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1. Introduction and preliminaries

In 1988, Grabiec [7] introduced fixed point theory in fuzzy metric
spacesby extending different existing results to such spaces. During the
recent decades, the study of different generalized classes of nonexpansive
mappingsand the related fixed point theorems in different spaces have
found muchimportance due to many practical applications (refer to [2,
3,4,5,7,9/10, 11, 12, 13, 17, 18, 20, 25, 26]). Several research workers
have interesting contribution (refer to [6, 8, 14, 15, 19, 24]) in this
regard. In 2008, Suzuki[2] defined a class of mappings satisfying condition
(C) in a Banach space X, which is wider than the class of nonexpansive
mappings. In 2011, Garcia-Falsetet al. [5] and in 2018 Patir et al. [18]
introduced some new classes ofgeneralized nonexpansive mappings which
contain the mappings satisfying(C) condition as a subclass.

In this paper, we have extended these generalized classes of mappings
with (C) condition by Suzuki and B, condition by Patir et al. to fuzzy
metric spaces and prove some fixed point theorems. Moreover, defining
a new generalized type of convexity with respect to an altering distance
function we derive some convergence results of iteration schemes to the
fixed point.

First we present the following basic definitions.

Definition 1.1. [10] Let T': [0,1] x [0,1] — [0,1]. Then the mapping T
is said to be a triangular norm (t-norm) if

i) T(a,1) = a for all a € [0,1],

ii) T(a,b) =T (b,a) for all a,b € [0, 1],

iii) a > b,c > d = T(a,c) > T(b,d) for all a,b,c,d € [0,1],
iv) T(a,T(b,c)) = T(T(a,b),c) for all a,b,c € [0,1].

Some basic t-norms are T,(a,b) = a.b, T)(a,b) = min(a,b), Tr(a,b) =
max(a +b—1,0).

Definition 1.2. [6] Let T' be a continuous triangular norm on an arbitrary
set X and M be a fuzzy set on X2 x (0,00). Then the3-tuple (X, M,T) is
said to be a fuzzy metric space if the following conditions are satisfied :

a) M(a,b,t) >0, Va,be X, t>0,

b) M(a,b,t)=1,Vt>0<a=0b,
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c) M(a,b,t) = M(b,a,t), Y a,be X,t >0,
d) T(M(a,b,t),M(b,c,s)) < M(a,c,t+s), Va,bce X, t,s>0,
e) M(a,b,.): (0,00) — [0,1] is continuous for all a,b € X.

Example 1.3. Let X = R with usual metric and for t > 0, M(x,y,t) =

dez’y). Then (X, M, T) is a fuzzy metric space with respect to the t-norm

Tn(x,y) = min(z,y), =,y € X.

Lemma 1.4. [7] For all =,y in X, M(x, y, t) is a non-decreasing
functionof t.

Definition 1.5. [7, 16] Let (X, M, T) be a fuzzy metric space.

(i) A sequence {z,} in X is a Cauchy sequence if for all € € (0,1), t > 0,
dng € N such that M (xy, Ty, t) > 1 —¢, ¥V n,m > ny.

(ii) A sequence {z,} in X converges to x if for all ¢ € (0,1), t > 0,
I no € N such that M (zp,x,t) >1—¢, ¥ n>ng.

(iii) A fuzzy metric space X is complete if and only if every Cauchy se-
quence converges in X.

(iv) Then (X, M,T) is said to be sequentially compact if every sequence
in X has a convergent subsequence in X.

Definition 1.6. [20] A mapping ¢ : [0, 1] — [0, 1] is said to be an
alteringdistance function if the following conditions are satisfied:

(1) ¢ is strictly decreasing and left continuous.

(ii)) ¢(\) = 0 if and only if A =1,

i.e., lim¢_,1_ ¢(1) =0.

Definition 1.7. [16] Let E be a subset of a fuzzy metric space (X, M, T).
Then E is said to bounded if there exists t > 0 and 0 < ¢ < 1 such that
M(z,y,t) >1—¢, for all z,y € E.

Definition 1.8. [21] Let C' be a nonempty subset of a Banach space X.
A mapping T : C — X is said to satisfy condition (C) on C' if for all

1 L
2,y € C, 5 lle =Tzl < |lz —y|| implies || T = Ty|| < ||z - yll.
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Clearly, for every nonexpansive mapping on C, condition (C) is satis-

fied. But there are also some examples of non continuous mappings which
satisfies condition (C) (refer to [21]).

Definition 1.9. Let E be a nonempty subset of a complete fuzzy metric
space (X, M,T). Then f: E — X is said to be fuzzy nonexpansive with
respect to an altering distance function ¢ if

QM (f(x), f(y),t)) < ¢(M(z,y,t)),
forallt >0 and z,y € E .

Example 1.10. Let X = {(0,0),(3,0),(6,0),(6,7)} and d be the Eu-
clidean distance. Let M : X2 x [0, oo[ [0,1] be defined by M(z,y,t) =
m{m—w Va,y € X,t >0 and T(r,s) = min{r,s}, r,s € [0,1], then
(X, M,T) is a complete fuzzy metric space [8].

Next we consider f: X — X by

f(({(0,0),(3,0),(6,0),(6,7)}) = {(0,0), (0,0), (3,0), (6,0)} correspondingly
and ¢(a) =1 —a.
Then f is fuzzy nonexpansive with respect to ¢.

Definition 1.11. Let E be a nonempty subset of a complete fuzzy metric
space (X, M,T). Then a mapping f : E — X is said to satisfy fuzzy (C)
condition with respect to ¢ if

%qﬁ(M(m, f(@),1) < (M (x,y,1)),

implies ¢(M(f (), f(y),t)) < ¢(M(z,y,1)), for all z,y € E,t> 0,
where ¢ is an altering distance function.

Definition 1.12. Let (X, M,T) be a complete fuzzy metric space and E
be a nonempty subset of X. A mapping f : E — X is said to be fuzzy
quasi-nonexpansive with respect to ¢ if

P(M(f(z),p, 1)) < ¢(M(z,p,1)),

for allz € E and p € F(f) (Where F(f) denotes the set of all fixed points
of f), t>0.

In 1970, Takahashi [22] introduced the following concept of convex structure
in a metric space.
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Definition 1.13. Let (X,d) be a metric space. A mapping W : X? x
[0,1] — X satisfying

d(z,W(z,y,1)) < td(z,2) + (1 = t)d(z,y),
for all ,y,z € X and t € [0,1] is called a convex structure on X.

Definition 1.14. [24] Let (X, M, T) be a fuzzy metric space. A
continuousmapping W : X x X x [0, 1] — X is said to be a convex
structure on Xif for each z,y,z € X,t > 0 and « € [0, 1], we have

M(z,W(z,y,a),t) > aM(z,z,t) + (1 — a)M(z,y,t).

The space X together with a convex structure W is called a fuzzy convex
metric space or convex fuzzy metric space.

Definition 1.15. [21] A complete fuzzy metric space (X, M,T) is said

tosatisfy fuzzy Opial property with respect to ¢ if for every sequence {ay,}
inX with a,, — u, we have for each t > 0,

lim inf ¢(M(ay,u,t)) < im inf p(M (an,v,t)),

n—~ao

whenever v = u.

2. Results and discussion

First we define a type of convexity with respect to an altering distance
function in fuzzy metric space.

Definition 2.1. Let (X, M, T) be a fuzzy metric space. A continuous map-
ping W : X x X x [0,1] — X is said to be a ¢ convex structure on X if
for each x,y,z € X and « € [0,1], t > 0, we have,

¢(M(Zv W(.’L’,y, a)>t)) < Oz¢(M(Z,.’L',t)) + (1 - 04)¢(M(z,y,t)),

where ¢ is the altering distance function.
Then (X, M, T) is called ¢ convex fuzzy metric space.

Example 2.2. Consider X = R and d(x,y) = |z — y| such that d(x,y) <
k. Let g : (0,00) —]k,00[ be an increasing continuous function and for

te (0,00), M(z,y,t) =1— %. Then (X, M, Ty) is a fuzzy metric space
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[8] with respect to Lukasievicz t-norm, Ty, (a,b) = max(a+b—1,0) a,b € X.
Also, let the altering distance function ¢(t) =1 —t, t € [0, 1].

Now, let W : X x X x [0,1] — X be defined by W(z,y,a) = ax +
(1-a)y, «ae€]0,1] then

O(M(z, W (z,y,a),1)) = Ll

)
|2 (ant (1—a)y)|

g(t)
< alz )a:| + (1— oa()t|)z yl
— ad(M(z. D) + (1 - 0)o(M(zp.1).

Thus (X, M, Ty,) is a ¢ convex fuzzy metric space.

The concept of uniform convexity for metric spaces [15] can also
beextended to ¢ convex fuzzy metric spaces.

Definition 2.3. For a ¢ convex fuzzy metric space (X, M,T), X is said
to be uniformly ¢ convex if for arbitrary numbers ¢,h € R™, there exists
B(e) > 0 such that

S(M (=, W (2,3, 3).0)) < h(1 - ),

whenever ¢(M(z,x,t)) < h,¢p(M(z,y,t)) < h and ¢(M(z,y,t)) > he,
where x,y,z € X,t > 0.

Remark : The class of ¢ convex fuzzy metric spaces includes the (usual)
convex fuzzy metric spaces (for the altering distance function, ¢(a) =1 —
a,¥ a € [0, 1]), which follows from the lemma below.

Lemma 2.4. If W : X x X x[0,1] — X is a convex structure on a fuzzy
metric space (X, M, T), then it is also ¢ convex on the same fuzzy metric
space, for ¢(a) =1 —a,a € [0,1], i.e. the class of ¢ convex fuzzy metric
spaces is wider than the class of convex fuzzy metric spaces.

Proof. Since W is a convex structure on a fuzzy metric space (X, M, T),
we have for each z,y,2 € X and o € [0,1],¢ > 0,

M(z,W(z,y,a),t) > aM(z,z,t) + (1 —a)M(z,y,t),

)+ (1 —a)M(z,y,t)
(1— M(z,z,t)+ (1 —a)(l = M(z,y
1) < agp(M(z,2,1)) + (1 — a)p(M(2,y,1)

Y ))'

ie, 1 —M(z,W(z,y,a),t) < — (aM(z,z,t
= t
) )7

Thus, ¢(M(z, W (z,y,a
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where ¢(a) =1—a,¥ a € [0,1].
Hence, W is also a ¢ convex structure on (X, M,T). O

Considering fuzzy metric space, the definitions of asymptotic radius and
asymptotic centre (refer to [5]) can be stated as follows.

Definition 2.5. Let E be a nonempty subset and {z,} be a bounded
sequence of a complete fuzzy metric space (X, M,T). Then for each xz € X,

(i) asymptotic radius of {x,,} with respect to an altering distance ¢ at x
is defined by r(z,{x,}) = sup,{limsup,,__, ., ¢(M(xyn,z,t))}.

(i) asymptotic radius of {x,,} with respect to ¢ relative to E is defined by
r(E,{z,}) = inf{r(z,{z,}) : z € E}.

(iii) asymptotic center of {x,} with respect to ¢ relative to E is defined

by C(E{xn}) ={x € E:r(x,{zn}) = r(E,{za})}.
We note that C(E,{x,}) is non empty. Again, if X is uniformly ¢
convex, then C(E,{x,}) has exactly one point.

Following is an extension of condition B, , [18] to fuzzy metric space.

Definition 2.6. Let (X, M, T) be a complete fuzzy metric space, ¢ be an
altering distance function and E be a nonempty subset of X. Let v € [0, 1]
and p € [0, %] such that 2u < . A mapping f: F — X is said to satisfy
fuzzy B., condition with respect to ¢ on E if, for all x,y € E and t > 0,

v o(M(z, f(z),1) < (M (x,y,1)) +p ¢(M(y, f(y),t))

implies

zb(M)(f(ﬂﬁ), f),1) < (A=y)o(M(x, y, )+ p (9(M (2, f(y), 1)) +o(M (y, f(2),1))),
2.1

where ¢ satisfies the condition

(2.2) H(T(M(z,y,t),M(z,w,s))) < ¢(M(z,y,t+5)) + ¢(M(z,w,t + 5)),

for x,y,z,w € E and s,t > 0.
In all our subsequent results, we consider only the altering distance
functions satisfying the inequality (2) (on E).
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Example 2.7. Let X = [0,3],d(z,y) = |z — y| and

)1, ifx =y,
M@y,1) = { d(z,y), if v =y,

V¢t > 0. Then (X, M, T) is a complete fuzzy metric space [8] with
thet-norm Tr(a,b) = max(a+b—1,0) z,y € X. Let the mapping f on X
bedefined by

)

f(sc>={ A

1 ifx =

[N

Then f satisfies B, ,, condition on X for v =1, = %

Lemma 2.8. Let a mapping f on a nonempty subset E of a complete
fuzzy metric space (X, M, T) satisfy the fuzzy B, condition with respect
to ¢. If f has a fixed point, say p, on E, then f is fuzzy quasi-nonexpansive
with respect to ¢ i.e., 9(M(f(x),p,t)) < ¢(M(x,p,t)) for allxz € E, t > 0.
The converse is not necessarily true in general.

Proof. Since p is a fixed point, we have

¥ o(M(p, f(p);1) =0 < d(M(z,y,t)) + p S(M(y, f(y),t)).

So, from the fuzzy B, , condition with respect to ¢,

SO (F (), £(2),1) < A=)o(M (B, 1)+ 1 (6(M(, F(2),0)+6(M (z, f(p),1))
= 6(M(p, £(2),1)) < (1= (p, 2,))+ 1 6(M(p, £(2),6)+4 6(M (2, p,1)
> 00 f(@).0) < () 9 (@,.1) < S (@ p,1) (20 ).

Thus f is fuzzy quasi-nonexpansive with respect to ¢. O

For the converse part is not true in general, consider the following ex-
ample.
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Example 2.9. Let X = [0,5], d(z,y) = |z —y| and for t > 0, M (z,y,t) =
m. Then with respect to the t-norm Ty(z,y) = z.y, (X,M,T) is
complete fuzzy metric space, where z,y € X. Let the mapping f on [0,

be defined by
) 0, ifz#5,
f(x)_{ 4, ifz =5,

and the altering distance function ¢ be defined by ¢(a) =1—a,V a € [0, 1].
Clearly x = 0 is the only fixed point of f, and therefore (M (f(x),p,t)) <
d(M(z,p,t)) forp=0and ¥V z € [0, 5].
Thus f is fuzzy quasi-nonexpansive.
Also for x =5 and y = 4,
(M (z, f(z),t)) < ¢(M(z,y,t)) + 1 ¢(M(y, f(y), 1))
where v € [0,1], p € [0,1],¢ > 0.

5]

But
QM (f (), f(y), 1)) < A=7)e(M(z,y,t))+ p (p(M(z, f(y),1))+o(M(y, f(x),1)))

)¢
=>4 o< & e
<

t+4 t—E)H t+5

=5 (fOI"}/—l,u:%),

a contradiction.
Hence, f does not satisty fuzzy B.,, condition on X.

It is also seen that every mapping satisfying fuzzy (C) condition with
respect to an altering distance function ¢ satisfies fuzzy B, ,, condition (for
v = p = 0) with respect to ¢, but the converse does not hold.

Example 2.10. For X = [0,4], we consider the complete fuzzy metric
space (X, M,Tr) as in Example 2.2. Let the mapping f on X be defined

by
o ={ 500,
and o(a) = a,V a € [0,1]. Now, for x = 2.4,y = 4, we have
3O(M(w f() ) < 6(M(,3,1)).
(M(f

But¢ (@), f(y),1)) < ¢(M(z,y,t)) V> 0.
So, f does not satisfy fuzzy (C) condition with respect to ¢.

Again, for allz,y € X andvy=1,u = %, we have

S(M(f(2), F(9),1) < (1—7)6(M (2, 5,6))+ p (6(M (z, F(1),£)+6(M (y, f(x),1)))
Vi>0.

Hence f satisfies fuzzy B, condition with respect to ¢.
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Proposition 2.11. Let (X, M,T) be a complete fuzzy metric space and
f be a mapping on a subset E of X. Suppose that f satisfies fuzzy B.
condition with respect to ¢ on E. Then the following holds for x,y € FE
and c € [0,1].

(i) (M (f(z), f*(2),t) < S(M(w, f(2),1)),
(ii) Either 5¢(M(z, (m),t)) < o(M(z,y,1)))
or §6(M(f(x), f*(x),1)) < ¢(M(f(x),y,t)) holds

which implies
cithier 6(M (£ (2). 1), ) < (1 - § ) oM (w9 0) +0(M(z. £(0), 1)
+9(M(y, f(2),1))

or S(M(F(0). £0),) < (1= 5 ) GV (F(2), . O) +il oM (£(), £ (), 1)
+0(M(y, f2(x),1))) holds,

(iii) (M (z, f(y),1)) < 3 —c)p(M(z, f(x),t)) + (1—
);

(
pO(M (z, f(x), 1) + ¢(M(z, f(y), 1) + ¢(M(y, f(x), 1))
+26(M(f(z), f2(z), 1))

Theorem 2.12. Let (X, M,T) be a complete fuzzy metric space and f be
a self mapping on a compact and ¢ convex subset E of X. Let f satisfy
fuzzy B., condition with respect to an altering distance function ¢ on E.
For s € [0,1) and x; € E, define a sequence {x,} in E such that

Tn+1 = W(xna f(:En), 5)7

where W' is the ¢ convex structure on E and lim_ (M (zp, f(zn),t) =0,
n € N. Then the sequence {z,} converges to a fixed point of f.

Proof.  Since F is compact, there exists a subsequence {z,,} of {z,}
and p € F such that {x,,} converges to p. Also by Proposition 2.11 (iii)
we have,
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S (a0, f0)0) £ (3= DM (. ). 0) + (1= 5 ) 60w, p11)
I (o (2,).0) 60 e, J0)0) + 9 F(02,).)
+ 29(M(f (), (a0, 1)
< (B Mz, ). 0) + (1= 5 ) oM (wn,p.0)
O (. ) 0) + 6(M (0, (0):2) + S (.5, §)
(M (an,, Tlan,), D))

(Using proposition 2.11 (i) and inequality (2)).

for all j € N and ¢ € [0, 1]. Taking n; — oo, we have,

(1= ) limp, o0 §(M (2, f(p)£)) < (3= 0) limp, o0 ¢(M (2, f(2n,),t))
<1 — g) limnjﬂoo ¢>(M(9anapa t))
hmnj—>oo ¢(M(p) ﬂjnja %))

limnjaoo ¢(M(xn]’7 f(wnj)a %)))
07

I+ ++ +

= limnj—mo ¢(M<xn] y f(p)7 t))

i.e., {wn, } converges to f(p).

Therefore f(p) = p and hence p is a fixed point of f. Again, by the ¢
convexity of F,
¢(M(p, mn-ﬁ-l?t)) ¢(M(p,W($n,f($n),S),t))
s Q(M(p, n,t)) + (1 = 5)p(M(p, f(zn), 1))
s ¢(M(p,zn,t)) + (1 —s)p(M(p,xn,t)) (by Lemma 2.8)
d(M(p,xn,t)), forn €N,

IIRVAVANI

which implies that {¢(M(p,zn,t))} is a monotonic decreasing bounded
sequence and therefore,

lim ¢(M(p, 2, 1)) = 0

n—oo

= lim M(p,zn,t) = 1.
n—oo
Therefore {z,} converges to p. O
Proposition 2.13. Let f be a self mapping on a subset E of a complete
fuzzy metric space X with Opial condition. Let f satisfy the fuzzy B,

condition with respect to ¢ on E. If {xy} is a sequence in X such that

(1) {zn} converges to p,
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(ii) nh—{go ¢(M (2, f(20),1)) =0,
then f(p) = p.

Proof.  From Proposition 2.11 (iii) (fory =4, c

(M (zn, f(p),1))

IN
—~
w
|
&
-
w
S
~
—~
8
S
:—/
~
=
_l’_
[a—
|
|
N—— m
-
—~
=
8
S
=
~
=

A+ +
[\
=
=

D+ (1=5) 60 (o, it)

).t
¢(M(xnj7f(xnj)7 5)))

for all n € N and hence taking limit n — oo and using condition (ii) we
have,

+ +

1—<$+4+p
HM (o F(p),1) <
(23) = lim inf o(M(mn, f(p),1) < lim_ inf 6(M (0, ).

Let f(p) # p. Since {x,,} — p, from the Opial condition we have

H(M (20, p, 1)) < O(M (20, p,1))

lim_inf §(M (2, p,)) < lim_inf 6(M (zn, f(p). 1)),

n—oo

which is a contradiction to (2.3).

Hence f(p) = p. a
Example 2.14. Let X = C(C I’,1 < p < o0) = {{xn} € P : |21] <
Lxj=0Vj# 1},d(w,y) = |lv—yllp and M (@, y,t) = 75577, t > 0. Then

(X, M,T) is a complete fuzzy metric space for the t-norm, Tp,(z,y) = x.y.
Let {a,} € C be such that

1 1 3
a1 :{5,0,0...},@:{5,0,0...},a3:{3,0,0...} ......... an = { 0,0....}.

_n
n+2’
Clearly {a,} converges to z = {1,0,0....}.

Let X7 ={21,0,0.....} € X and f be a self-map on X defined by f(X1) =
f({x1,0,0....}) = {2$,0,0....}. Let ¢(t) = 1 —t. Then f satisfies fuzzy B,
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condition with respect to ¢ for v = u = 0.

Now,
lim §(M (an, f(an),t))
_lan=f(an)|_

7G5

n—oo ttlan—Fflan)l ~n00 t+|n_+2_(n_+2)3|
= 0

Thus by Proposition 2.13, f(z) = z, which is clearly the fixed point here.

Theorem 2.15. Let (X, M,T) be a complete fuzzy metric space and f
be a self mapping on a compact ¢ convex subset E of X with the Opial
property with respect to ¢. Suppose that f satisfies fuzzy B, condition
with respect to ¢. Define a sequence {z,,} in E such that

Tnt1 = W(xp, f(zn),s) , x1 € E, s €10,1)

and lim ¢(M(zy, f(z,),t)) =0, n € N. Then {x,} converges to a fixed

n—oo

point of f.

Proof.  Since E is compact, we have a subsequence {x,,} of {z,} and
p € E such that {z,,} converges to p. Now, by Proposition 2.13, p is a
fixed point of f.
We assume that {z,,} does not converge to p. Then there is a subsequence
{zn, } of {z,,} and ¢ € C such that {z,, } converges to ¢ and g # p. Again,
Tq = q (by Proposition 2.13). From the Opial property,
limy, 0 inf @(M (2, p, 1)) = limj o inf (M (2, p,t))
< lim; o0 inf ¢(M (2, q, 1))
= limy_, o0 inf (M (21, , q, 1))
< limy_ o0 inf ¢(M (zy, , p, 1))
= limy, 00 inf ¢(M (2, p, t)),
which is a contradiction.
Hence {z,} converges to the fixed point p. O
Next, we discuss the convergence of following type of extended Mann iter-
ation scheme with respect to the ¢ convex structure W on X:

x1 € X,
Un = W(xnv f(xn)a 571)7
(24) Tn+1 = W(Yn, f(Yn): M),

neN [&,n, €10,1] for each n and )", &, = 00,>, N = 0.
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Lemma 2.16. Let E¥ be a nonempty closed ¢ convex subset of a complete
fuzzy metric space (X, M,T') and f be a self-mapping on E satisfying the
fuzzy B., condition with respect to ¢ on E. Let 1 € E and {x,} be
a sequence in E defined by the above iteration scheme (2.4).Then nggo

d(M (zp,p,t)) exists for all p € F(f).

Proof. For p € F(f), by Lemma 2.8,
S(M(f(@0),p,1)) < G(M (20,p,1) for all n € N.

Now,

(M (p, Tny1,1)) (M, W (Yn: f(Yn) 1), 1))

< 0 (M (P, yn, 1) + (1 = 0p) (M (p, f(yn), 1))
< 1 Q(M(p,yn, 1) + (1 = 1) @(M (p, yn, t))
= (b(M(pa ynat))
= (b(M(va(xn:f(wn)afn)?t))
< gn gb(M(p,:En,t)) + (1 - gn) ( ( f( n)>t))
< & 9(M(pan,t) + (1 = &) d(M(p, zn, 1))
= ¢(M(p,wn, 1))
Le. ¢(M(pv$n+17t)) < ¢(M(p’ mTht))v

which implies {¢(M (p, zn, t))} is a monotonic decreasing bounded sequence.
Hence lim ¢(M(xy,p,t)) exists for all p € F(f). O
n—oo

The next Lemma is the fuzzy counterpart of the lemma 2.11 of [1] (referto
[23, 27]).

Lemma 2.17. Let X be a uniformly ¢ convex and complete fuzzy metric
space. Let {x,} and {y,} be sequences in X such that lim sup ¢(M (x,,z,t)) <

n—oo
r, limsup ¢(M (yn, z,t)) < r and Jim d(M(W (20, Yn, An), z,t)) =1 for all

n € N, x € X and some r > 0, where {\,} Is a sequence of real numbers
with0 <a <\, <b<1VneN,t>0. Then nhngo d(M (zp, yn,t)) = 0.

Theorem 2.18. Let E be a nonempty closed ¢ convex subset of a uni-
formly ¢ convex and complete fuzzy metric space (X, M,T) and f be a
self-mapping on I which satisfy the fuzzy B. , condition with respect to
¢ on E. Let x; € E and {z,} be a sequence in E defined by the above
iteration scheme (2.4) where &,,my, € (0,1). Then F(f) = ¢ if and only if
{zy} is bounded and nh—>H<;lo d(M(zp, f(xn),t)) =0, t > 0.
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Proof. Suppose, F(f) # ¢ and p € F(f).
From Lemma 2.16 we have nhnrolo d(M(xp,p,t)) exists and {x,} is bounded.

Let
Now,

QMW (zp, f(xn),&n), s t))

¢(M(yn,p,t)) Tn
(M(2n,p,t) + (1 = &)d(M (f(zn),p, 1))
&n (M (zn, p, ()) (1 = &) o (M (2, p, 1))

O(M (. p,1)) (by Lemma 2.8)

[ IAIA

(2.6) = lim ¢(M(yn,p,t)) < lim ¢(M(zn,p,t)) = q.
Again,
¢(M(:Bn+17p7 t)) = (M(W(ynv ( )77711)»177 t))
< nn (M (Yyn, p,t) + (1 = 10) (M (f (yn), p; 1))
< i (M (Yn, 1)) + (1 = 00) (M (Yn, p, 1))
= (M (Yn,p; 1))
= lim (M (@ni1,p,1)) < T G(M (yn, p; 1)) = ¢ < lim ¢(M (yn, p,1t))-

(2.7)

Therefore, from (2.6) and (2.7)

(2.8) Jim o(M (yn, p, 1)) = g-

Now, from Lemma 2.8,

) (M (f(yn),p:1)) < (M (yn,p,t))
29 = hmsup &(M (f(y ), D, 1)) Slizrl_}SOl(l)p A(M (yn, p,t)) = q.

Also,

yn,f( n)y7n), 1)) = G(M(Zny1,p,1))
2@1m¢ W (s £ (). 1), 1) = lim (M (2041, p,1)) = 4.
Now, from equation (2.8), (2.9), (2.10) and Lemma 2.17,
lim ¢(M (yn, f(yn),t)) = 0.

n—oo
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Again, from Lemma 2.8,

(M (f(n),p,t)) < H(M (2, p, 1))

(2.11) =limsup ¢(M (f(xzn),p,t)) <limsup ¢(M (zy,p,t)) = q.

Also,

(2.12) = lim (M (W (2n, f (22), & ,p,t))zhm (M (yn,p,t)) = q.

Hence, from equation (2.5), (2.11), (2.12) and Lemma 2.17,

Tim G(M (an, f(20),8)) = 0.

Conversely, suppose that {x,,} is bounded and nh~>n(;lo (M (xp, f(xn),t)) = 0.
Let p € C(E,{zn}).

Then by Proposition 2.11 (iii) (for v = £,¢ € [0,1])

(M (zn, f(p), 1)) <(3— C)¢(M($n>f(xn)at)) + <1 -

(
+M(2¢( (T, f(20),1)) + ¢(M (20, f(p),t
+o(M(p, f(zn), ))+2¢( (f(zn), f*(zn),1)))

oo

= (1) limsup G(M (a, £().0) < (1= 5 + 1) limsup (M (. )
=>supt{hmsup 6(M(@n, £(p). 1)} < supt{hﬂsogp (M (2n,p,t))}
= (), {2a}) < r(p, {n}):
So, f(p) € C(E,{zn}).
Again since X is uniformly ¢ convex, f(p) = p, i.e., p € F(f).
Hence, F(f) =¢.¢ O

Example 2.19. Let X = [0, 3], d(z,y) = |z —y| and M (z,y,t) = 1— dég(”f)/)
where g : (0,00) —]3,00[. Let W(z,y,a) =azx+(1—a)y, a€]0,1]
bethe ¢ convex structure on X for ¢(I) =1—1, | € [0,1]. Then (X, M,
T) isa ¢ convex and complete fuzzy metric space [8] with the t-norm
Tr(a,b) =max(a+b—1,0) z,y € X.

Define f on X by
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Let xy = 1, then we can construct a sequence {x,} by iteration (2.4) with
& =£6€(0,1) and n, =n € (0,1), where z, = (1 —&)"(1 —n)", ¥V n € N.

Now, limy, 0o @(M (zp, f(xn),t)) = lim, oo |z0— f(an)]|

i)
By

= Lm0 =g

=0.
Thus F(f) # ¢, by the above theorem. Also, clearly 0 € F(f).

Now, we discuss the convergence of following type of extended Picard-
Mann hybrid iteration scheme with respect to the ¢ convex structure W
for a fuzzy metric space X:

r1 € X,
Yn = W(l‘m f(mn)v un)a
(2.13) zp, = W(zn, f(Yn),vn),
Tpi1 = f(zn),
n € N, uy,, v, € [0, 1] for each n and ", up, = 00,3, v, = 0.

Lemma 2.20. Let E be a nonempty closed ¢ convex subset of a com-
plete fuzzy metric space (X, M,T) and f be a selfmapping on E satis-
fying the fuzzy B, condition with respect to ¢ on E. Let 1 € E and
{zn} be a sequence in E defined by the iteration scheme (2.13). Then
Jim d(M (zp,p,t)) exists for all p € F(f).

Proof. Similar to Lemma 2.16 O

Theorem 2.21. Let f be a self-mapping on a nonempty closed ¢ con-
vex subset E of a uniformly ¢ convex and complete fuzzy metric space
(X,M,T). Let f satisfy the fuzzy B, , condition with respect to ¢ on
E. For z1 € E, {z,} be the sequence in E defined by the above iteration
scheme (2.13) where u,, vy, € (0,1) and Jim vy, = j(#1). Then F(f) # ¢
if and only if {x,} is bounded and Jim (M (zp, f(xn),t)) =0.

Proof.  Suppose that F(f) # ¢ and p € F(f).
From Lemma 2.20 we have lim d(M (xy, p,t)) exists and {z,} is bounded.

Let
(2.14) lim ¢(M(zn,p,t)) = q.

n—oo
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From Lemma 2.8,

(M (f(xn),p; 1)) < H(M(2n,p,t))
= hmsup ¢>( ( ( n)7p7 )Shmsup ¢( (:L‘n,p,t))zq.

n—oo n—oo

(2.15)

Now, using ¢ convexity of F,

(M (yn,p,1)) ( (W (@n, f(@n), un), p,t))

< tun ¢(M(2p,p, 1)) + (1 — un) (M (f (zn),p, t))
S ( ((IZn,p, )) (1 —un)qﬁ( (xn,p, t))
= ¢(M($n,p,t))
<

=limsup ¢(M(yn,p,t)) <limsup ¢(M(zn,p,t)) = q.

2.16) o
Again,
(M (zn41,p,1)) = O(M(f(zn),p:1))
< 6(M(z0,p.1))
zcb(M(W(xn, (Un), vn), p;1))
< On (M (@n, p,t)) + (L= vn) (M (f(yn), p, 1))
< vp ¢(M(zn,p,t)) + (1 — vn)d(M(yn,p, 1))

= ¢ <liminf ¢(M (yn, p,1))-

(2.17)

Therefore, from (2.16) and (2.17),

¢ < liminf ¢(M(yn, p,t)) <limsup ¢(M(yn,p,?)) < ¢
(218) = lim o(M(yn.p.t) =1
= lim (M (W (zn, f(2n), un),p:t) = q-

So, from (2.14),(2.15),(2.18) and Lemma 2.17 we have,
Timn, 6(M (2, f(a), 1)) = 0.

The Converse part follows similar to Theorem 2.18. O
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Remark:

We have proved Theorem 2.18 and Theorem 2.21 assuming the uniform
¢ convexity of the fuzzy metric space X. It is interesting to ask whether
similar results hold without using this condition.
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