop a chance-constrained programming with these reduced
fuzzy variables to solve the above problem. The uncertain constraints are
granted to be opposed such that constraints must be fulfilled at a few
chance level in chance-constrained programming. Yang et al. [18], Liu et
al. [14], Kundu et al. [9] advanced chance-constrained programming with
fuzzy guidelines using credibility measure. The natural credibility measure
can not be used if the reduced fuzzy guidelines ctp0ijk, e

tp0
ijk, a

p0
i , b

p0
j and fk0 are

not normalized. The succeeding chance-constrained programming example
is developed for the raised model (4.1) using generalized credibility.
Minx(Minf̃t)
subject to

Cr{
lP

p=1

mP
i=1

nP
j=1

KP
k=1

dpijkc
tp0
ijkx

p
ijk + etp0ijky

p
ijk ≤ f̃t} ≥ α, t = 1, 2, .., R

Cr{
nP

j=1

KP
k=1

dpijkx
p
ijk ≤ ap

0

i } ≥ αpi , i = 1, 2, ..,m; p = 1, 2, .., l,

Cr{
mP
i=1

KP
k=1

dpijkx
p
ijk ≥ bp

0

j } ≥ βpj , j = 1, 2, .., n; p = 1, 2, .., l,
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Multi-item multi-objective fixed charged solid transportation... 587

Cr{
lX

p=1

mX
i=1

nX
j=1

dpijkx
p
ijk ≤ fk0} ≥ γk, k = 1, 2, ..,K,(5.1)

xpijk ≥ 0, d
p
ijk =

(
1, if p ∈ IK ∀ i, j, k, p;
0, otherwise,

, ypijk =

(
1, ifxpijk > 0;

0, otherwise.

where Minf̃t expresses the lowest likely crisp form that the objective func-
tion attains with generalized credibility slightly α (0 < α ≤ 1). Especially,
α specifies that we are working to reduce the α critical value of the ob-
jective function. αpi , β

p
j and γk (0 < αpi , β

p
j , γk ≤ 1) are fixed generalized

credibility levels of fulfilment of the particular constraints.

5.1. Crisp Equivalence

Let ctpijk, e
tp
ijk, a

p
i , b

p
j and fk are all jointly independent type-2 triangular fuzzy

variables defined by ctpijk = (c
tp1
ijk, c

tp2
ijk, c

tp3
ijk; θ

tp
l,ijk, θ

tp
r,ijk), e

tp
ijk = (e

tp1
ijk, e

tp2
ijk, e

tp3
ijk; θ

0tp
l,ijk, θ

0tp
r,ijk),

api = (a
p1
i , ap2i , ap3i ; θ

p
l,i, θ

p
r,i), b

p
j = (b

p1
j , bp2j , bp3j ; θ

p
l,j , θ

p
r,j), andfk = (f

1
k , f

2
k , f

3
k ; θl,k, θr,k).

The chance constrained model formulation (5.1) is passed into the next crisp
identical parametric programming models from Theorem 3.2 and its corol-
lary 3.1:
Event A : 0 < α ≤ 0.25 : The identical parametric programming for example
(5.1) is

Min
lP

p=1

mP
i=1

nP
j=1

KP
k=1

dpijk[
(1−2α+(1−4α)θtpr,ijk)c

tp1
ijkx

p
ijk+2αc

tp2
ijkx

p
ijk

1+(1−4α)θtpr,ijk
]

+
(1−2α+(1−4α)θ0tpr,ijk)e

tp1
ijky

p
ijk+2αe

tp2
ijky

p
ijk

1+(1−4α)θ0tpr,ijk
subject to

nP
j=1

KP
k=1

dpijkx
p
ijk ≤ Fapi

, i = 1, 2, ...,m; p = 1, 2, ..., l,

mP
i=1

KP
k=1

dpijkx
p
ijk ≥ Fbpj

, j = 1, 2, ..., n; p = 1, 2, ..., l,

lX
p=1

mX
i=1

nX
j=1

dpijkx
p
ijk ≤ Ffk , k = 1, 2, ...,K,(5.2)

xpijk ≥ 0, d
p
ijk =

(
1, if p ∈ IK ∀ i, j, k, p;
0, otherwise,

, ypijk =

(
1, ifxpijk > 0;

0, otherwise.
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588 Dhiman Dutta, Mausumi Sen and Biplab Singha

where Fapi
, Fbpj

, Ffk is defined by (5.6)-(5.8) appropriately.

Event B : 0.25 < α ≤ 0.5 : The identical parametric programming for ex-
ample (5.1) is

Min
lP

p=1

mP
i=1

nP
j=1

KP
k=1

dpijk[
(1−2α)ctp1ijkx

p
ijk+(2α+(4α−1)θ

tp
l,ijk)c

tp2
ijkx

p
ijk

1+(4α−1)θtpl,ijk
]

+
(1−2α)etp1ijky

p
ijk+(2α+(4α−1)θ

0tp
l,ijk)e

tp2
ijky

p
ijk

1+(4α−1)θ0tp
l,ijk

subject to
nP

j=1

KP
k=1

dpijkx
p
ijk ≤ Fapi

, i = 1, 2, ...,m; p = 1, 2, ..., l,

mP
i=1

KP
k=1

dpijkx
p
ijk ≥ Fbpj

, j = 1, 2, ..., n; p = 1, 2, ..., l,

lX
p=1

mX
i=1

nX
j=1

dpijkx
p
ijk ≤ Ffk , k = 1, 2, ...,K,(5.3)

xpijk ≥ 0, d
p
ijk =

(
1, if p ∈ IK ∀ i, j, k, p;
0, otherwise,

, ypijk =

(
1, ifxpijk > 0;

0, otherwise.

Event C: 0.5 < α ≤ 0.75 : The identical parametric problem for the exam-
ple (5.1) is

Min
lP

p=1

mP
i=1

nP
j=1

KP
k=1

dpijk
(2α−1)ctp3ijkx

p
ijk+(2(1−α)+(3−4α)θ

tp
l,ijk)c

tp2
ijkx

p
ijk

1+(3−4α)θtpl,ijk

+
(2α−1)etp3ijky

p
ijk+(2−2α+(3−4α)θ

0tp
l,ijk)e

tp2
ijky

p
ijk

1+(3−4α)θ0tpl,ijk

subject to
nP

j=1

KP
k=1

dpijkx
p
ijk ≤ Fapi

, i = 1, 2, ...,m; p = 1, 2, ..., l,

mP
i=1

KP
k=1

dpijkx
p
ijk ≥ Fbpj

, j = 1, 2, ..., n; p = 1, 2, ..., l,

lX
p=1

mX
i=1

nX
j=1

dpijkx
p
ijk ≤ Ffk , k = 1, 2, ...,K,(5.4)

xpijk ≥ 0, d
p
ijk =

(
1, if p ∈ IK ∀ i, j, k, p;
0, otherwise,

, ypijk =

(
1, ifxpijk > 0;

0, otherwise.

Event D: 0.75 < α ≤ 1 : The identical parametric problem for the example
(5.1) is
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Min
lP

p=1

mP
i=1

nP
j=1

KP
k=1

dpijk[
(2α−1+(4α−3)θtpr,ijk)c

tp3
ijkx

p
ijk+2(1−α)c

tp2
ijkx

p
ijk

1+(4α−3)θtp
r,ijk

]

+
(2α−1+(4α−3)θ0tp

r,ijk
)etp3
ijk

yp
ijk
+2(1−α)etp2

ijk
yp
ijk

1+(4α−3)θ0tpr,ijk
subjet to

nP
j=1

KP
k=1

dpijkx
p
ijk ≤ Fapi

, i = 1, 2, ...,m; p = 1, 2, ..., l,

mP
i=1

KP
k=1

dpijkx
p
ijk ≥ Fbpj

, j = 1, 2, ..., n; p = 1, 2, ..., l,

lX
p=1

mX
i=1

nX
j=1

dpijkx
p
ijk ≤ Ffk , k = 1, 2, ...,K,(5.5)

xpijk ≥ 0, d
p
ijk =

(
1, if p ∈ IK ∀ i, j, k, p;
0, otherwise,

, ypijk =

(
1, ifxpijk > 0;

0, otherwise.

where,

Fapi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−2αpi+(1−4α
p
i )θ

p
l,i)a

p3
i +2α

p
i a

p2
i

1+(1−4αpi )θ
p
l,i

, if 0 < αpi ≤ 0.25;
(1−2αpi )a

p3
i +(2α

p
i+(4α

p
i−1)θ

p
r,i)a

p2
i

1+(4αpi−1)θ
p
r,i

, if .25 < αpi ≤ .5;

(2αpi−1)a
p1
i +(2(1−α

p
i )+(3−4α

p
i )θ

p
r,i)a

p2
i

1+(3−4αpi )θ
p
r,i

, if 0.5 < αpi ≤ 0.75;
(2αpi−1+(4α

p
i−3)θ

p
l,i)a

p1
i +2(1−α

p
i )a

p2
i

1+(4αpi−3)θ
p
l,i

, if 0.75 < αpi ≤ 1.

(5.6)

Fbpj
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−2βpj+(1−4β
p
j )θ

p
r,j)b

p1
j +2β

p
j b

p2
j

1+(1−4βpj )θ
p
r,j

, if 0 < βpj ≤ 0.25;
(1−2βpj )b

p1
j +(2β

p
j+(4β

p
j−1)θ

p
l,j)b

p2
j

1+(4βpj−1)θ
p
l,j

, if .25 < βpj ≤ .5;

(2βpj−1)b
p3
j +(2(1−β

p
j )+(3−4β

p
j )θ

p
l,j)b

p2
j

1+(3−4βpj )θ
p
l,j

, if 0.5 < βpj ≤ 0.75;
(2βpj−1+(4β

p
j−3)θ

p
r,j)b

p3
j +2(1−β

p
j )b

p2
j

1+(4βpj−3)θ
p
r,j

, if 0.75 < βpj ≤ 1.

(5.7)

Ffk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1−2γk+(1−4γk)θl,k)f3k+2γkf2k
1+(1−4γk)θl,k , if 0 < γk ≤ 0.25;

(1−2γk)f3k+(2γk+(4γk−1)θr,k)f2k
1+(4γk−1)θr,k , if 0.25 < γk ≤ 0.5;

(2γk−1)f1k+(2(1−γk)+(3−4γk)θr,k)f2k
1+(3−4γk)θr,k , if 0.5 < γk ≤ 0.75;

(2γk−1+(4γk−3)θl,k)f1k+2(1−γk)f2k
1+(4γk−3)θl,k , if 0.75 < γk ≤ 1.

(5.8)
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5.2. Fuzzy programming technique

Zimmerman [21] presented that fuzzy linear programming technique con-
stantly provides powerful solutions and a best possible optimal solution for
multiple objective problems. The stages to solve the multi-objective prob-
lems by means of fuzzy programming method are given below:

Stage 1: The multi-objective model is solved as a one objective problem
applying, every time, single objective Z̄t(t = 1, 2, ..., R) to obtain the best
possible solution Xt∗ = xpijk of R distinct single objective model.

Stage 2: The values of all the R objective functions at all these R best
possible solutions Xt∗(t = 1, 2, ......, R) are calculated and the upper and
lower bound for individual objective is specified by
Ut = Max{Z̄t(X

1∗), Z̄t(X
2∗), ......., Z̄t(X

t∗)} and Lt = Z̄t(X
t∗), t = 1, 2, ....., R

appropriately.

Stage 3: An introductory fuzzy example is assumed as

Find x
subject to Zt(x) ≤ Lt, t = 1, 2, ......, R
and the constraints of (4.1).

where x = xpijk, i = 1, 2, ....,m; j = 1, 2, ...., n; k = 1, 2, ....,K;
p = 1, 2, ..., l.

Stage 4: The linear membership function µt(Z̄t) identical to tth objective
is calculated as

µt(Z̄t) =

⎧⎪⎨⎪⎩
1, if Z̄t ≤ Lt;
Ut−Z̄t
Ut−Lt , ifLt < Z̄t < Ut;

0, if Z̄t ≥ Ut, ∀t.
Stage 5: The fuzzy linear programming model is formulated applying max-
min operator as
Max δ
such that

δ ≤ µt(Z̄t) =
Ut − Z̄t

Ut − Lt
, ∀t(5.9)

and the constraints of (4.1)

rvidal
Cuadro de texto
632



Multi-item multi-objective fixed charged solid transportation... 591

δ ≥ 0 and δ = mint{µt(Z̄t)}.

Stage 6: The reduced model is worked out by a linear optimization method
and the best possible optimal solutions are achieved.

6. Numerical Model

The projected problem is illustrated numerically in this section. The pro-
posed methodology is solved numerically by taking one example of the
model. Consider the model with objective functions (t = 1, 2), sources
(i = 1, 2, 3), destinations (j = 1, 2, 3), conveyance (k = 1, 2, 3, 4) and items
(p = 1, 2, 3). Suppose that I1 = {1, 2}, I2 = {1, 2, 3}, I3 = {3}, I4 =
{1, 2, 3}. The transportation penalties and fixed penalties for this model
are given in Tables 2-13 (Appendix). The amounts, requirements and con-
veyance capacities are the consecutive type-2 fuzzy data:
a11 = (21, 24, 27; 0.5, 1), a21 = (26, 28, 30; 0.5, 0.9), a31 = (24, 26, 29; 0.6, 1),
a12 = (26, 28, 32; 0.6, 0.9), a22 = (20, 24, 27; 0.6, 0.9), a32 = (22, 24, 26; 0.5, 1),
a13 = (27, 28, 29; 0.7, 1), a

2
3 = (32, 35, 36; 0.8, 1), a

3
3 = (23, 25, 29; 0.5, 1), b

1
1 =

(9, 12, 14; 0.8, 0.9), b12 = (15, 16, 17; 0.5, 0.6), b13 = (15, 18, 20; 0.5, 0.6), b21 =
(11, 13, 15; 0.5, 0.7), b22 = (12, 13, 15; 0.9, 0.5), b23 = (11, 14, 16; 0.7, 1), b31 =
(10, 12, 15; 0.4, 0.6), b32 = (9, 11, 12; 0.3, 0.5), b33 = (11, 15, 17; 0.4, 0.5), e1 =
(34, 36, 37; 0.5, 0.7), e2 = (46, 49, 50; 0.6, 1), e3 = (28, 30, 33; 0.7, 1), e4 =
(40, 43, 45; 0.5, 0.7).
The chance constrained programming model for this model as (5.1) is for-
mulated here. The fixed general credibility levels for objective function
and constraints are reserved as α = 0.7, αpi = 0.7, β

p
j = 0.7, γk = 0.7, t =

1, 2, p = 1, 2, 3, i = 1, 2, 3, j = 1, 2, 3, k = 1, 2, 3, 4. The corresponding de-
terministic form of the model using (5.4) is given below:

Min
lP

p=1

mP
i=1

nP
j=1

KP
k=1

dpijk
0.4ctp3ijkx

p
ijk+(0.6+0.2θ

tp
l,ijk)c

tp2
ijkx

p
ijk

1+0.2θtp
l,ijk

+
0.4etp3ijky

p
ijk+(0.6+0.2θ

0tp
l,ijk)e

tp2
ijky

p
ijk

1+0.2θ0tpl,ijk

subject to
nX

j=1

KX
k=1

dpijkx
p
ijk ≤ Fapi

, i = 1, 2, ...,m; p = 1, 2, .., l,(6.1)
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mX
i=1

KX
k=1

dpijkx
p
ijk ≥ Fbpj

, j = 1, 2, ..., n; p = 1, 2, ..., l,

lX
p=1

mX
i=1

nX
j=1

dpijkx
p
ijk ≤ Ffk , k = 1, 2, ...,K

xpijk ≥ 0, d
p
ijk =

(
1, if p ∈ IK ∀ i, j, k, p;
0, otherwise,

, ypijk =

(
1, ifxpijk > 0;

0, otherwise.

where Fapi
, Fbpj

, Ffk are calculated from (5.6), (5.7) and (5.8) as follows:

Fa11
= 23, Fa21

= 27.32, Fa31
= 25.33, Fa12

= 27.32, Fa22
= 22.64, Fa32

=
34, Fa13

= 27.67, Fa23
= 23.33, Fa33

= 24.33, Fb11
= 12.69, Fb21

= 16.36, Fb31
=

18.73, Fb12
= 13.72, Fb22

= 13.67, Fb32
= 14.70, Fb13

= 13.11, Fb23
= 11.38, Fb33

=
15.74, Ff1 = 35.30, Ff2 = 48, Ff3 = 29.33, Ff4 = 41.94.
The optimal solution of the first objective function (6.1) are as follows:
x1111 = 4.27, x1131 = 18.73, x1211 = 8.42, x1321 = 3.88, x1322 = 12.48, x2122 =
8.4, x2114 = 13.72, x

2
134 = 5.2, x

2
224 = 5.27, x

2
234 = 9.5, x

3
132 = 15.74, x

3
322 =

11.38, x3213 = 4.86, x
3
114 = 8.25, and the minimum first transportation cost

(first objective value) is 505.8202.
The running time and full solver repetitions concerning this solution are
0.05 sec and 14 appropriately.
The optimal solution of the second objective function (6.1) are as follows:
x1111 = 4.27, x

1
131 = 18.73, x

1
211 = 8.42, x

1
322 = 16.36, x

2
122 = 13.67, x

2
114 =

13.65, x2214 = 0.07, x
2
234 = 14.7, x

3
332 = 15.74, x

3
213 = 10.97, x

3
114 = 2.14, x

3
124 =

11.38, and the minimum second transportation cost (second objective value)
is 617.2989.
The running time and full solver repetitions concerning this solution are
0.05 sec and 14 appropriately.
Here, L1 = 505.8202, U1 = 525.2601, and L2 = 617.2989, U2 = 656.6142
and then applying fuzzy linear programming technique the compromise op-
timal solution of both the objective functions (5.9) are as follows:
x1111 = 4.27, x1131 = 18.73, x1211 = 8.42, x1321 = 3.88, x1322 = 12.48, x2122 =
13.67, x2114 = 13.65, x2214 = 0.07, x2234 = 14.7, x3132 = 12.00588, x3322 =
6.11, x3332 = 3.734125, x

3
213 = 4.86, x

3
114 = 8.25, x

3
124 = 5.27, δ = 0.3203944

and the minimum first and second transportation cost (first and second ob-
jective value) is 519.0317 and 644.0178.
The running time and full solver repetitions concerning this solution are
0.05 sec and 22 appropriately.
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