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1. Introduction

Due to its applications in a few different disciplines of technical sciences
and applied sciences, fractional calculus has gained significant importance
in the last two decades. One of the main factors that represent the util-
ity/prevalence of the subject is that fractional order derivatives and inte-
grals are shown to be better devices for the representation of real com-
ponents than integer orders. We refer the reader to the papers [6, 8, 11,
18, 19, 20, 21, 22, 23, 26, 27, 4, 30, 3, 17] for examples and information,
and the references cited therein. A large part of the work on the sub-
ject was found to depend on Riemann-Liouville and Caputo FDEs. Apart
from Riemann-Liouville and Caputo derivatives, the collected works have
other types of fractional derivatives, which are Hadamard [10], known as
Hadamard derivatives and vary from the previous ones as the logarithmic
function of the arbitrary exponent is included in their definition. A detailed
description of Hadamard fractional derivative and integral can be found in
[2, 1, 7, 14, 16, 29, 28, 25] and references cited therein. Note that the ini-
tial Hadamard type and BVPs are being investigated at their underlying
level and need further consideration. Recently, in [15], Qinghua et.al dis-
cussed the inequality of Lyapunov-type with fractional Hadamard deriva-
tives. Wang et.al [13] also studied Hadamard fractional BVP in nonlocal
Hadamard with integral and discrete boundary conditions. The author has
recently investigated FDEs involving Hadamard type derivatives with the
nonlocal integral boundary conditions of the Hadamard type in [24]:

Dαu(t) + a(t)f(u(t)) = 0, t ∈ [1,∞],
u(1) = 0, Dα−1u(∞) = λi

HI
βi
u(η).

(1.1)

This study focuses on the existence and uniqueness of solutions to the
following BVP of Caputo-Hadamard fractional-order differential equations
(CHFDEs)

CD
ζ
q(t) = h(t, q(t)), t ∈ [1, e],

q(1) = 0, Dξq(ϕ) =
k−2X
j=1

'jD
ξq((j),

1 < ϕ < (1 < (2 < · · · < (k−2 < e,

(1.2)

where CD
ζ
denote the Caputo-Hadamard fractional derivative (CHFD) of

order 1 < ζ ≤ 2, Dξ denote the Hadamard fractional derivative (HFD) of
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order 0 < ξ < 1, and h: J ×R → R is given continuous function and 'j

(j = 1, 2, ..., k−2) are positive real constants. Here it should be emphasized
that the multi-point conditions given by (1.2), is new, and can be construed
as follows: the condition is proportional to the sum of their multi-point val-
ues with lower-order fractional derivative at the unknown point (t = ϕ) of
the interval with lower-order fractional derivative. Here we note that (1.2)
consists of CHFDEs with nonlinearities involving unknown function and
non-local multi-point boundary conditions. Whereas problem (1.1) deals
with Hadamard FDEs with nonlinearities involving unknown function and
nonlocal Hadamard type fractional integral boundary conditions. The rest
of the paper is arranged as follows: the preliminary section covers some fun-
damental concepts of fractional calculus, with fundamental lemma linked
to the given problem. The existence and uniqueness results are obtained
from the nonlinear alternative Leray-Schauer, the Leray-Schauder Degree
Theory, the fixed point theorems of Krasnoselskii, Schaefer, Banach, and
Nonlinear contractions in Section 3. The results are validated by providing
examples in Section 4.

2. Preliminaries

We start with some fundamental definitions, semigroup properties, and
lemmas with results [7, 11].

Definition 2.1.
Let 0 ≤ b ≤ c ≤ ∞ be finite or infinite interval of the half-axis R+. The

Hadamard fractional integrals (HFIs) of order ζ ∈ C are defined by

(Iζb+h)(t) =
1

Γ(ζ)

Z t

b

µ
log

t

s

¶ζ−1
h(s)

ds

s
, b < t < c,

and

(Iζc−h)(t) =
1

Γ(ζ)

Z c

t

µ
log

s

t

¶ζ−1
h(s)

ds

s
, b < t < c.

Definition 2.2. The left and right-sided HFDs of order ζ ∈ C with
R(ζ) ≥ 0 on (b, c) and b < t < c are defined by

(Dζ
b+h)(t) =

µ
t
d

dt

¶n 1

Γ(n− ζ)

Z t

b

µ
log

t

s

¶n−ζ−1
h(s)

ds

s
,
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and

(Dζ
c−h)(t) =

µ
− t

d

dt

¶n 1

Γ(n− ζ)

Z c

t

µ
log

s

t

¶n−ζ−1
h(s)

ds

s
,

where n = [R(ζ)] + 1.

If R(ζ) > 0, R(ς) > 0 and 0 < b < c <∞, then we haveµ
Iζb+

µ
log

s

b

¶ς−1¶
(t) =

Γ(ς)

Γ(ς + ζ)

µ
log

t

b

¶ς+ζ−1
,µ

Iζc−

µ
log

b

s

¶ς−1¶
(t) =

Γ(ς)

Γ(ς + ζ)

µ
log

c

t

¶ς+ζ−1
,µ

Dζ
b+

µ
log

s

b

¶ς−1¶
(t) =

Γ(ς)

Γ(ς − ζ)

µ
log

t

b

¶ς−ζ−1
,µ

Dζ
c−

µ
log

b

s

¶ς−1¶
(t) =

Γ(ς)

Γ(ς − ζ)

µ
log

c

t

¶ς−ζ−1
.

Let ζ, ς ∈ R such that R(ζ) > R(ς) > 0. If 0 < b < c < ∞ and
1 ≤ p <∞, then for h ∈ Lp(b, c),

Dς
b+I

ζ
b+h = Iζ−ςb+ h and Dς

c−I
ζ
c−h = Iζ−ςc− h.

Definition 2.3. Let 0 < b < c < ∞, R(ζ) ≥ 0, n = [R(ζ) + 1]. The left
and right CHFDs of order ζ are respectively defined by

(CDζ
b+h)(t) = Dζ

b+[h(s)−
n−1X
k=0

δkh(b)

k!

µ
log

s

b

¶k
](t),

and

(CDζ
c−h)(t) = Dζ

c−[h(s)−
n−1X
k=0

(−1)kδkh(c)
k!

µ
log

c

s

¶k
](t).
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Let ζ ≥ 0, and n = [ζ] + 1. If h ∈ ACn

δ [b, c], where 0 < b < c < ∞.
Then CDζ

b+h(t) and
CDζ

c−h(t) exist everywhere on [b, c] and

(a) if ζ /∈N0,

(CDζ
b+h)(t) =

1

Γ(n− ζ)

Z t

b

µ
log

t

s

¶n−ζ−1
δnh(s)

ds

s
,(2.1)

(CDζ
c−h)(t) =

(−1)n
Γ(n− ζ)

Z c

t

µ
log

s

t

¶n−ζ−1
δnh(s)

ds

s
;(2.2)

(b) if ζ ∈N0, then

(CDζ
b+h)(t) = δnh(t), (CDζ

c−h)(t) = (−1)nδnh(t).

In particular,

(CD0
b+h)(t) = h(t), (CD0

c−h)(t) = h(t).

Let ζ ≥ 0, and n = [ζ] + 1. If v(t) ∈ ACn
δ [b, c], then the CHFDE

CDζ
b+v(t) = 0

has a solution:

v(t) =
n−1X
k=0

ak

µ
log

t

b

¶k
and the following formula holds:

Iζb+
CD

ζ
b+v(t) =

n−1X
k=0

ak

µ
log

t

b

¶k
where ak ∈ R, k = 1, 2, · · ·n− 1.

We define space Q = {q(t) : q(t) ∈ C([1, e],R)} endowed with the norm
kqk = sup{|q(t)|, t ∈ [1, e]}. Obviously (Q, k · k) is a Banach space. Let
AC[1, e] be the space functions that are absolutely continuous on [1, e]. Let
us introduce the space ACn

δ [1, e], which consists of those functions h by
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ACn
δ [1, e] =

½
h : [1, e]→ C, δn−1h(t) ∈ AC[1, e], δ = t

d

dt

¾
.

Given ĥ ∈ C([1, e],R), the BVP

CD
ζ
q(t) = ĥ(t), t ∈ [1, e],

q(1) = 0, Dξq(ϕ) =
k−2X
j=1

'jD
ξq((j),

1 < (1 < (2 < · · · < (k−2 < e,

(2.3)

is equivalent to the integral equation

q(t) =
log t

Θ

⎡⎣HIζ−ξĥ(ϕ)− k−2X
j=1

'j
HIζ−ξĥ((j)

⎤⎦+ HIζ ĥ(t),(2.4)

with

Θ =
1

Γ(2− ξ)

⎡⎣ k−2X
j=1

'j(log (j)
1−ξ − (logϕ)1−ξ

⎤⎦.(2.5)

3. Existence Results : The Single-Valued Case

In view of Lemma 2, we define an operator F : Q→ Q as

F (q)(t) =
log t

Θ

⎡⎣HIζ−ξh(s, q(s))(ϕ)− k−2X
j=1

'j
HIζ−ξh(s, q(s))((j)

⎤⎦
+ HIζh(s, q(s))(t).(3.1)

To run the interference for the proof, we introduce the notation:

Ω =
1

Γ(ζ + 1)
+

1

ΘΓ(ζ − ξ + 1)

⎛⎝(logϕ)ζ−ξ + k−2X
j=1

'j(log (j)
ζ−ξ

⎞⎠.(3.2)
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Our first existence result is based on Leray-Schauder nonlinear alterna-

tive.
[9] Let X be a Banach space, E be a closed convex subset of U , S an

open subset of E and 0 ∈ S. Suppose that F : S → E is a continuous,
compact ((i.e.,) F (S) is a relatively compact subset of E) map. Then either
(i) F has a fixed point in S, or;
(ii) there is a s ∈ ∂S (the boundary of S in E) and ν ∈ (1, e) with
s = νF (s).

Assume that h : [1, e] × R → R be a continuous function and the
following conditions hold :
(G1) there exists a function p ∈ C([1, e],R+), and φ : R+ → R+ nonde-
creasing such that

|h(t, q)| ≤ p(t)φ(kqk) for each (t, q) ∈ [1, e]×R;

(G2) there exists a number M > 0 such that

M

kpkφ(M)
> HIζp(s)(e) +H

H =
1

Θ

⎡⎣HIζ−ξh(s, q(s))(ϕ)− k−2X
j=1

'j
HIζ−ξh(s, q(s))((j)

⎤⎦.
Then, there exists at least one solution for the problem (1.2) on [1, e].

Proof. To begin with, the operator F : Q→ Q is defined by (3.1). Next,
we show that F maps bounded sets into bounded sets in C([1, e],R). For
a positive number ρ, let Bρ = {q ∈ C([1, e],R) : kqk ≤ ρ} be a bounded set
in C([1, e],R). Then, for each q ∈ Bρ, we have

|(Fq)(t)| ≤ log t

Θ

⎡⎣HIζ−ξ|h(s, q(s))|(ϕ) + k−2X
j=1

'j
HIζ−ξ|h(s, q(s))|((j)

⎤⎦
+HIζ |h(s, q(s))|(t)

≤ φ(kqk)
Θ

⎡⎣HIζ−ξp(s)(ϕ) + k−2X
j=1

'j
HIζ−ξp(s)((j)

⎤⎦+ φ(kqk)HIζp(s)(e),
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and consequently,

kFqk ≤ φ(kρk) 1
Θ

⎡⎣HIζ−ξp(s)(ϕ) + k−2X
j=1

'j
HIζ−ξp(s)((j)

⎤⎦+ φ(kρk)HIζp(s)(e).

We shall proceed to prove that the operator F maps bounded sets into
equicontinuous sets of C([1, e],R). For t1, t2 ∈ [1, e] with t1 < t2, and
q ∈ Bρ is a bounded set of C([1, e],R). Then we have

|(Fq)(t2)− (Fq)(t1)| ≤
| log t2 − log t1|

Θ

⎡⎣HIζ−ξ|h(s, q(s))|(ϕ)
+

k−2X
j=1

'j
HIζ−ξ|h(s, q(s))|((j)

⎤⎦
+|HIζ |h(s, q(s))|(t2)− HIζ |h(s, q(s))|(t1)|

≤ | log t2 − log t1|
Θ

⎡⎣HIζ−ξp(s)(ϕ) + k−2X
j=1

'j
HIζ−ξp(s)((j)

⎤⎦
+
φ(kρk)
Γ(ζ)

¯̄̄̄
¯̄ Z t1

0

∙µ
log

t2
s

¶ζ−1
−
µ
log

t1
s

¶ζ−1¸
p(s)

ds

s

+

Z t2

t1

µ
log

t2
s

¶ζ−1
p(s)

ds

s

¯̄̄̄
¯̄.

Hence we have that right hand side of the above inequality tends to
zero independent of q ∈ Bρ as t2 − t1 → 0. Therefore, the operator F (q) is
equicontinuous and consequently, by Arzela-Ascoli theorem, it is completely
continuous. Next, we show that the boundedness of the set of all solutions
to equations q = νF (q), 0 < ν < 1. Let q be a solution. Then, for t ∈ [1, e],
and using the computations in proving that F is bounded, we have

|(Fq)(t)| ≤ φ(kqk) 1
Θ

⎡⎣HIζ−ξp(s)(ϕ) + k−2X
j=1

'j
HIζ−ξp(s)((j)

⎤⎦
+φ(kqk)HIζp(s)(e)

= H + φ(kqk)HIζp(s)(e).
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In view of (G2), ∃ M 3 kqk =M . Let us set

L = {q ∈ C([1, e],R) : kqk < M}.

Note that the operator F : S → C([1, e],R) is continuous and com-
pletely continuous. From the of choice of S, there is no q ∈ ∂S 3 q =
νF (q), 0 < ν < 1. Consequently, by the Lemma 3, we deduce that F has
a fixed point q ∈ S which is a solution of the problem (1.2). 2

Our second existence result is based on Leray-Schauder degree theory.
Let h : [1, e]×R→ R be a continuous function. Suppose that
(G3) there exists constants 0 ≤ ς < Ω−1, and P > 0 such that
|h(t, q)| ≤ ς|q|+ P ∀ (t, q) ∈ [1, e]×R,

where Ω is defined by (3.2). Then the BVP (1.2) has at least one solution
on [1, e].

Proof. We define an operator F : Q → Q as in (3.1). In view of the
fixed point problem

q = Fq.(3.3)

We shall prove the existence of at least one solution q ∈ C([1, e]) satis-
fying (3.3). Set a ball BR ⊂ C([1, e]), as

BR = {q ∈ Q : max
t∈C([1,e])

|q(t)| < R},

with a constant radius R > 0. Hence, we shall show that F : BR → C([1, e])
satisfies a condition

q = τFq, ∀ q ∈ ∂BR, ∀ τ ∈ [1, e].(3.4)

We set

F (τ, q) = τFq, q ∈ Q, τ ∈ [1, e].

As shown in Theorem 3 we have that the operator F is continuous, uni-
formly bounded and equicontinuous. Then, by the Arzela-Ascoli theorem,
a continuous map gτ defined by gτ (q) = q−F (τ, q) = q−τFq is completely
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continuous. If (3.4) holds, then the following Leray-Schauder degrees are
well defined and by the homotopy invariance of topological degree, it follows
that

deg(gτ , BR, 0) = deg(I − τF,BR, 0) = deg(g,BR, 0)

= deg(g0, BR, 0) = deg(I,BR, 0) = 1 = 0, 0 ∈ BR,

where I denotes the unit operator. By the nonzero property of Leray-
Schauder degree, g1(q) = q−Fq = 0 for atleast one q ∈ BR. Let us assume
that q = τFq for some τ ∈ [1, e] and for all t ∈ [1, e] so that

|(Fq)(t)| ≤ log t

Θ

⎡⎣HIζ−ξ|h(s, q(s))|(ϕ) + k−2X
j=1

'j
HIζ−ξ|h(s, q(s))|((j)

⎤⎦
+HIζ |h(s, q(s))|(t)

≤ ς|q|+ P

⎡⎣ 1
Θ

⎛⎝HIζ−ξp(s)(ϕ) +
k−2X
j=1

'j
HIζ−ξp(s)((j)

⎞⎠
+HIζp(s)(e)

⎤⎦
= (ς|q|+ P )Ω,

which, on taking norm sup
t∈[1,e]

|q(t)| = kqk and solving for kqk, yields

kqk ≤ PΩ

1− ςΩ
.

If R = Ω
1−ςΩ + 1, inequality (3.4) holds. 2

Our third existence result is based on Krasnoselskii’s fixed point theo-
rem.

[12] Let V be a closed convex and nonempty subset of a Banach space
X. Let F1, F2 be the operators 3
(i) F1q1 + F2q2 ∈ V whenever q1, q2 ∈ V ;
(ii) F1 is compact and continuous;
(iii) F2 is a contraction mapping; Then there exists q3 ∈ V such that
q3 = F1q3 + F2q3.

Let h : [1, e]×R→ R be a continuous function such that the following
conditions hold:
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(G4) |h(t, q1)− h(t, q2)| ≤W |q1 − q2|, ∀ t ∈ [1, e], q1, q2 ∈ R,W > 0.

(G5) |h(t, q(t))| ≤ ϑ(t) for (t, q) ∈ [1, e] × R, and ϑ ∈ C([1, e],R+)
with kϑk = max

t∈[1,e]
|ϑ(t)|.

If

⎧⎨⎩W

Θ

⎡⎣⎛⎝
k−2X
j=1

'j(log (j)
ζ−ξ

Γ(ζ − ξ + 1)
+

(logϕ)ζ−ξ

Γ(ζ − ξ + 1)

⎞⎠⎤⎦⎫⎬⎭ < 1.(3.5)

Then, there exists at least one solution for the problem (1.2) on [1, e].

Proof. Let us define Bρ = {q ∈ Q : kqk ≤ ρ}, where ρ ≥ kϑkΩ. To
prove the hypothesis of Lemma 3, we split the operator F given by (3.1)
as F = F1 + F2 on Bρ, where

(F1q)(t) = HIζh(s, q(s))(t),

(F2q)(t) =
log t

Θ

⎡⎣HIζ−ξh(s, q(s))(ϕ)− k−2X
j=1

'j
HIζ−ξh(s, q(s))((j)

⎤⎦.
For q̂1, q̂2 ∈ Bρ,

|(F1q̂1)(t) + (F2q̂2)(t)| ≤ sup
t∈[1,e]

⎧⎨⎩ log tΘ
⎡⎣HIζ−ξ|h(s, q(s))|(ϕ)

+
k−2X
j=1

'j
HIζ−ξ|h(s, q(s))|((j)

⎤⎦+ HIζ |h(s, q(s))|(t)

⎫⎬⎭

≤ kϑk

⎧⎨⎩ 1Θ
⎡⎣ (logϕ)ζ−ξ

Γ(ζ − ξ + 1)
+

µ k−2X
j=1

'j(log (j)
ζ−ξ

¶
Γ(ζ − ξ + 1)

⎤⎦
+

1

Γ(ζ + 1)

⎫⎬⎭
≤ kϑkΩ ≤ ρ,
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which imply that F1q̂1 + F2q̂2 ∈ Bρ.

Now, we will show that F2 is a contraction. Let q1, q2 ∈ R, t ∈ [1, e].
Then, using the assumption (G4) together with (3.5), we get

kF2q1 − F2q2k ≤
W

Θ

⎡⎣
µ k−2X

j=1

'j(log (j)
ζ−ξ

¶
Γ(ζ − ξ + 1)

+
(logϕ)ζ−ξ

Γ(ζ − ξ + 1)

⎤⎦kp1 − p2k.

By the assumption (G4), it follows that the operator F2 is contraction.
Next, we will show that F1 is compact and continuous. Continuity of h
implies that the operator F1 is continuous. Also, F1 is uniformly bounded
on Bρ as

kF1qk ≤
kϑk

Γ(ζ + 1)
.

Moreover, with sup
(t,q)∈[1,e]×Bρ

|h(t, q)| = ĥ <∞ and t1 < t2, t1, t2 ∈ [1, e],

we have

|(F1q)(t2)− (F1q)(t1)| = |HIζ |h(s, q(s))|(t2)− HIζ |h(s, q(s))|(t1)|

≤ ĥ

Γ(ζ)

¯̄̄̄
¯̄ Z t1

0

∙µ
log

t2
s

¶ζ−1
−
µ
log

t1
s

¶ζ−1¸ds
s

+

Z t2

t1

µ
log

t2
s

¶ζ−1ds
s

¯̄̄̄
¯̄.(3.6)

Clearly, the right hand sides of (3.6) tends to zero independent of q
as t2 − t1 → 0. Thus, F1 is relatively compact on Bρ. Hence, by the
Arzela-Ascoli Theorem, F1 is compact on Bρ. Thus, all the assumptions
of Lemma 3 are satisfied. Therefore, there exists at least one solution for
problem (1.2) on [1, e]. 2

Our next existence result is based on Schaefer’s fixed point theorem.
[9] Let X be a Banach space. Assume that F : Q→ Q is a completely

continuous operator and the set A = {q ∈ Q|q = εFq, 0 < ε < 1} is
bounded. Then F has a fixed point in Q.

Let h : [1, e] × R → R be a continuous function. Assume that there
exists a positive constant cK such that |h(t, q)| ≤ cK for t ∈ [1, e], p ∈ R.
Then, there exists atleast one solution for problem (1.2) on [1, e].
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Proof. To begin with, we depict the operator F : Q→ Q is completely
continuous. By continuity of the function h, it follows that the operator F
is continuous.

For a positive constant ρ, let Bρ = {q ∈ Q : kqk ≤ ρ} be a bounded set
in Q. Then, for t ∈ [1, e], we derive

|(Fq)(t)| ≤ log t

Θ

⎡⎣ k−2X
j=1

'j
HIζ−ξ|h(s, q(s))|((j) + HIζ−ξ|h(s, q(s))|(ϕ)

⎤⎦
+HIζ |h(s, q(s))|(t)

≤ cK
⎧⎨⎩ 1Θ

⎡⎣ k−2X
j=1

'j
HIζ−ξ(1)((j) +

HIζ−ξ(1)(ϕ)

⎤⎦+ HIζ(1)(e)

⎫⎬⎭
= cKΩ.

Hence it follows that F is uniformly bounded. We shall proceed to
prove that the operator F is equicontinuous. For t1, t2 ∈ [1, e] with t1 < t2,
we have

|(Fq)(t2)− (Fq)(t1)| ≤
| log t2 − log t1|

Θ

⎡⎣HIζ−ξ|h(s, q(s))|(ϕ)
+

k−2X
j=1

'j
HIζ−ξ|h(s, q(s))|((j)

⎤⎦
+HIζ |h(s, q(s))|(t2)− HIζ |h(s, q(s))|(t1)

≤
cK| log t2 − log t1|

Θ

⎡⎣HIζ−ξ(ϕ) + k−2X
j=1

'j
HIζ−ξ((j)

⎤⎦
+

cK
Γ(ζ)

¯̄̄̄
¯̄ Z t1

0

∙µ
log

t2
s

¶ζ−1
−
µ
log

t1
s

¶ζ−1¸ds
s

+

Z t2

t1

µ
log

t2
s

¶ζ−1ds
s

¯̄̄̄
¯̄.

Hence we have that right hand side of the above inequality tends to
zero independent of q ∈ Bρ as t2 − t1 → 0. Therefore, the operator F (q) is
equicontinuous and consequently, by Arzela-Ascoli theorem, it is completely
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continuous. Next, we consider the set A = {q ∈ Q : q = εF (q), 0 < ε < 1}.
Then, we have to show that A is bounded, let q ∈ A and t ∈ [1, e]. Then

kqk ≤ cK
⎧⎨⎩ 1

Γ(ζ − ξ + 1)

⎛⎝ 1
Θ

k−2X
j=1

'j(log (j)
ζ−ξ

⎞⎠+ (logϕ)ζ−ξ

ΘΓ(ζ − ξ + 1)
+

1

Γ(ζ + 1)

⎫⎬⎭
= bΩ.

Thus, A is bounded. Hence it follows by Lemma 3 that the equation
(1.2) has atleast one solution on [1, e]. 2

Next, we establish the uniqueness of solution using Banach fixed point
theorem for problem (1.2).

Let h : [1, e]×R→ R be a continuous function satisfying the assump-
tions (G4). In addition, it is assumed that WΩ < 1, where Ω is defined by
(3.2). Then, there exists a unique solution for problem (1.2) on [1, e].

Proof. Let us define sup
t∈[1,e]

|h(t, 0)| = T < ∞. Selecting ρ ≥ TΩ

1−WΩ
,

we show that FBρ ⊂ Bρ, where Bρ = {q ∈ Q : kqk ≤ ρ}. For q ∈ Bρ, we
have k(Fq)(t)k

≤ sup
t∈[1,e]

⎧⎨⎩HIζ |h(s, q(s))|(t) + log t
Θ

⎡⎣ k−2X
j=1

'j
HIζ−ξ|h(s, q(s))|((j)

+HIζ−ξ|h(s, q(s))|(ϕ)

⎤⎦⎫⎬⎭
≤ (Wρ+ T ) sup

t∈[1,e]

⎧⎨⎩HIζ(1)|(e) + 1

Θ

⎡⎣ k−2X
j=1

'j
HIζ−ξ(1)((j) +

HIζ−ξ(1)(ϕ)

⎤⎦⎫⎬⎭
≤ (Wρ+ T )Ω.

(3.7)

Thus, it follows from (3.7) that k(Fq)k ≤ ρ.
Now, for q, q̂ ∈ Q, we derive
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|Fq(t)− F q̂(t)| ≤ sup

t∈[1,e]

⎧⎨⎩ log tΘ
⎡⎣HIζ−ξ|h(s, q(s))− h(s, q̂(s))|(ϕ)

+
k−2X
j=1

'j
HIζ−ξ|h(s, q(s))− h(s, q̂(s))|((j)

⎤⎦
+HIζ |h(s, q(s))− h(s, q̂(s))|(t)

⎫⎬⎭
≤

⎡⎣Wkq − q̂k
Θ

⎛⎝HIζ−ξ(ϕ) +
k−2X
j=1

'j
HIζ−ξ((j)

⎞⎠
+Wkq − q̂kHIζ(e)

⎤⎦
= WΩkq − q̂k.

Thus,

kFq − F q̂k ≤ WΩkq − q̂k.

Since WΩ < 1 by the given assumption, therefore F is a contraction.
Hence it follows by Banach fixed point theorem that the equation (1.2) has
a unique solution on [1, e]. 2

Finally, we establish the uniqueness of solution using nonlinear contrac-
tions for problem (1.2).

Definition 3.1. Let Q be a Banach space and let F : Q → Q be a map-
ping. F is said to be a nonlinear contraction if there exists a continuous
nondecreasing function Ψ : R+ → R+ such that Ψ(0) = 0 and Ψ(�) < � for
all � > 0 with the property:

kFq − F q̂k ≤ Ψ(kq − q̂k), ∀ q, q̂ ∈ Q.

(Boyd and Wong, [5]) Let Q be a Banach space and let F : Q→ Q be
a nonlinear contraction. Then F has a unique fixed point in Q.
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Let h : [1, e]×R→ R be a continuous function satisfying the assump-
tion:

(G6) |h(t, q) − h(t, q̂)| ≤ g(t) |q−q̂|
κ+|q−q̂| , ∀ t ∈ [1, e], q, q̂ ≥ 0, where

g : [1, e]→ R+ is continuous and κ the constant defined by

κ =
1

Θ

⎡⎣HIζ−ξg(ϕ) + k−2X
j=1

'j
HIζ−ξg((j)

⎤⎦+ HIζg(e).

Then, there exists a unique solution for the problem (1.2) on [1, e].

Proof. Let us define the operator F : Q → Q as in (3.1) and the
continuous nondecreasing function Ψ : R+ → R+ by

Ψ(υ) =
κυ

κ+ υ
, υ > 0.

Now, for q, q̂ ∈ Q and for each t ∈ [1, e], we derive

|Fq(t)− F q̂(t)| ≤ sup
t∈[1,e]

⎧⎨⎩ 1Θ
⎡⎣HIζ−ξ|h(s, q(s))− h(s, q̂(s))|(ϕ)

+
k−2X
j=1

'j
HIζ−ξ|h(s, q(s))− h(s, q̂(s))|((j)

⎤⎦
+HIζ |h(s, q(s))− h(s, q̂(s))|(t)

⎫⎬⎭
≤

⎡⎣ 1
Θ

⎛⎝HIζ−ξ
µ
g(s)

|q − q̂|
Ψ+ |q − q̂|

¶
(ϕ)

+
k−2X
j=1

'j
HIζ−ξ

µ
g(s)

|q − q̂|
Ψ+ |q − q̂|

¶
((j)

⎞⎠
+HIζ

µ
g(s)

|q − q̂|
Ψ+ |q − q̂|

¶
(e)

⎤⎦
≤ Ψkq − q̂k

κ

⎡⎣ 1
Θ

⎛⎝HIζ−ξg(ϕ) +
k−2X
j=1

'j
HIζ−ξg((j)

⎞⎠+ HIζg(e)

⎤⎦
= Ψkq − q̂k.
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This implies that, kFq−F q̂k ≤ Ψ(kq− q̂k). Therefore F is a nonlinear

contraction. Hence it follows by nonlinear contractions that the equation
(1.2) has a unique solution on [1, e]. 2

4. Examples

Example 4.1. Consider the following fractional-order BVP

CD
7
5 q(t) =

√
5

3
+

|q(t)|
1 + |q(t)| ·

1

(2 + log t)2
, t ∈ [1, e],(4.1)

subject to the multi-point boundary conditions

q(1) = 0, D
3
4 q(ϕ) =

k−2X
j=1

'jD
3
4 q((j).(4.2)

Here, ζ = 7
5 , ξ =

3
4 , k = 5, ϕ = 2, '1 =

1
10 , '2 =

1
3 , '3 =

1
2 , (1 =

5
2 ,

(2 =
7
3 , (3 =

9
4 . In addition, we find that

|h(t, q(t))| =

√
5

3
+

|q(t)|
1 + |q(t)| ·

1

(2 + log t)2
as

|h(t, q1(t))− h(t, q2(t))| ≤
1

9
kq1 − q2k.

With the given data, we find that Θ = 1.6162109015132577, Ω =
1.4518469276542298. Thus, WΩ ∼= 0.1613163252949144 < 1, all the as-
sumptions of Theorem 3 are satisfied. Hence, by Theorem 3, the BVP
(4.1)-(4.2) has a unique solution on [1, e].

Example 4.2. Consider the following fractional-order BVP

CD
5
3 q(t) = 1 +

|q(t)|
1 + |q(t)| ·

log t

4 + log t
, t ∈ [1, e],(4.3)

subject to the multi-point boundary conditions of Example 4.1.
Here, ζ = 5

3 , ξ =
3
4 , k = 5, ϕ = 2, '1 =

1
10 , '2 =

1
3 , '3 =

1
2 , (1 =

5
2 ,

(2 =
7
3 , (3 =

9
4 . In addition, we find that

|h(t, q(t))| = 1 +
|q(t)|

1 + |q(t)| ·
log t

4 + log t
as

|h(t, q1(t))− h(t, q2(t))| ≤
1

5
kq1 − q2k.
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With the given data, we find that Θ = 1.6162109015132577, Ω =
1.112952553026304.

Thus,

⎧⎨⎩WΘ
⎡⎣⎛⎝

k−2X
j=1

'j(log (j)
ζ−ξ

Γ(ζ − ξ + 1)
+
(logϕ)ζ−ξ

Γ(ζ − ξ + 1)

⎞⎠⎤⎦⎫⎬⎭ ∼= 0.08966265051336413,
all the assumptions of Theorem 3 are satisfied. Hence, by Theorem 3, the
BVP (4.3) with (4.2) has at least one solution on [1, e].
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