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1. Preliminiries and Definitions

The concept of 2-normed spaces was initially introduced by Gahler [9] , in
the mid of 1960’s, while that of n-normed spaces can be found in Misiak

[27] . Since then, many others have studied this concept and obtained
various results, Gunawan [11, 12], Gunawan and Mashadi [13] and
many others.

Let n be a non-negative integer and X be a real vector space of dimen-
sion d where d ≥ n. A real-valued function k., . . . , .k on Xn satisfying the
following conditions :
(N1) k(x1, x2, . . . , xn)k = 0 if and only if x1, x2, . . . , xn are linearly depen-
dent,
(N2) k(x1, x2, . . . , xn)k is invariant under permutation,
(N3) kα(x1, x2, . . . , xn)k = |α|k(x1, x2, . . . , xn)k, for any α ∈ R,
(N4) k(x1 + x, x2, . . . , xn)k ≤ k(x1, x2, . . . , xn)k+ k(x, x2, . . . , xn)k
is called an n− norm on X and the pair (X, k., . . . , .k) is called an n−
normed space.

A trivial example of an n− normed space is X = Rn equipped with
the Euclidean n− norm k(x1, x2, . . . , xn)kE = volume of the n-dimensional
parallelepiped spanned by the vectors x1, x2, . . . , xn which may be given
explicitly by the formula

k(x1, x2, . . . , xn)kE = |det(xij)| = abs (det(hxi, xji))

where xi = (xi1, xi2, . . . , xin) ∈ Rn for each i = 1, 2, 3, ..., n.

The standard n -norm on X a real inner product space of dimension
d ≥ n is defined as follows:

k(x1, x2, . . . , xnkS = [det(hxi, xji)]1/2 ,

where h., .i denotes the inner product on X. If we take X = Rn then this n
-norm is exactly the same as the Euclidean n -norm mentioned earlier. For
n = 1 this n-norm is the usual norm kx1k =

p
hx1, x1i for further details

refer to Gunawan [11].
We first introduce the following definitions :
A sequence (xk) in an n-normed space (X, k., . . . , .k) is said to be convergent
to some L ∈ X if

lim
k→∞

kxk − L, z1, z2, . . . , zn−1k = 0, for every z1, z2, . . . , zn−1 ∈ X.
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A sequence (xk) in an n -normed space (X, k., . . . , .k) is said to be Cauchy
if

lim
k,p→∞

kxk − xp, z1, z2, . . . , zn−1k = 0, for every z1, z2, . . . , zn−1 ∈ X.

If every Cauchy sequence space in X converges to some L ∈ X then X is
said to be complete with respect to the n-norm. A complete n -normed
space is said to be a n- Banach space.

The details about above and associated notions and results, we refer to
Gurdal and Sahiner [14], Savas [33] , Jalal [17, 18, 19, 20] and Dutta [5].

The work of this paper is related to functional analytic study of Orlicz
sequence space as well as composite Orlicz sequence spaces of real number
over n−normed spaces. From functional analytic point of view, the Orlicz
sequence spaces are the special cases of Orlicz spaces studied in Krasnosel-
skii and Rutisky [23]. Lindenstrauss and Tzafriri [24] first
investigated Orlicz sequence spaces in detail with certain aims in Banach
space theory.

A function M : [0,∞) → [0,∞) which is continuous, non-decreasing
and convex with M(0) = 0, M(x) > 0 as x > 0 and M(x)→∞ as x→∞
is called an Orlicz function.

A function M is said to satisfy ∆2− condition for all values of x, if
there exists constant K such that M(2x) ≤ KM(x), x ≥ 0. The ∆2−
condition implies M(2x) ≤ Kllog2 LM(x), x ≥ 0, l > 1. Also an Orlicz
function satisfies the inequality M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

If convexity of Orlicz function is replaced byM(x+y) ≤M(x)+M(y)
then the function reduces to a modulus function. For more details about
this function and its subsequent use, one may refer to Krasnoselskii and
Rutisky [23], Kamthan and Gupta [21] , Rao and Ren [30] , Ruckle [31],
Maddox [26], Ghosh and Srivastava [10] , Jalal and Rather [16] , Altin
[2] , Debnath and Saha [4] and many others.

Lindenstrauss and Tzafriri [24] studied some Orlicz type
sequence spaces defined as follows:

cM =

⎧⎨⎩(xk) ∈ w :
∞X
k=1

M

µ |xk|
ρ

¶
<∞, for some ρ > 0

⎫⎬⎭.



1140 Tanweer Jalal

The space cM with the norm

kxk = inf

⎧⎨⎩ρ > 0 :
∞X
k=1

M

µ |xk|
ρ

¶
≤ 1

⎫⎬⎭,
becomes a Banach space which is called an Orlicz sequence space, where ω
is the family of real or complex sequences. The space cM is closely related
to the space cp which is an Orlicz sequence space with M(t) = |t|p, for
1 ≤ p < ∞. Esi et al. [8], Nuray and Glc [29], Mursaleen et
al. [28],Ahmad and Bataineh [1] , Bektas and Altin [3], Savas [32], Isik
[15], Dutta and Basar [6], Karakaya and Dutta [21], Dutta and Jebril
[7] and many others have used Orlicz functions to construct several
new sequence spaces.

Let P be a subset of the set of all scalar valued sequences ω. Now we
recall the following notions.

A scalar valued paranormed (Maddox [25]) sequence space
(P, gp) where gp is a paranorm on P is called monotone
paranormed space if x = (xk) ∈ P, y = (yk) ∈ P and |xk| ≤ |yk| for all k
implies gp(x) ≤ gp(y). P is called normal or solid if y = (yk) ∈ P

whenever |yi| ≤ |xi|,
i ≥ 1 for some x = (xk) ∈ P .

A sequence space P with linear topology is called a

K -space provided each of the maps pi : P → N, pi(x) = xi continuous for

i ≥ 1.
A sequence space P is said to be symmetric if (Xπ(k)) ∈ P whenever

(Xk) ∈ P where π is permutation of N.

A sequence space P is said to be convergence free if (Xk) ∈ P whenever
(Yk) ∈ P and Yk = 0 implies Xk = 0.

Let (P, gp) be a paranormed space and (an) ⊂ P where an = (a
n
k). If

ank → 0 as n → ∞ for each k implies gp(an) → 0 as n → ∞, then we say
then we say that co-ordinate wise convergence implies convergence in gp
e.g., c0, c1, c∞, etc.
The following inequalities (Maddox [25]) will be used throughout the
paper.

Proposition Let p = (pk) be a bounded sequence of strictly positive real
numbers with 0 ≤ pk ≤ supk pk = H,D = max{1, 2H−1}. Then
(i)|ak + bk|pk ≤ S (|ak|pk + |bk|pk) ;

(ii)|λ|pk ≤ max(1, [λ]H).
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2. The new class Z (k., . . . , .k,M, p, s) and some other classes

In this section, we construct the new sets to be investigated and give a few
descriptions of such sets along with intended aims for results concerning
the sets and their possible extensions and derivatives

Let (Z, gz) be a normal paranormed sequence space with paranorm gz
which satisfies the following properties:
(i) gz is a monotone paranorm;
(ii) coordinate wise convergence implies convergence in paranorm gz , which
implies that for each (Xn) = (Xn

k ) ∈ Z, n, k ∈ N,

Xn
k → 0 as n→∞ (for each k)gZ(X

n)→ 0, as n→∞.

LetM be a Orlicz function and (T, k., . . . , .k) be a n-normed space. We now
define the new class of sequences as follows for every z1, z2, . . . , zn−1 ∈ T :

Z(k., . . . , .k,M, p, s)

=

(
X = (Xk) : Xk ∈

Ã
k−s

∙
M

µ
kXk, z1, z2, . . . , zn−1k

ρ

¶¸!pk

∈ Z, for some ρ > 0

)
,

where s ≥ 0 and pk is a bounded sequence of strictly positive real numbers with

inf pk > 0.

This class give rises different other classes of sequences as follows:

Z(k., . . . , .k,Mr,p, s)

=

⎧⎨⎩X = (Xk) : Xk ∈

⎛⎝k−s ∙Mr
µkXk, z1, z2, . . . , zn−1k

ρ

¶¸⎞⎠pk

∈ Z,

for some ρ > 0

⎫⎬⎭,
where r is any positive integer.

Z(k., . . . , .k,M, s)

=

⎧⎨⎩X = (Xk) : Xk ∈

⎛⎝k−s ∙M µkXk, z1, z2, . . . , zn−1k
ρ

¶¸⎞⎠ ∈ Z, for some ρ > 0

⎫⎬⎭,
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Z(k., . . . , .k, p, s)

=

⎧⎨⎩X = (Xk) : Xk ∈

⎛⎝k−s [M (kXk, z1, z2, . . . , zn−1k)]

⎞⎠pk

∈ Z

⎫⎬⎭
and so on.

We define a function on Z(k., . . . , .k,M, p, s) as follows which is proved
to be a paranorm in the next section:

X = (Xk) ∈ Z(k., . . . , .k,M, p, s) and z1, z2, . . . , zn−1 ∈ T,

g(X) = inf

⎧⎨⎩ρ
pk
D > 0 :

⎡⎣gz
⎛⎝k−s ∙M r

µkXk, z1, z2, . . . , zn−1k
p

¶¸⎞⎠pk
⎤⎦
1

D

≤ 1, k = 1, 2, ..

⎫⎬⎭ (2.1)

Where D = max(1,H),H = supk pk <∞ and inf pk > 0.

The above classes of sequences of real numbers give rise to many well
known sequence spaces on specifying the space Z, the Orlicz function M ,
the bounded sequence pk of positive real numbers,s ≥ 0 and the base space
(T, k, ..., .k). Further, we can derive several other similar classes for study.
The main results of the paper are obtained using the properties of Orlicz
functions, n-norm spaces and most importantly that are of normal para-
normed spaces with monotone paranorm and coordinate wise convergence
property. One may find it interesting and useful to study further the sets
for several other algebraic and topological properties as well as convergence
and completeness related and geometric properties.

3. Main results

In this section, we first examine the linearity of the sets defined above.
Then the sets will be investigated for completeness under a suitably defined
paranorm. Further, the sets will be examined for K-space property. The
next few results will be given for the set Z(k., . . . , .k,M, p, s) only as for
other sets the proofs can be obtained applying similar arguments.
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Theorem 3.1 The set Z(k., . . . , .k,M, p, s) is linear over the set R of real
numbers.

Proof. Let X = (Xk), Y = (Yk) ∈ Z(k., . . . , .k,M, p, s) and α, β ∈ R.
Then there exists some positive numbers ρ1 and ρ2 such that for every
z1, z2, . . . , zn ∈ T⎛⎝k−s ∙M µkXk, z1, z2, . . . , zn−1k

ρ1

¶¸pk ⎞⎠ ∈ Z

and ⎛⎝k−s ∙M µkYk, z1, z2, . . . , zn−1k
ρ2

¶¸pk ⎞⎠ ∈ Z.

Let us choose ρ = max{2|α|ρ1, 2|β|ρ2} so that

k−s
∙
M

µkαXk + βYk, z1, z2, . . . , zn−1k
ρ

¶¸pk
≤ [k−s

∙
M

µkαXk, z1, z2, . . . , zn−1k+ kβYk, z1, z2, . . . , zn−1k
ρ1

¶¸pk
≤ k−s

∙
M

µ
|α|kXk, z1, z2, . . . , zn−1k|

ρ1
+ |β|kYk, z1, z2, . . . , zn−1k|

ρ2

¶¸pk
≤ k−s

1

2pk

∙
M

µkXk, z1, z2, . . . , zn−1k|
ρ1

+
kYk, z1, z2, . . . , zn−1k|

ρ2

¶¸pk
< k−s

∙
M

µkXk, z1, z2, . . . , zn−1k|
ρ1

+
kYk, z1, z2, . . . , zn−1k|

ρ2

¶¸pk
≤ Ck−s

∙
M

µkXk, z1, z2, . . . , zn−1k|
ρ1

¶¸pk
+ Ck−s

∙
M

µkYk, z1, z2, . . . , zn−1k|
ρ2

¶¸pk
∈ Z

where C = max{1, 2H−1}. Thus αX + βY ∈ Z(k., . . . , .k,M, p, s).

Theorem 3.2 Z(k., . . . , .k,M, p, s) is a paranormed space under the func-
tion g given by Eq. (2.1).

Proof. Since gz is a paranorm on Z, by definition g(X) ≥ 0, ∀X ∈
Z(k., . . . , .k,M, p, s). Clearly, g(θ) = 0. Again, by property (N3) in the
definition, g(−X) = g(X) holds for all X ∈ Z(k., . . . , .k,M, p, s). Also, by
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taking α = β = 1 in Theorem 3.1 and using the fact that gzis monotone, we
get g(X+Y ) ≤ g(X)+g(Y ) forX = (Xk), Y = (Yk) ∈ Z(k., . . . , .k,M, p, s).
We are only left to show that g is continuous under scalar multiplication.
Let λ be any number. Then for some ρ > 0, we have

g(λX) = inf

⎧⎨⎩ρ
pk
D > 0 :

⎡⎣gz
⎛⎝k−s ∙M µkλXk, z1, z2, . . . , zn−1k

ρ

¶¸⎞⎠pk
⎤⎦
1

D

≤ 1, k = 1, 2, ..

⎫⎬⎭

= inf

⎧⎨⎩ρ
pk
D > 0 :

⎡⎣gz
⎛⎝k−s ∙M µ |λ|kXk, z1, z2, . . . , zn−1k

ρ

¶¸⎞⎠pk
⎤⎦
1

D

≤ 1, k = 1, 2, ..

⎫⎬⎭.
Let r = ρ/|λ|. Then

g(λX) = inf

⎧⎨⎩(|λ|r)
pk
D > 0 :

⎡⎣gz
⎛⎝k−s ∙M µkXk, z1, z2, . . . , zn−1k

ρ

¶¸⎞⎠pk
⎤⎦
1

D

≤ 1, k = 1, 2, ..

⎫⎬⎭
Since |λ|pk ≤ max(1, |λ|H). So |λ|

pk
D ≤

³
max(1, |λ|H)

´ 1
D . Therefore, it

converges to zero if g(X) converges to zero in Z(k., . . . , .k,M, p, s).
Now suppose λn → 0 as n→∞ and let X = (Xk) ∈ Z(k., . . . , .k,M, p, s).

Let � > 0 be arbitrarily chosen and let K be a positive integer such that
for some ρ > 0,

gz

⎛⎝k−s ∙M µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk ⎞⎠ <
�

2
, for k > K
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which implies for k > K

⎡⎣gz
⎛⎝k−s ∙M µkXk, z1, z2, . . . , zn−1k

ρ

¶¸pk ⎞⎠⎤⎦
1

D
≤ �

2
.

Let 0 < |λ| < 1, using convexity of M and the property (N3) of n-norm,
for k > K we get

gz

⎛⎝k−s ∙M µkλXk, z1, z2, . . . , zn−1k
ρ

¶¸pk ⎞⎠
= gz

⎛⎝k−s ∙M µ |λ|kXk, z1, z2, . . . , zn−1k
ρ

¶¸pk ⎞⎠
< gz

⎛⎝k−s ∙|λ|M µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk ⎞⎠
< gz

⎛⎝k−s ∙M µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk ⎞⎠
<

µ
�

2

¶D
.

SinceM is continuous everywhere in [0,∞) and by definition of gz, it follows
that for k ≤ K

φ(t) = gz

⎛⎝k−s ∙M µktXk, z1, z2, . . . , zn−1k
ρ

¶¸pk ⎞⎠
is continuous at 0. So there is 0 < δ < 1 such that |φ(t)| < �/2 for 0 < t < δ.
let L be such that |λn| < δ for n > L, then

⎡⎣gz
⎛⎝k−s ∙M µkλnXk, z1, z2, . . . , zn−1k

ρ

¶¸pk ⎞⎠⎤⎦
1

D
<

�

2
.

for n > L and k ≤ K. hence

⎡⎣gz
⎛⎝k−s ∙M µkλnXk, z1, z2, . . . , zn−1k

ρ

¶¸pk ⎞⎠⎤⎦
1

D
< �,
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for n > L and for all k. Hence λnX → θ as n→∞.

Theorem 3.3. Let the base space (T, k., ..., .k) be a n- Banach Space.
Then Z(k., . . . , .k,M, p, s) is a complete paranormed space under the para-
norm g given by (2.1). where Z is a K-space.

Proof. Let (Xi) be a Cauchy sequence in Z(k., . . . , .k,M, p, s). Then
g(Xi − Xj) → 0 as i, j → ∞. For any given � > 0, let r and x0 be such

that
�

rx0
> 0 and M

µ
�

rx0

¶
≥ supk≥1 ks/pk .

Now g(Xi − Xj) → 0 as i, j → ∞ implies that there exist N0 ∈ N such
that

g
³
Xi −Xj

´
<

�

rx0
for all i, j ≥ N0.

Then we have for all i, j ≥ N0 such that for every z1, z2, . . . , zn−1 ∈ T,

inf

⎧⎨⎩ρ
pk
D > 0 :

⎡⎣gz
⎛⎝k−s "M Ã

kXi
k −Xj

k, z1, z2, . . . , zn−1k
ρ

!#⎞⎠pk
⎤⎦
1

D
≤ 1,

k = 1, 2, ..

⎫⎬⎭ <
�

rx0
.

Hence we have for every z1, z2, . . . , zn−1 ∈ T,

gz

⎛⎝k−s "M Ã
kXi

k −Xj
k, z1, z2, . . . , zn−1k
g(Xi −Xj)

!#pk ⎞⎠ ≤ 1 for i, j ≥ N0.

Since Z is a K-space, pk ≥ 0 and we can choose s suitably so that

k−s
"
M

Ã
kXi

k −Xj
k, z1, z2, . . . , zn−1k
g(Xi −Xj)

!#pk
≤ 1

for each k and for i, j ≥ N0 and z1.z2, . . . , zn−1 ∈ T. Therefore,

M

Ã
kXi

k −Xj
k, z1, z2, . . . , zn−1k
g(Xi −Xj)

!
≤ ks/pk ≤M

µ
rx0
2

¶
.

Thus we get

kXi
k −Xj

k, z1, z2, . . . , zn−1k <
�

rx0

rx0
2
=

�

2
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for each k and for i, j ≥ N0 and for every z1.z2, . . . , zn−1 ∈ T. Therefore
(Xi

k) becomes a Cauchy sequence in T . Since (T, k., . . . , .k) is complete,
there exist X = (Xk) ∈ T such that Xi

k → Xk as i→∞ for each k. Since
M is continuous it follows that

M

Ã
kXk −Xj

k, z1, z2, . . . , zn−1k
ρ

!
→ 0 as i→∞.

for each z1, z2, . . . , zn−1 ∈ T and for some ρ > 0. Consequently,

k−s
"
M

Ã
kXk −Xj

k, z1, z2, . . . , zn−1k
ρ

!#pk
→ 0 as i→∞

for each k, z1, z2, . . . , zn−1 ∈ T and for some ρ > 0.

Let

αjk = k−s
"
M

Ã
kXk −Xj

k, z1, z2, . . . , zn−1k
ρ

!#pk
.

Then since M is non-decreasing, by suitable choice of δ (depending on j
and k),

αjk < δk−s
"
M

Ã
kXj

k, z1, z2, . . . , zn−1k
ρ

!#pk
where 0 < δ < 1. Since Z is normal, it follows that (αi) ∈ Z for each i.
Also αik → 0 as i→∞ implies that gZ(α

i)→ 0 as i→∞. Hence Xi → gX
as i→∞ in Z(k., . . . , .k,M, p, s).

Again

k−s
∙
M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
= k−s

"
M

Ã
kXi

k + (Xk −Xi
k), z1, z2, . . . , zn−1k
ρ

!#pk
≤ Ck−s

"
M

Ã
kXi

k, z1, z2, . . . , zn−1k
ρ

!#pk
+ Cαik, where C = max{1, 2H−1}

≤ C(1 + δ)k−s
"
M

Ã
kXi

k, z1, z2, . . . , zn−1k
ρ

!#pk
.

Since (Xi) ∈ Z(k., . . . , .k,M, p, s) and Z is a normal space, it seems that
X = (Xk) ∈ Z(k., . . . , .k,M, p, s).
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Hence the proof is complete.

Theorem 3.4. Z(k., . . . , .k,M, p, s) is a K-space if Z is a K-space.

Proof. Let us define a mapping

Pn : Z(k., . . . , .k,M, p, s)→ T

by Pn(X) = Xn, for all n ∈ N. To show Pn is continuous.
Let (Xm) be a sequence in Z(k., . . . , .k,M, p, s) such that Xm → g0 as
m→∞. Then for some suitable choice of ρ > 0,

∙
gz

µ
k−s

∙
M

µkXm
k , z1, z2, . . . , zn−1k

ρ

¶¸pk¶¸1/D
→ 0 as m→∞.

Since Z is a K-space, this implies that for each k and as m tending to ∞

k−s
∙
M

µkXm
k , z1, z2, . . . , zn−1k

ρ

¶¸pk
→∞

for some ρ > 0. Since M is an Orlicz function, it follows that

kXm
k , z1, z2, . . . , zn−1k→ 0 as m→∞.

Consequently, Xm → 0 in T . Hence the Proof.

4. Relationship Results

In this section, we shall investigate the relationship among the spaces de-
fined in second section and their possible variants under different conditions.

Theorem 4.1. Let M1 and M2 be two Orlicz functions. Then

Z(k., . . . , .k,M1, p, s) ∩ Z(k., . . . , .k,M2, p, s) ⊆ Z(k., . . . , .k,M1 +M2, p, s)

where Z is a normal sequence space.

Proof. Let X = (Xk) ∈ Z(k., . . . , .k,M1, p, s)∩Z(k., . . . , .k,M2, p, s). Then
we can choose ρ1, ρ2 > 0, such that

k−s
∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
∈ Z
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and

k−s
∙
M2

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
∈ Z.

Let us choose ρ = max(ρ1, ρ2). Then

k−s
∙
(M1 +M2)

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
≤ k−sC

½∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ1

¶¸pk
+

∙
M2

µkXk, z1, z2, . . . , zn−1k
ρ2

¶¸pk¾
∈

Z,
where C = max(1, 2H−1).
Now the proof follows immediately as Z being normal.

Theorem 4.2. LetM1 andM2 be Orlicz functions satisfying∆2-condition.
then we have the following inclusion

Z(k., . . . , .k,M1, p, s) ⊆ Z(k., . . . , .k,M2oM1, p, s) for s > 1.

Proof. Let X = (Xk) ∈ Z(k., . . . , .k,M1, p, s). Since M2 is continuous
from the right at 0, there exists 0 < ξ < 1 such that for any arbitrary
� > 0,M2(t) < � whenever 0 ≤ t ≤ ξ. Let us define the sets

A1 =

½
k ∈ N :

∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
≤ ξ

¾

A2 =

½
k ∈ N :

∙
M2

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
> ξ

¾
for some ρ > 0.

If k ∈ A2,

M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶
<
1

ξ
M1

µkX ,
kz1, z2, . . . , zn−1k

ρ

¶
< 1 +

∙
1

ξ
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
.

Since M2 is non-decreasing and convex it follows that

M2

∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
< M2

∙
1 +

1

ξ
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
<
1

2
M2(2) +

1

2
M2

∙
2
1

ξ
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
.
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Again since M2 satisfies ∆2-condition, we have

M2

∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
<
1

2
L

∙
1

ξ
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
M2(2)

+
1

2
L

∙
1

ξ
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
M2(2)

= Lξ−1M2(2)M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶
.

So,

k−s
∙
M2

∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸¸pk
≤ k−sC1

∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
(4.1)

where C1 = max{1, [Lξ−1M2(2)]
H}.

For k ∈ A1,

M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶
≤ ξM2

∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
< �,

and therefore,

k−s
∙
M2

∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸¸pk
≤ k−s[�]H . (4.2)

Hence from (4.1) and (4.2) we have

k−s
∙
M2

∙
M1

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸¸pk

≤ k−s[�]H + k−sC1

∙
M1

µkX ,
kz1, z2, . . . , zn−1k

ρ

¶¸pk
∈ Z

for all k. Then the proof follows by the normality of Z.

We have the well known inclusion c0 ⊂ c ⊂ c∞. The following result
shows that if Z is replaced by these three spaces, the corresponding ex-
tended versions also preserve this inclusion.

Theorem 4.3. Let M be an Orlicz function. Then

c0(k., . . . , .k,M, p, s) ⊂ c(k., . . . , .k,M, p, s) ⊂ c∞(k., . . . , .k,M, p, s).
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Proof. The first inclusion follows immediately from the definitions. For
second inclusion, let X = (Xk) ∈ c(k., . . . , .k,M, p, s). Then for some ρ =
2ξ > 0, we have

k−s
∙
M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
= k−s

∙
M

µkXk − L+ L, z1, z2, . . . , zn−1k
ρ

¶¸pk
≤ k−s

∙
M

µkXk − L, z1, z2, . . . , zn−1k+ kL, z1, z2, . . . , zn−1k
ρ

¶¸pk
≤ k−sC

∙
M

µkXk − L, z1, z2, . . . , zn−1k
ξ

¶¸pk
+k−sC

∙
M

µkL, z1, z2, . . . , zn−1k
ξ

¶¸pk
≤ k−sC

∙
M

µkXk − L, z1, z2, . . . , zn−1k
ξ

¶¸pk
+ k−sCmax

(
1,

∙
M

µkL, z1, z2, . . . , zn−1k
ξ

¶¸H)
.

Thus X = (Xk) ∈ c∞(k., . . . , .k,M, p, s).
Our next result is to examine the effect of the parameter p on the relation-
ships of some spaces.

Theorem 4.4 Let M be a Orlicz function. Then
(i) If 0 < inf pk ≤ pk < 1, then c0(k., . . . , .k,M, s) ⊂ c0(k., . . . , .k,M, p, s).
(ii) If 1 ≤ pk ≤ sup pk <∞, then c0(k., . . . , .k,M, p, s) ⊂ c0(k., . . . , .k,M, s).

Proof. (i) Let X = (Xk) ∈ c0(k., . . . , .k,M, s). Since 0 < inf pk ≤ pk < 1,,
the proof follows from the following inequality∙

M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
≤
∙
M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
(ii) Let 1 ≤ pk ≤ sup pk <∞, and X = (Xk) ∈ c0(k., . . . , .k,M, p, s). Then
for each 0 < � < 1 there exists a positive integer L such that

k−s
∙
M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
≤ � < 1 for all k ≥ L.

Since 1 ≤ pk ≤ sup pk <∞,, the proof follows from the following inequality

k−s
∙
M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸
≤ k−s

∙
M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
.

Theorem 4.5. The space Z(k., . . . , .k,M, p, s) is not convergence free in
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general.

Proof. Consider Z = c∞, s = 0, pk = 1, for eeach k ∈ N,M(x) = x2,
and for all x ∈ [0,∞). Let X = (Xk) ∈ Z(k., . . . , .k,M, p, s) as follows:

Xk =

⎧⎪⎪⎨⎪⎪⎩
1

k + 1
, if k is even

0, if k is odd.

Let us define a sequence (Yk) as follows:

Yk =

⎧⎪⎨⎪⎩
k + 1, if k is even

0, if k is odd.

Then Xk = 0 implies Yk = 0, but (Yk) /∈ Z(k., . . . , .k,M, p, s). However, the
space Z(k., . . . , .k,M, p, s) is solid and symmetric in general. The following
two results establish our claim with proof.

Theorem 4.6. The space Z(k., . . . , .k,M, p, s) is solid (normal) in general.

Proof. Let X = (Xk) ∈ Z(k., . . . , .k,M, p, s), and Y = (Yk) be such that

kYk, z1, z2, . . . , zn−1k ≤ kXk, z1, z2, . . . , zn−1k for every z1, z2, . . . , zn−1 ∈ T.

Since M is non-decreasing,

k−s
∙
M

µkYk, z1, z2, . . . , zn−1k
ρ

¶¸pk
≤ k−s

∙
M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
∈ Z.

for some ρ > 0. Hence Y = (Yk) ∈ Z(k., . . . , .k,M, p, s), since Z is normal
and the space is solid.

Theorem 4.7. The space Z(k., . . . , .k,M, p, s) is symmetric in general.

Proof.Let X = (Xk) ∈ Z(k., . . . , .k,M, p, s), and Y = (Ymk) be an ar-
rangement of the sequence (Xk) such that (Xk) = (Ymk

) for each k ∈ N.
Then

k−s
∙
M

µkYmk , z1, z2, . . . , zn−1k
ρ

¶¸pk
≤ k−s

∙
M

µkXk, z1, z2, . . . , zn−1k
ρ

¶¸pk
∈ Z.

Hence these spaces are symmetric in general.
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