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368 Abdelkarim Boua and Mohammed Ashraf

T (x ◦x∗) = 0 for all x ∈ R, then R is commutative. However, this result is
not complete. Indeed, it is proved by the authors that R is commutative.
In this case, it is obvious to see that 2T (x)x∗ = 0 for all x ∈ R, since the
characteristic ofR is different from two, the last expression yields T (x)x∗ =
0 for all x ∈ R and linearizing this, we find that T (x)y + T (y∗)x∗ = 0 for
all x, y ∈ R. Replacing y by ys where s ∈ S(R) ∩ Z(R)\{0} and using
the primeness of R, we arrive at T (x)y − T (y∗)x∗ = 0 for all x, y ∈ R.
Combining the last expressions, we find that 2T (x)y = 0 for all x, y ∈
R which, because of the characteristic of R is different from two, forces
T (x)Ry = {0} for all x, y ∈ R. In view of the primeness of R, we conclude
that T = 0; a contradiction. Our aim in the next theorem is to give a
generalization of both results i.e., Theorem 3.1 & Theorem 3.2 obtained in
[1].

Theorem 3.1. Let R be a prime ring with involution 0∗0 of the second
kind such that the characteristic of R is different from two. If R admits a
nonzero left multiplier T , then the following assertions are equivalent:

(i) T ([x, x∗]) ∈ Z(R) for all x ∈ R;

(ii) T (x ◦ x∗) ∈ Z(R) for all x ∈ R;

(iii) R is commutative.

Proof. It is easy to verify that (iii)⇒ (i) and (iii)⇒ (ii).
(i)⇒ (iii). By the assumption, we have

T ([x, x∗]) ∈ Z(R) for all x ∈ R.(3.1)

Linearizing (3.1) and using the relation so obtained, we find that

T ([x, y∗]) + T ([y, x∗]) ∈ Z(R) for all x, y ∈ R.(3.2)

Replacing y by y∗ in (3.2), we get

T ([x, y]) + T ([y∗, x∗]) ∈ Z(R) for all x, y ∈ R.(3.3)

Taking ys in place of y in (3.3) where s ∈ S(R) ∩ Z(R)\{0}, we arrive
at ³

T ([x, y])− T ([y∗, x∗])
´
s ∈ Z(R) for all x, y ∈ R.(3.4)
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Prime rings with involution involving left multipliers 369

From Lemma 2.1, we have

T ([x, y])− T ([y∗, x∗]) ∈ Z(R) for all x, y ∈ R.(3.5)

Combining (3.3) and (3.5) and using the characteristic of R is different
from two, we obtain

T ([x, y]) ∈ Z(R) for all x, y ∈ R.(3.6)

Replacing y by yx in (3.6), we get T ([x, y])x ∈ Z(R) for all x, y ∈ R
and using (3.6) again together with Lemma 2.1, we conclude that either
T ([x, y]) = 0 or x ∈ Z(R) for all x, y ∈ R, and hence in both cases, we
arrive at

T ([x, y]) = 0 for all x, y ∈ R.(3.7)

This reduces to T (x)y = T (y)x for all x, y ∈ R and putting [u, v] instead
of y in the last expression and using (3.7), we arrive at

T (x)[u, v] = 0 for all x, u, v ∈ R(3.8)

Replacing u by yu in (3.8) and using it again, we find that T (x)y[u, v] =
0. Since T 6= 0, by primeness of R, it follows that R is commutative.
(ii)⇒ (iii). Suppose that

T (x ◦ x∗) ∈ Z(R) for all x ∈ R.(3.9)

Linearizing (3.9) and using it again, we obtain

T (x ◦ y∗) + T (y ◦ x∗) ∈ Z(R) for all x, y ∈ R.(3.10)

Replacing y by y∗ in (3.10), we get

T (x ◦ y) + T (y∗ ◦ x∗) ∈ Z(R) for all x, y ∈ R.(3.11)

Taking ys instead of y in (3.11) where s ∈ S(R)∩Z(R)\{0}, we arrive
at

(T (x ◦ y)− T (y∗ ◦ x∗))s ∈ Z(R) for all x, y ∈ R.
By Lemma 2.1, the above relation can be further written as

T (x ◦ y)− T (y∗ ◦ x∗) ∈ Z(R) for all x, y ∈ R.(3.12)

Calculating the sum of equations (3.11), (3.12) and using the fact that
the characteristic of R is different from two yields
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370 Abdelkarim Boua and Mohammed Ashraf

T (x ◦ y) ∈ Z(R) for all x, y ∈ R.(3.13)

Replacing y by yx in (3.13), we obtain that T (x ◦ y)x ∈ Z(R) for
all x, y ∈ R and using (3.13) again together with Lemma 2.1, the later
expression can be rewritten as

T (x ◦ y) = 0 or x ∈ Z(R) for all x, y ∈ R.(3.14)

If there exists x0 ∈ R such that T (x0 ◦ y) = 0 for all y ∈ R, then
T (x0)y + T (y)x0 = 0 for all y ∈ R and putting x0 ◦ y in place of y in the
last equation and using T (x0 ◦ y) = 0, we are forced to conclude that

T (x0)(x0 ◦ y) = 0 for all y ∈ R.(3.15)

Replacing y by yt in (3.15) and using it, we find that T (x0)R[x0, t] =
{0}. By primeness of R, we conclude that either T (x0) = 0 or x0 ∈ Z(R).
In the latter case, (3.14) becomes

T (x) = 0 or x ∈ Z(R) for all x ∈ R.(3.16)

The sets H = {x ∈ R | T (x) = 0} and K = {x ∈ R | x ∈ Z(R)} are
additive subgroups of R. But a group cannot be the union of proper sub-
groups. Hence we get H = R or K = R which force that R is commutative
because T 6= 0. This completes the proof of theorem.

If we put T = IR, we obtain the following result:

Corollary 3.1. LetR be a prime ring with involution 0∗0 of the second kind
such that the characteristic of R is different from two, then the following
assertions are equivalent:

(i) [x, x∗] ∈ Z(R) for all x ∈ R;

(ii) x ◦ x∗ ∈ Z(R) for all x ∈ R;

(iii) R is commutative.

It is straightforward to see that T is a left centralizer of a ring R if and
only of Tn is a left centralizer of R, where n ≥ 1 is a fixed positive integer.
Hence in view of the above result we have the following:
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Prime rings with involution involving left multipliers 371

Corollary 3.2. Let R be a prime ring with involution 0∗0 of the second
kind such that the characteristic of R is different from two. If R admits
a left multiplier T , then for a fixed positive integer n ≥ 1 the following
assertions are equivalent:

(i) Tn([x, x∗]) ∈ Z(R) for all x ∈ R;

(ii) Tn(x ◦ x∗) ∈ Z(R) for all x ∈ R;

(iii) R is commutative.

If a ring R admits a left multiplier T then it can be seen easily that T
is a left multiplier on R if and only if T + IR (resp. T − IR), where IR is
the identity map on R, is a left multiplier on R. By using induction on n,
more generally, one can see that for any fixed positive integer n ≥ 1, T is
a left multiplier on R if and only if Tn ± IR is a left multiplier on R. In
view of the above theorem, our aim in the next theorem is to give a suitable
conditions that assures the commutativity of R.

Corollary 3.3. Let R be a prime ring with involution 0∗0 of the second
kind such that the characteristic of R is different from two. If R admits
a left multiplier T such that T (x) 6= ±x, for all x ∈ R, then for a fixed
positive integer n ≥ 1 the following assertions are equivalent:

(i) Tn([x, x∗])− [x, x∗] ∈ Z(R) for all x ∈ R;

(ii) Tn(x ◦ x∗)− (x ◦ x∗) ∈ Z(R) for all x ∈ R;

(iii) Tn([x, x∗]) + [x, x∗] ∈ Z(R) for all x ∈ R;

(iv) Tn(x ◦ x∗) + (x ◦ x∗) ∈ Z(R) for all x ∈ R;

(v) R is commutative.

Theorem 3.2. Let R be a prime ring with involution 0∗0 of the second
kind such that the characteristic of R is different from two. If R admits
a left multiplier T, then for a fixed positive integer n ≥ 1 the following
assertions are equivalent:

(i) Tn([x, x∗])− (x ◦ x∗) ∈ Z(R) for all x ∈ R;

(ii) Tn(x ◦ x∗)− [x, x∗] ∈ Z(R) for all x ∈ R;
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(iii) R is commutative.

Proof. It is obvious that (iii) implies both of (i) and (ii). Hence it remains
to prove that (i) ⇒ (iii) and (ii) ⇒ (iii). If T = 0, according to our
Corollary 3.1, we conclude that R is commutative. Hence, we suppose that
T 6= 0.
(i)⇒ (iii). Suppose that R satisfies

Tn([x, x∗])− (x ◦ x∗) ∈ Z(R) for all x ∈ R.(3.17)

Substituting x+ y∗ in place of y in (3.17), we obtain

Tn([x, y])− (x ◦ y) + Tn([y∗, x∗])− (y∗ ◦ x∗) ∈ Z(R) for all x, y ∈ R.(3.18)

Taking ys instead of y in (3.18) where s ∈ S(R)∩Z(R)\{0} and using
Lemma 2.1, we arrive at

Tn([x, y])− (x ◦ y)− Tn([y∗, x∗]) + (y∗ ◦ x∗) ∈ Z(R) for all x, y ∈ R.(3.19)

Combining (3.18), (3.19) and using the fact that characteristic of R is
different from two, we deduce that

Tn([x, y])− (x ◦ y) ∈ Z(R) for all x, y ∈ R.(3.20)

In particular for x = y, (3.20) implies x2 ∈ Z(R) for all x ∈ R. Replac-
ing x by x2 + y in the last expression and using it with char(R) 6= 2, we
obtain x2y ∈ Z(R) for all x, y ∈ R. By Lemma 2.1, it is easy to see that
R is commutative.
(ii)⇒ (iii). By the hypothesis, we have

Tn(x ◦ x∗)− [x, x∗] ∈ Z(R) for all x, y ∈ R.(3.21)

Taking x+ y∗ in place of y in (3.21), we obtain

Tn(x ◦ y)− [x, y] + Tn(y∗ ◦ x∗)− [y∗, x∗] ∈ Z(R) for all x, y ∈ R.(3.22)

Letting ys in place of y in (3.22) where s ∈ S(R)∩Z(R)\{0} and using
Lemma 2.1, we arrive at

Tn(x ◦ y)− [x, y]− Tn(y∗ ◦ x∗) + [y∗, x∗] for all x, y ∈ R.(3.23)
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Prime rings with involution involving left multipliers 373

Combining (3.22) and (3.23), we deduce

Tn(x ◦ y)− [x, y] ∈ Z(R) for all x, y ∈ R.(3.24)

In particular for x = y, by using the characteristic of R is different from
two, (3.24) implies Tn(x)x ∈ Z(R) for all x ∈ R. Replacing y by x2 in
(3.24) and using Lemma 2.1, we arrive at either Tn(x2) = 0 or x ∈ Z(R)
for all x ∈ R. If there is x0 ∈ R such that Tn(x20) = 0, choosing x = x20 and
y = x20y in (3.24), we arrive at x

2
0[x

2
0, y] ∈ Z(R) for all y ∈ R. By Lemma

2.1, we obtain x20 ∈ Z(R) and from the above, we conclude that x2 ∈ Z(R)
for all x ∈ R which forces that R is commutative. This completes the proof
of theorem.

The following example demonstrates that the restriction of the second
kind involution in the hypotheses of the above theorem is indispensable.

Example 3.1. Let R =

(Ã
α β
γ δ

!
| α, β, γ, δ ∈ Z

)
. It is obvious that

R is prime ring. Next, define mappings T : R → R by T

Ã
α β
γ δ

!
=Ã

α β
0 0

!
, and ∗ : R → R such that

Ã
α β
γ δ

!∗
=

Ã
δ −β
−γ α

!
. Ob-

viously, Z(R) =
(Ã

a 0
0 a

!
| a ∈ Z

)
. Then x∗ = x for all x ∈ Z(R),

and hence Z(R) ⊆ H(R), which shows that the involution 0∗0 is of the
first kind. Moreover, T is a nonzero left multiplier on R which satisfies the
conditions:

(i) Tn([x, x∗]) ∈ Z(R) for all x ∈ R;

(ii) Tn(x ◦ x∗) ∈ Z(R) for all x ∈ R;

(iii) Tn(x ◦ x∗)± [x, x∗] ∈ Z(R) for all x ∈ R;

(iv) Tn([x, x∗])± (x ◦ x∗) ∈ Z(R) for all x ∈ R.

However, R is not commutative.

Theorem 3.3. LetR be a prime ring with involution 0∗0 of the second kind
such that the characteristic of R is different from two. If R admits nonzero
left multipliers S and T , then the following assertions are equivalent:
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(i) [S(x), T (x∗)] ∈ Z(R) for all x ∈ R;

(ii) [S(x), T (x∗)]− x ◦ x∗ ∈ Z(R) for all x ∈ R;

(iii) R is commutative.

Proof. Note that (iii) implies both of (i) and (ii) is clear. It remains
to show that (i)⇒ (iii) and (ii)⇒ (iii).
(i)⇒ (iii). In view of the hypothesis, we have

[S(x), T (x∗)] ∈ Z(R) for all x ∈ R.(3.25)

Replacing x by x+ y∗ in (3.25) and using it with a simple calculation,
we obtain

[S(x), T (y)] + [S(y∗), T (x∗)] ∈ Z(R) for all x, y ∈ R.(3.26)

Putting ys instead of y where s ∈ S(R)∩Z(R)\{0} in (3.26) and using
Lemma 2.1, we arrive at

[S(x), T (y)]− [S(y∗), T (x∗)] ∈ Z(R) for all x, y ∈ R.(3.27)

Calculating the sum of the two relations (3.26), (3.27) and applying the
fact that the characteristic of R is different from two, we get [S(x), T (y)] ∈
Z(R) for all x, y ∈ R. Replacing y by yS(x), we get [S(x), T (y)]S(x) ∈
Z(R) for all x, y ∈ R, and by Lemma 2.1, we deduce that [S(x), T (y)] = 0
or S(x) ∈ Z(R) for all x, y ∈ R, both cases lead to [S(x), T (y)] = 0 for all
x, y ∈ R. Substituting yrz in place of y in the last expression, we can easily
conclude that T (y)R[S(x), z] = {0} for all x, y, z ∈ R. Since T 6= {0}, by
primeness of R, we find that S(x) ∈ Z(R) for all x ∈ R and Lemma 2.2
forces that R is commutative.
(ii)⇒ (iii) We have, from assumption

[S(x), T (x∗)]− x ◦ x∗ ∈ Z(R) for all x ∈ R.(3.28)

Linearizing (3.28) and using the same techniques as we have already
used above, we find that

[S(x), T (y)]− x ◦ y ∈ Z(R) for all x, y ∈ R.(3.29)

Replacing y by yS(x) in (3.29), we arrive at

[S(x), T (y)]S(x)− x ◦ yS(x) ∈ Z(R) for all x, y ∈ R(3.30)
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and therefore

([S(x), T (y)]− x ◦ y)S(x) + y([S(x), x]) ∈ Z(R) for all x, y ∈ R.(3.31)

Applying (3.29) in the relation (3.31), we obtain

y[S(x), x]S(x) = S(x)y[S(x), x] for all x, y ∈ R.(3.32)

Replacing y by yt in (3.32) and using it again, we arrive at

[S(x), y]t[S(x), x] = 0 for all x, y, t ∈ R

which can be written as

[S(x), x]R[S(x), x] = {0} for all x ∈ R.

Since R is prime, we find that [S(x), x] = 0 for all x ∈ R. In this case,
(3.31) becomes

([S(x), T (y)]− x ◦ y)S(x) ∈ Z(R) for all x, y ∈ R.(3.33)

Invoking Lemma 2.1, in the above relation, we find that

[S(x), T (y)]− x ◦ y = 0 or S(x) ∈ Z(R) for all x, y ∈ R.(3.34)

Suppose there exists x0 ∈ R such that

[S(x0), T (y)] = x0 ◦ y for all y ∈ R.(3.35)

Replacing y by yt in (3.35), we can easily find that T (y) [S (x0) , t] =
y[x0, t] for all y, t ∈ R. Taking again y2r in place of y, we arrive at
[T (y) , y]R [S (x0) , t] = {0} for all y, t ∈ R. Since R is prime we ob-
tain either [T (y) , y] = 0 for all y ∈ R or S (x0) ∈ Z (R). In this case,
(3.34) becomes [T (y) , y] = 0 for all y ∈ R or R is commutative by Lemma
2.2.
Now assume the first case and replacing y by S (x0) in (3.35), we get x0 ◦
S (x0) = 0. Since [S (x0) , x0] = 0, by the last conclusion we can conclude
x0S(x0) = S(x0)x0 = S(x20) = 0.

In this case, for x = x20, (3.29) implies x
2
0 ◦ y ∈ Z(R) for all y ∈ R.

Replacing y by x0y in the last expression and using it again with Lemma
2.1, we arrive at x20 ◦ y = 0 or x0 ∈ Z(R) for all y ∈ R. Putting ty instead
of y, we get either R[x20, y] = {0} or x0 ∈ Z(R) for all y ∈ R which can be
further written as x20 ∈ Z(R) this with (3.35) forces that x2 ∈ Z(R) for all
x ∈ R and in this case R is commutative.
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Theorem 3.4. LetR be a prime ring with involution 0∗0 of the second kind
such that the characteristic of R is different from two. If R admits nonzero
left multipliers S and T , then the following assertions are equivalent:

(i) S(x) ◦ T (x∗) ∈ Z(R) for all x ∈ R;

(ii) S(x) ◦ T (x∗)− [x, x∗] ∈ Z(R) for all x ∈ R;

(iii) R is commutative.

Proof. It is immediate that (iii) implies both of (i) and (ii). It remains
to show that (i)⇒ (iii) and (ii)⇒ (iii).
(i)⇒ (iii). We are given that

S(x) ◦ T (x∗) ∈ Z(R) for all x ∈ R.

Replacing x by x+ y∗ in the above expression and using it, we get

S(x) ◦ T (y) + S(y∗) ◦ T (x∗) ∈ Z(R) for all x, y ∈ R.(3.36)

Putting ys instead of y where s ∈ S(R)∩Z(R)\{0} in (3.36) and using
Lemma 2.1, we arrive at

S(x) ◦ T (y)− S(y∗) ◦ T (x∗) ∈ Z(R) for all x, y ∈ R.(3.37)

Combining (3.36), (3.37) and applying the fact that the characteristic
of R is different from two, we get

S(x) ◦ T (y) ∈ Z(R) for all x, y ∈ R.(3.38)

Replacing y by yS(x) in (3.38) one can see that (S(x) ◦ T (y))S(x) ∈
Z(R) for all x, y ∈ R. By Lemma 2.1, we deduce

S(x) ◦ T (y) = 0 or S(x) ∈ Z(R) for all x, y ∈ R.(3.39)

If there is x0 ∈ R such that S(x0) ∈ Z(R), then (3.38) implies that
2S(x0)T (y) ∈ Z(R) for all y ∈ R and by Lemma 2.1, we arrive at S(x0) = 0
or T (y) ∈ Z(R) for all y ∈ R. Since T 6= 0, either S(x0) = 0 or R is
commutative by Lemma 2.2. In this case, (3.39) becomes

S(x) ◦ T (y) = 0 for all x, y ∈ R or R is commutative.(3.40)

If S(x) ◦ T (y) = 0 for all x, y ∈ R, then S(x)T (y) = −T (y)S(x) for all
x, y ∈ R. Substituting yz instead of y, we arrive at T (y)[S(x), z] = 0 for all
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x, y, z ∈ R, from which we can easily conclude that T (y)R[S(x), z] = {0}
for all x, y, z ∈ R. Since T 6= 0, in view of the primeness of R, we find that
S(x) ∈ Z(R) for all x ∈ R which forces that R is commutative.
(ii)⇒ (iii). Suppose that

S(x) ◦ T (x∗)− [x, x∗] ∈ Z(R) ∈ Z(R) for all x ∈ R.(3.41)

Replacing x by x+ y∗ in (3.41) and using it again, we find that

S(x) ◦ T (y)− [x, y] ∈ Z(R) for all x, y ∈ R.(3.42)

Replacing y by yS(x) in (3.42), we arrive at

(S(x) ◦ T (y)− [x, y])S(x)− y([S(x), x]) ∈ Z(R) for all x, y ∈ R.(3.43)

This implies that

y([S(x), x])S(x) = S(x)y([S(x), x]) for all x, y ∈ R.(3.44)

Since this equation is the same as (3.32), by reasoning as above, it is
obvious to see that [S(x), x] = 0 for all x ∈ R in this case and by using
Lemma 2.1, the equation (3.43) becomes

S(x) ◦ T (y) = [x, y] or S(x) ∈ Z(R) for all x, y ∈ R.(3.45)

Suppose there is x0 ∈ R such that S(x0) ∈ Z(R), then replacing
x by x0 and y by yx0 respectively in (3.42), we obtain (2S(x0)T (y) −
[x0, y])x0 ∈ Z(R) for all y ∈ R from which and with Lemma 2.1, we obtain
2S(x0)T (y)− [x0, y] = 0 or x0 ∈ Z(R) for all y ∈ R. Suppose we have the
second case, then (3.42) becomes 2S(x0)T (y) ∈ Z(R) for all y ∈ R. Using
Lemma 2.1 with the fact that the characteristic of R is different from two,
we find that S(x0) = 0 or T (y) ∈ Z(R) for all y ∈ R. By Lemma 2.2, we
arrive at S(x0) ◦ T (y) = [x0, y] for all y ∈ R or R is commutative. In this
case, it follows from (3.45) that

S(x) ◦ T (y) = [x, y] for all x, y ∈ R or R is commutative.(3.46)

Now suppose that

S(x) ◦ T (y) = [x, y] for all x, y ∈ R.(3.47)
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Replacing y by yt in (3.47), we obtain

(S(x) ◦ T (y))t+ T (y)[t, S(x)] = [x, yt] for all x, y, t ∈ R.

In light of (3.47), the above relation yields that

[x, y]t+ T (y)[t, S(x)] = [x, yt] for all x, y, t ∈ R.

By a simple calculation, we can conclude that

T (y)[t, S(x)] = [x, yt]− [x, y]t = y[x, t] for all x, y, t ∈ R.(3.48)

Putting yu instead of y in the latter equation, we get

T (y)u[t, S(x)] = yu[x, t] for all u, x, y, t ∈ R.

Using (3.47), we have

T (y)u[t, S(x)] = yT (u)[t, S(x)] for all u, x, y, t ∈ R.

Replacing t by rt, The last equation can be further written as

(T (y)u− yT (u))R[t, S(x)] = {0} for all u, x, y, t ∈ R.

As R is prime, by Lemma 2.2, we obtain T (y)u = yT (u) for all u, y ∈ R
or R is commutative. Suppose we have the first case, then T is commuting
and putting T (x) instead of t in (3.48), we obtain T (y)R[T (x), S(x)] =
{0} for all x, y ∈ R. The primeness of R gives [T (x), S(x)] = 0 for all
x ∈ R. Taking y = x in (3.47), we have S(x) ◦ T (x) = 0 for all x ∈ R.
Calculating the sum of these two relations yields S(x)T (x) = T (x)S(x) = 0
for all x ∈ R. Then, a linearization of T (x)S(x) = 0 for all x ∈ R forces
T (x)S(y) + T (y)S(x) = 0 for all x, y ∈ R and by left multiplying it by
S(x), we arrive at S(x)T (y)S(x) = 0 for all x, y ∈ R. Putting yt instead
of y and using the primeness of R, we find that S(x)T (y) = 0 for all
x, y ∈ R. Proceeding as above, we can deduce that S = T = 0, yielding a
contradiction. Thereby the proof is completed.

Theorem 3.5. Let R be a noncommutative prime ring with extended cen-
troid C and involution 0∗0 of the second kind such that the characteristic
of R is different from two and let S, T be nonzero left multipliers on R.
Then there exists λ ∈ C such that S = λT if R has one of the following
properties:
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(i) [S(x) ◦ T (x∗)]− [x, x∗] ∈ Z(R) for all x ∈ R.

(ii) S(x) ◦ T (x∗)− x ◦ x∗ ∈ Z(R) for all x ∈ R.

Proof. (i) By assumption, we have

[S(x), T (x∗)]− [x, x∗] ∈ Z(R) for all x ∈ R.(3.49)

Linearizing (3.49) and using similar argument as we have used above,
we get

[S(x), T (y)]− [x, y] ∈ Z(R) for all x, y ∈ R.(3.50)

Replacing y by yS(x) in (3.50), we arrive at

[S(x), T (y)]S(x)− [x, yS(x)] ∈ Z(R) for all x, y ∈ R.(3.51)

Thus our identity reduces to

([S(x), T (y)]− [x, y])S(x)− y([x, S(x)]) ∈ Z(R) for all x, y ∈ R.(3.52)

It now follows from (3.50) and (3.52) that

y([x, S(x)]S(x) = y([x, S(x)] for all x, y ∈ R.(3.53)

Moreover, since this equation is the same as (3.32), then reasoning as
above we can show that [x, S(x)] = 0 for all x ∈ R. Therefore, by using
Lemma 2.1, equation (3.52) becomes

[S(x), T (y)] = [x, y] or S(x) ∈ Z(R) for all x, y ∈ R.(3.54)

If there is x0 ∈ R such that S(x0) ∈ Z(R) by (3.50), we obtain [x0, y] ∈
Z(R) for all y ∈ R from which it is very easy to prove that x0 ∈ Z(R).
Therefore, by (3.54), we must have

[S(x), T (y)] = [x, y] for all x, y ∈ R.(3.55)

Replacing y by yt in (3.55), thus we can write

[S(x), T (y)]t+ T (y)[S(x), t] = [x, yt] for all x, y, t ∈ R.

Using (3.55), we get

[x, y]t+ T (y)[S(x), t] = [x, yt] for all x, y, t ∈ R.
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By a simple calculation, it is very easy to conclude that

T (y)[S(x), t] = [x, yt]− [x, y]t = y[x, t] for all x, y, t ∈ R.(3.56)

Since (3.56) is the same as (3.48), then proceeding on similar lines after
(3.48), we can prove [S(x), T (x)] = 0 for all x ∈ R, in this case Lemma 2.2
forces the required result.
(ii) Assuming that

S(x) ◦ T (x∗)− x ◦ x∗ ∈ Z(R) for all x ∈ R.(3.57)

Replacing x by x+ y∗ in (3.57) and using it, we obtain

S(x) ◦ T (y)− x ◦ y ∈ Z(R) for all x, y ∈ R.(3.58)

Replacing y by yS(x) in (3.58) and developing this expression, we obtain

(S(x) ◦ T (y)− (x ◦ y)S(x) + y[S(x), x] ∈ Z(R) for all x, y ∈ R.(3.59)

Which implies that S(x)y[S(x), x] = y[S(x), x]S(x) for all x, y ∈ R,
using the same previous techniques, we arrive at [S(x), x] = 0 for all x ∈ R,
in this case, (3.59) becomes

(S(x) ◦ T (y)− x ◦ y)S(x) ∈ Z(R) for all x, y ∈ R.(3.60)

By Lemma 2.1, (3.60) forces that

S(x) ◦ T (y) = x ◦ y or S(x) ∈ Z(R) for all x, y ∈ R.(3.61)

We may assume that there exists x0 ∈ R such that S(x0) ∈ Z(R).
Using (3.58) and choosing x = x0 and y = ux0, then we get (2S(x0)T (u)−
x0 ◦ u)x0 ∈ Z(R) for all u ∈ R and by Lemma 2.1, it follows that either
2S(x0)T (u) − x0 ◦ u = 0 or x0 ∈ Z(R) for all u ∈ R. Suppose we have
the second case, then (3.58) becomes 2S(x0)T (y) − 2x0y ∈ Z(R) for all
y ∈ R and replacing y by yt and using the fact that the characteristic
of R is different from two, we obtain (S(x0)T (y) − x0y)t ∈ Z(R) for all
y, t ∈ R by Lemma 2.1, we find that S(x0)T (y) = x0y for all y ∈ R or R is
commutative. In this case, (3.61) becomes

S(x) ◦ T (y) = x ◦ y for all x, y ∈ R or R is commutative.(3.62)

Suppose that

rvidal
Cuadro de texto
356



Prime rings with involution involving left multipliers 381

S(x) ◦ T (y) = x ◦ y for all x, y ∈ R.(3.63)

Replacing y by yt in (3.63), we obtain

(S(x) ◦ T (y))t+ T (y)[t, S(x)] = x ◦ yt for all x, y, t ∈ R.

Using (3.63), the last expression becomes

(x ◦ y)t+ T (y)[t, S(x)] = x ◦ yt for all x, y, t ∈ R.

Accordingly, we get

T (y)[t, S(x)] = y[t, x] for all x, y, t ∈ R.(3.64)

Since (3.64) is the same as (3.56), proceeding in the similar manner as
above, we conclude the required result.

The following corollaries are immediate consequences of the above re-
sult.

Corollary 3.4. LetR be a prime ring with involution 0∗0 of the second kind
such that the characteristic of R is different from two. If R admits nonzero
left multipliers S and T , then the following assertions are equivalent:

(i) S(x) ◦ T (x∗) + [x, x∗] ∈ Z(R) for all x ∈ R;

(ii) [S(x), T (x∗)] + x ◦ x∗ ∈ Z(R) for all x ∈ R;

(iii) R is commutative.

Corollary 3.5. Let R be a noncommutative prime ring with extended
centroid C and involution 0∗0 of the second kind such that the characteristic
of R is different from two and let S, T be nonzero left multipliers on R.
Then there exists λ ∈ C such that S = λT if R has one of the following
properties:

(i) [S(x), T (x∗)] + [x, x∗] ∈ Z(R) for all x ∈ R;

(ii) S(x) ◦ T (x∗) + x ◦ x∗ ∈ Z(R) for all x ∈ R;
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The following example demonstrates that the condition ”primeness of R”
in various Theorems is crucial.

Example 3. Let R =

(⎛⎜⎝ 0 α β
0 0 γ
0 0 0

⎞⎟⎠ | α, β, γ ∈ S
)
where S is a non-

commutative ring of characteristic different from 2 such that s2 = 0 for all
s ∈ S. It is obvious that R is not prime ring. Next, we define the maps

T, S, ∗ : R → R by T

⎛⎜⎝ 0 α β
0 0 γ
0 0 0

⎞⎟⎠ =

⎛⎜⎝ 0 0 0
0 0 γ
0 0 0

⎞⎟⎠, S
⎛⎜⎝ 0 α β
0 0 γ
0 0 0

⎞⎟⎠ =

⎛⎜⎝ 0 0 α
0 0 0
0 0 0

⎞⎟⎠ and

⎛⎜⎝ 0 α β
0 0 γ
0 0 0

⎞⎟⎠
∗

=

⎛⎜⎝ 0 γ −β
0 0 α
0 0 0

⎞⎟⎠. It is easy to see that
T is a nonzero left multiplier and 0∗0 an involution of the second kind on R
which satisfies the conditions:

(i) Tn([x, x∗]) ∈ Z(R);

(ii) Tn(x ◦ x∗) ∈ Z(R);

(ii) Tn([x, x∗])± x ◦ x∗ ∈ Z(R);

(iv) Tn(x ◦ x∗)± [x, x∗] ∈ Z(R)

(v) [S(x), T (x∗)] ∈ Z(R)

(vi) [S(x), T (x∗)]± (x ◦ x∗) ∈ Z(R);

(vii) S(x) ◦ T (x∗) ∈ Z(R);

(viii) S(x) ◦ T (x∗)± [x, x∗] ∈ Z(R);

for all x ∈ R. However, R is not commutative.
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