Proyecciones Journal of Mathematics Vol. 37, N^o 4, pp. 805-817, December 2018. Universidad Católica del Norte Antofagasta - Chile

Generalized centroid of Γ -semirings

Hasret Durna
Cumhuriyet University, Turkey
Damla Yilmaz
Cumhuriyet University, Turkey
Received: April 2018. Accepted: May 2018

Abstract

We define and study the generalized centroid of a semiprime Γ semiring. We show that the generalized centroid C_{Γ} is a multiplicatively reguler Γ -semiring and so Γ -semifield and give some properties
of the generalized centroid of a semiprime Γ -semiring.

Subjclass [2000]: 12K10, 16D30, 16S99, 16Y60, 16Y99.

Keywords: Semiring, quotient semiring, gamma-semiring, quotient gamma-semiring.

1. Introduction

Γ-semirings were first studied by M. Murali Krishna Rao [3] as a generalization of Γ -ring as well as of semiring. All definitions and fundamental concepts concerning Γ -semirings can be found in [3], [4], [1], [2], [5]. and [6]. Oztürk and Jun studied the extended centroid of a prime Γ -ring in [9] and [10]. They also introduced some properties of the generalized centroid of semiprime Γ-ring in [11]. Recently, Yazarlı and Oztürk [7] considered the extended centroid of a prime semiring. After, Öztürk introduced the extended centroid of the prime Γ -semirings [8]. Let S be right multiplicatively cancellable semiprime Γ -semiring. In this paper we consider the main results as follows: (1) The generalized centroid of S is multiplicatively reguler Γ -semiring. (2) C_{Γ} is a Γ -semifield. (3) $S_{\Gamma} = S\Gamma C_{\Gamma}$ is a right multiplicatively cancellable semiprime Γ -semiring. (4) Let S be multiplicatively cancellable semiprime Γ -semiring. If a and b are nonzero elements in S_{Γ} such that $a\gamma x\beta b = b\beta x\gamma a$ for all $x \in S$ and for all $\gamma, \beta \in \Gamma$ then there exists $q \in C_{\Gamma}$ and $\gamma \in \Gamma$ such that $q\gamma a = b$. (5) Let $f: S \to S_{\Gamma}$ be an additive map satisfying $f(x\beta y) = f(x)\beta y$ for all $x, y \in S$ and $\beta \in \Gamma$. Then there exists $q \in Q_r(S_\Gamma)$ such that $f(x) = q\beta x$ for all $x \in S$.

2. Preliminaries

Let S and Γ be two additive commutative semigroups. Then S is called Γ -semiring if there exists a mapping $S \times \Gamma \times S \to S$ (image to be denoted by $a\alpha b$ for $a,b \in S$ and $\alpha \in \Gamma$) satisfying the following conditions for all $a,b,c \in S$ and for all $\alpha,\beta \in \Gamma$:

- $i) \ a\alpha(b+c) = a\alpha b + a\alpha c$
- $(a+b)\alpha c = a\alpha c + b\alpha c$
- $iii) \ a(\alpha + \beta)b = a\alpha b + a\beta b$
- $iv) \ a\alpha(b\beta c) = (a\alpha b)\beta c.$

A Γ -semiring S is said to have a zero element if there exists an element $0_S \in S$ such that $0_S + x = x = x + 0_S$ and $0_S \gamma x = 0_S = x \gamma 0_S$ for all $x \in S$ and $\gamma \in \Gamma$. Also, a Γ -semiring S is said to be commutative if $x\gamma y = y\gamma x$, for all $x, y \in S$ and $\gamma \in \Gamma$. Let S be a Γ -semiring with zero. If there exists an element $0_{\Gamma} \in \Gamma$ such that $a0_{\Gamma}b = b0_{\Gamma}a = 0_S$ for all $a, b \in S$ and $0_{\Gamma} + \beta = \beta$ for all $\beta \in \Gamma$, then 0_{Γ} is called the zero of Γ . When the context is clear we simply write 0 instead of 0_{Γ} . Throughout this paper we consider Γ -semiring with zero.

Let S be a Γ -semiring. An element $a \in S$ is called a left identity (resp.

right identity) of S if $x = a\gamma x$ (resp. $x = x\gamma a$) for all $x \in S$ and $\gamma \in \Gamma$. If a is both a left and right identity, then a is called an identity of S. In this case we say that S is a Γ -semiring with identity . If A and B are subsets of a Γ -semiring S and $\Delta \subset \Gamma$, we denote by $A\Delta B$, the subset of S consisting of all finite sums of the form $\sum a_i \alpha_i b_i$ where $a_i \in A$, $b_i \in B$ and $\alpha_i \in \Delta$. For the singleton subset $\{x\}$ of S we write $x\Delta A$ instead of $\{x\}\Delta A$.

A nonempty subset I of a Γ -semiring S is called a sub Γ -semiring of S if I is a subsemigroup of (S,+) and $a\gamma b \in I$ for all $a,b \in I$ and $\gamma \in \Gamma$. A right (left) ideal I of a Γ -semiring S is an additive subsemigroup of S such that I $\Gamma S \subset I$ ($S\Gamma I \subset I$). If I is both a right and a left ideal of S, then we say that I is a two-sided ideal or simply an ideal of S.

Let S be a Γ - semiring. A proper ideal P of S is said to be semiprime if for any ideal A of S, $A\Gamma A \subseteq P$ implies that $A \subseteq P$. A Γ -semiring S is called a semiprime Γ -semiring if S is a semiprime ideal of S.

Theorem 1. [1, Theorem 3.6.] If P is an ideal of a Γ -semiring S then the following conditions are equivalent:

- i) P is semiprime.
- ii) If $a \in S$ such that $a\Gamma S\Gamma a \subseteq P$ then $a \in P$.
- iii) For $a \in S$ if $\langle a \rangle \Gamma \langle a \rangle \subseteq P$ then $a \in P$.
- iv) If U is a right ideal of S such that $U\Gamma U \subseteq P$ then $U \subseteq P$.
- v) If V is a left ideal of S such that $V\Gamma V \subseteq P$ then $V \subseteq P$.

A commutative Γ -semiring S is said to be Γ -semifield if for any $a \neq 0$ $\in S$ and for any $\alpha \in \Gamma$ there exists $b \in S$, $\beta \in \Gamma$ such that $a\alpha b\beta d = d$ for all $d \in S$.

An element a of Γ -semiring S is regular if there exists $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha x\beta a$. A Γ -semiring S is regular if every element in S is regular.

Let S be a Γ -semiring. A commutative monoid (M, +) with additive identity 0_M is said to be a right Γ -semiring S-semimodule or simply a ΓS -semimodule, if there exists a mapping $M \times \Gamma \times S \to M$ (images to be denoted by $a\alpha S$ for $a \in M$, $\alpha \in \Gamma$, $s \in S$) satisfying the following conditions for all $a, b \in M$, for all $s, t \in S$ and for all $\alpha, \beta \in \Gamma$:

- $i) (a+b)\alpha s = a\alpha s + b\alpha s,$
- $ii) \ a\alpha(s+t) = a\alpha s + a\alpha t,$
- $iii)a(\alpha + \beta)s = a\alpha s + a\beta s$,
- $iv) \ a\alpha(s\beta t) = (a\alpha s)\beta t,$
- $v) 0_M \alpha s = 0_M = a\alpha 0_S.$

One defines a left Γ -semiring S-semimodule in an analogous fashion. Let R and S both be Γ -semirings and f a map of R into S. Then f is a Γ -homomorphism if and only if $f(r_1+r_2)=f(r_1)+f(r_2)$ and $f(r_1\gamma r_2)=f(r_1)\gamma f(r_2)$ for all $r_1,r_2\in R$ and for all $\gamma\in\Gamma$. A Γ -homomorphism of semirings which is both injective and surjective is called isomorphism. If there exists isomorphism between Γ -semirings R and S we write $R\cong S$. If $f:R\to S$ is Γ -homomorphism of semirings, then $Im(f)=\{f(r)|r\in R\}$ is Γ -subsemiring of S.

Let S be Γ -semiring, M and N be ΓS -semimodule. Then a function f from M to N is a right ΓS -semimodule homomorphism if and only if the following conditions are satisfied:

- i) $f(m_1 + m_2) = f(m_1) + f(m_2)$ for all $m_1, m_2 \in M$,
- ii) $f(m\alpha s) = f(m) \alpha s$ for all $m \in M$, for all $s \in S$ and for all $\alpha \in \Gamma$.

3. Generalized centroid

Definition 1. Let S be Γ -semiring. For a subset U of S,

$$Ann_l U = \{ a \in S | a\Gamma U = \langle 0_S \rangle \}$$

is called the left annihilator of U. A right annihilator Ann_rU can be defined similarly.

Lemma 1. Let S be a semiprime Γ-semiring and U a non-zero ideal of S. Then $Ann_lU = Ann_rU$ and in this case we will write $Ann_lU = Ann_rU = AnnU$. Also $AnnU \cap U = \langle 0_S \rangle$.

Proof. It is clear that Ann_lU and Ann_rU are ideals of S. Since $Ann_lU\Gamma U = \langle 0_S \rangle$, $U\Gamma Ann_lU\Gamma U\Gamma Ann_lU = \langle 0_S \rangle$. Since S is semiprime Γ -semiring, we get $U\Gamma Ann_lU = \langle 0_S \rangle$. That is, $Ann_lU \subseteq Ann_rU$. On the other hand, since $U\Gamma Ann_rU = \langle 0_S \rangle$, we have $Ann_rU\Gamma U\Gamma Ann_rU\Gamma U = \langle 0_S \rangle$. Then, $Ann_rU\Gamma U = \langle 0_S \rangle$. Hence $Ann_rU \subseteq Ann_lU$, and so, $Ann_lU = Ann_rU$.

Since $AnnU \cap U$ is an ideal of S and $(AnnU \cap U) \Gamma (AnnU \cap U) \subseteq U\Gamma AnnU = \langle 0_S \rangle$, we have $AnnU \cap U = \langle 0_S \rangle$, since S is semiprime Γ -semiring. \square

Lemma 2. Let S be a semiprime Γ -semiring. Let us denote by F a set of all ideals of S which have zero annihilator in S. In this case, the set F is closed under multiplication.

Proof. Let U and V be in F. The equality $U\Gamma V\beta x = \langle 0_S \rangle$ for $x \in S$ and all $\beta \in \Gamma$ yields $V\beta x \subseteq Ann_r U = \langle 0_S \rangle$, i. e., $V\beta x = \langle 0_S \rangle$ and so $x \in Ann_r V = \langle 0_S \rangle$ which implies $x = 0_S$. Then we get $U\Gamma V \in F$. \square

Lemma 3. Let S be a semiprime Γ -semiring and U a nonzero ideal of S. Then $U \in F$ if and only if U has nonzero intersection with any nonzero ideal of S.

Proof. Let $U \in F$. Then $\langle 0_S \rangle \neq U \Gamma V \subseteq U \cap V$ where V is nonzero ideal of S.

Conversely, since $U \cap AnnU = \langle 0_S \rangle$, then $AnnU = \langle 0_S \rangle$ and so $U \in F$.

Remark 1. If $U, V \in F$, then $U \cap V \in F$.

Let S be a semiprime Γ -semiring such that $S\Gamma S \neq S$. The ideals U of S and S regard as right ΓS -semimodules. Denote

 $M := \{ f : U \to S \mid <0_S > \neq U \text{ is ideal of } S, f \text{ is right } \Gamma S\text{-semimodule homomorphism } \}.$

Define a relation \sim on M by $f \sim g \Leftrightarrow \exists K (\in F) \subseteq U \cap V$ such that f = g on K where U and V are domains of f and g respectively. Since the set F is closed under multiplication, it is possible to find a nonzero K and so " \sim " is an equivalence relation.

This gives a chance for us to get a partition of M. Then we denote the equivalence class by $\widehat{f} = [U, f]$, where $\widehat{f} := \{g : V \to S \mid f \sim g\}$ and denote by Q_r set of all equivalence classes. That is,

 $Q_r = \{\widehat{f} \mid f: U \to S \text{ is right } \Gamma S\text{-semimodule homomorphism and } < 0_S > \neq U \text{ is ideal of } S \}.$

Now we define an addition " +" on Q_r as follows:

$$\widehat{f} + \widehat{g} = \widehat{f + g}$$

for all $\widehat{f}, \widehat{g} \in Q_r$. Let $\widehat{f}, \widehat{g} \in Q_r$ where U and V are domains of f and g respectively. Therefore $f+g:U\cap V\to S$ is a right ΓS -semimodule homomorphism. Assume that $f_1\sim f_2$ and $g_1\sim g_2$ where U_1,U_2,V_1 and V_2 are domains of f_1,f_2,g_1 and g_2 respectively. Then $\exists K_1(\in F)\subseteq U_1\cap U_2$ such that $f_1=f_2$ on K_1 and $\exists K_2(\in F)\subseteq V_1\cap V_2$ such that $g_1=g_2$ on K_2 . Taking $K=K_1\cap K_2$. Then $K\in F$ and

$$K = K_1 \cap K_2 \subseteq (U_1 \cap U_2) \cap (V_1 \cap V_2) = (U_1 \cap V_1) \cap (U_2 \cap V_2).$$

For any $x \in K$, we have $(f_1 + g_1)(x) = f_1(x) + g_1(x) = f_2(x) + g_2(x) = (f_2 + g_2)(x)$, and so $f_1 + g_1 = f_2 + g_2$ on K. Therefore $f_1 + g_1 \sim f_2 + g_2$ where $f_1 + g_1 : U_1 \cap V_1 \to S$ and $f_2 + g_2 : U_2 \cap V_2 \to S$ are right ΓS -semimodule homomorphisms. That is, addition "+" is well-defined. Now we prove that Q_r is a commutative monoid. It is shown easly that $\widehat{f} + (\widehat{g} + \widehat{h}) = (\widehat{f} + \widehat{g}) + \widehat{h}$ and $\widehat{f} + \widehat{g} = \widehat{g} + \widehat{f}$ for all $\widehat{f}, \widehat{g}, \widehat{h} \in Q_r$.

Taking $\hat{\theta} \in Q_r$ where $\theta : S \to S$, $x \mapsto 0_S$ for all $x \in S$. Let $\hat{f} \in Q_r$, where U is domain of f. Since $U \subseteq U \cap S$, we get for all $x \in U$,

$$(f + \theta)(x) = f(x) + \theta(x) = f(x) + 0_S = f(x)$$

and

$$(\theta + f)(x) = \theta(x) + f(x) = 0_S + f(x) = f(x).$$

Thus, $\hat{f} + \hat{\theta} = \hat{\theta} + \hat{f} = \hat{f}$. Hence $\hat{\theta}$ is the additive identity in Q_r .

Since $S\Gamma S \neq S$ and S is a semiprime Γ -semiring, $S\Gamma S(\neq < 0_S >)$ is an ideal of S. Therefore $S\beta S \in F$ for every $\beta \ (\neq 0) \in \Gamma$. We can take the homomorphism $1_{S\Gamma}: S\Gamma S \to S$ as a unit ΓS -semimodule homomorphism. Note that $S\beta S \neq < 0 >$ for all $< 0 > \neq \beta \in \Gamma$ so that $1_{S\beta}: S\beta S \to S$ is nonzero ΓS -semimodule homomorphism. Denote

$$N := \{1_{S\beta} : S\beta S \to S \mid 0 \neq \beta \in \Gamma \},\$$

and define a relation " \approx " on N by $1_{S\beta} \approx 1_{S\gamma} \Leftrightarrow \exists W := S\alpha S(\neq < 0 >) \subseteq S\beta S \cap S\gamma S$ such that $1_{S\beta} = 1_{S\gamma}$ on W where $S\beta S$ and $S\gamma S$ are domains of $1_{S\beta}$ and $1_{S\gamma}$ respectively. We can easily check that " \approx " is an equivalence relation on N. Denote by $\widehat{\beta} = [S\beta S, 1_{S\beta}]$, the equivalence class containing $1_{S\beta}$ and by $\widehat{\Gamma}$ the set of all equivalence classes of N with respect to " \approx ", that is,

$$\widehat{\beta} := \{ 1_{S\gamma} : S\gamma S \to S \mid 1_{S\beta} \approx 1_{S\gamma} \}$$

and $\widehat{\Gamma} := \{\widehat{\beta} \mid 0 \neq \beta \in \Gamma\}$. Define an addition + on $\widehat{\Gamma}$ as follows:

$$\widehat{\beta} + \widehat{\gamma} = \widehat{\beta + \gamma}$$

for all $\beta(\neq 0), \gamma(\neq 0) \in \Gamma$. Then it is routine to check that $(\widehat{\Gamma}, +)$ is commutative monoid.

Now we define a map $(-,-,-): Q_r \times \widehat{\Gamma} \times Q_r \to Q_r, (\widehat{f}, \ \widehat{\beta}, \widehat{g}) \mapsto \widehat{f} \ \widehat{\beta} \ \widehat{g}$, as follows:

$$\widehat{f} \ \widehat{\beta} \ \widehat{g} = \widehat{f\beta g}$$

where U, V and $S\beta S$ are domains of f, g and $1_{S\beta}$ respectively. Therefore $f1_{S\beta}g: V\Gamma S\beta S\Gamma U \to S$ is a right ΓS -semimodule homomorphism where

$$V\Gamma S\beta S\Gamma U = \big\{ \sum_{finite} v_i \gamma_i s_i \beta r_i \alpha_i u_i \ | \ v_i \in V, u_i \in U, s_i, r_i \in S \text{ and } \gamma_i, \alpha_i \Gamma \ \big\},$$

an ideal of S. Assume that $f_1 \sim f_2$, $g_1 \sim g_2$ and $1_{S\beta} \approx 1_{S\beta'}$ where $U_1, U_2, V_1, V_2, S\beta S$ and $S\beta' S$ are domains of $f_1, f_2, g_1, g_2, 1_{S\beta}$ and $1_{S\beta'}$ respectively. Then $\exists K_1 \subseteq U_1 \cap U_2$ such that $f_1 = f_2$ on $K_1, \exists K_2 \subseteq V_1 \cap V_2$ such that $g_1 = g_2$ on K_2 and $\exists W \subseteq S\beta S \cap S\beta' S$ such that $1_{S\beta} = 1_{S\beta'}$ on W. Also $V_1\Gamma S\beta S\Gamma U_1 \cap V_2\Gamma S\beta' S\Gamma U_2 \subseteq (U_1 \cap S\beta S \cap V_1) \cap (U_2 \cap S\beta' S \cap V_2) = (U_1 \cap U_2) \cap (V_1 \cap V_2) \cap (S\beta S \cap S\beta' S)$ and there exists $< 0_S > \neq K$ is an ideal of S such that $K \subseteq V_1\Gamma S\beta S\Gamma U_1 \cap V_2\Gamma S\beta' S\Gamma U_2$. For any $x \in K$, $x \in V_1\Gamma S\beta S\Gamma U_1 \cap V_2\Gamma S\beta' S\Gamma U_2$. Hence $x \in V_1\Gamma S\beta S\Gamma U_1$ and $x \in V_2\Gamma S\beta' S\Gamma U_2$. Then, $x = \sum_{finite} v_i \gamma_i s_i \beta r_i \alpha_i u_i; v_i \in V_1 \cap V_2, u_i \in U_1 \cap U_2, s_i, r_i \in S$ and

 $\gamma_i, \alpha_i \Gamma$. Therefore

$$(f_{1}1_{S\beta}g_{1})(x) = f_{1}(1_{S\beta}(g_{1}(\sum_{finite} v_{i}\gamma_{i}s_{i}\beta r_{i}\alpha_{i}u_{i})))$$

$$= f_{1}(g_{1}(\sum_{finite} v_{i}\gamma_{i}s_{i}\beta r_{i}\alpha_{i}u_{i}))$$

$$= f_{1}(\sum_{finite} g_{1}(v_{i})\gamma_{i}s_{i}\beta r_{i}\alpha_{i}u_{i}) = f_{1}(\sum_{finite} g_{2}(v_{i})\gamma_{i}s_{i}\beta r_{i}\alpha_{i}u_{i})$$

$$= f_{2}(\sum_{finite} g_{2}(v_{i})\gamma_{i}s_{i}\beta r_{i}\alpha_{i}u_{i}) = f_{2}(g_{2}(\sum_{finite} v_{i}\gamma_{i}s_{i}\beta r_{i}\alpha_{i}u_{i}))$$

$$= f_{2}(1_{S\beta'}(g_{2}(\sum_{finite} v_{i}\gamma_{i}s_{i}\beta r_{i}\alpha_{i}u_{i}))) = (f_{2}1_{S\beta'}g_{2})(x)$$

and so $f_1 1_{S\beta} g_1 = f_2 1_{S\beta'} g_2$ on K. Hence, $\widehat{f_1} \ \widehat{\beta} \ \widehat{g_1} = \widehat{f_2} \ \widehat{\beta'} \ \widehat{g_2}$. That is, "." is well-defined. Now we will prove that Q_r is a $\widehat{\Gamma}$ -semiring with identity.

Let $\widehat{f}, \widehat{g}, \widehat{h} \in Q_r$ where U, V and W are domains of f, g and h respectively and $\widehat{\gamma} \in \widehat{\Gamma}$ where $S\gamma S$ is domains of $1_{S\gamma}$. Since $(V \cap W)\Gamma S\gamma S\Gamma U \subseteq V\Gamma S\gamma S\Gamma U \cap W\Gamma S\gamma S\Gamma U$, we get for all $x \in (V \cap W)\Gamma S\gamma S\Gamma U$,

```
[f1_{S\gamma}(g+h)](x) = f(1_{S\gamma}(g+h)(x))
= f(1_{S\gamma}(g(x)+h(x)))
= f(1_{S\gamma}(g(x))+1_{S\gamma}(h(x)))
= f(1_{S\gamma}(g(x)))+f(1_{S\gamma}(h(x)))
= (f1_{S\gamma}g)(x)+(f1_{S\gamma}h)(x)
= [f1_{S\gamma}g+f1_{S\gamma}h](x).
```

Hence $f1_{S\gamma}(g+h) = f1_{S\gamma}g+f1_{S\gamma}h$ on $(V) \Gamma S\gamma S\Gamma U$. That is, $\widehat{f}\widehat{\gamma}\left(\widehat{g}+\widehat{h}\right) = \widehat{f}\widehat{\gamma}\widehat{g}+\widehat{f}\widehat{\gamma}\widehat{h}$. Similarly, the equalities $(\widehat{f}+\widehat{g})\widehat{\gamma}\widehat{h}=\widehat{f}\widehat{\gamma}\widehat{h}+\widehat{g}\widehat{\gamma}\widehat{h}$ and $\widehat{f}(\widehat{\gamma}+\widehat{\beta})\widehat{g}=\widehat{f}\widehat{\gamma}\widehat{g}+\widehat{f}\widehat{\beta}\widehat{g}$ are proved in analogous way. Also, let $\widehat{f},\widehat{g},\widehat{h}\in Q_r$ where U,V and W are domains of f, g and h respectively and $\widehat{\gamma},\widehat{\beta}\in\widehat{\Gamma}$ where $S\gamma S,S\beta S$ are domains of $1_{S\gamma},1_{S\beta}$ respectively. Since $W\Gamma S\beta S\Gamma(V\Gamma S\gamma S\Gamma U)=(W\Gamma S\beta S\Gamma V)\Gamma S\gamma S\Gamma U$, we get for all $x\in W\Gamma S\beta S\Gamma(V\Gamma S\gamma S\Gamma U)$,

```
[(f 1_{S\gamma}g)1_{S\beta}h](x) = ((f1_{S\gamma}g)1_{S\beta})(h(x))
= f(1_{S\gamma}g(1_{S\beta}h(x)))
= f(1_{S\gamma}(g1_{S\beta}h)(x))
= [f1_{S\gamma}(g1_{S\beta}h)](x).
```

Hence $(f \ 1_{S\gamma}g)1_{S\beta}h = f1_{S\gamma} (g1_{S\beta}h)$ on $W\Gamma S\beta S\Gamma (V\Gamma S\gamma S\Gamma U)$. That is, $(\widehat{f} \ \widehat{\gamma}\widehat{g})\widehat{\beta}\widehat{h} = \widehat{f} \ \widehat{\gamma}(\widehat{g}\widehat{\beta}\widehat{h})$. Next we will show that Q_r has an identity. Taking $\widehat{I} \in Q_r$ where $I: S \to S$, $s \mapsto s$ for all $s \in S$. Let $\widehat{f} \in Q_r$, where U is domain of f and $\widehat{\gamma} \in \widehat{\Gamma}$ where $S\gamma S$ is domains of $1_{S\gamma}$ Since $S\Gamma U \subseteq U$, we get for all $x \in S\Gamma S\gamma S\Gamma U$, $(f1_{S\gamma}\ I)(x) = f(1_{S\gamma}(\ I(x))) = f(x)$ and $(I1_{S\gamma}f)(x) = I(1_{S\gamma}(f(x))) = f(x)$. Thus, $\widehat{f}\widehat{\gamma}\widehat{I} = \widehat{I}\widehat{\gamma}\widehat{f} = \widehat{f}$. Hence \widehat{I} is the multiplicative identity in Q_r . Therefore $(Q_r, +, .)$ is a $\widehat{\Gamma}$ -semiring with identity. Moreover we have that $\widehat{\theta} \neq \widehat{I}$.

Finally, noticing that the mapping $\phi: \Gamma \to \widehat{\Gamma}$ defined by $\phi(\gamma) = \widehat{\gamma}$ for every $0 \neq \gamma \in \Gamma$ is an isomorphism, we know that the $\widehat{\Gamma}$ -ring Q_r is a Γ -semiring. Thus, $(Q_r, +, .)$ be a Γ -semiring. One can, of course, characterize Q_l , the left quotient Γ -semiring of S in a similar manner.

Definition 2. A Γ -semiring S is said to be right (left) multiplicatively cancellable if $x\gamma y = z\gamma y$; (resp. $x\gamma y = x\gamma z$) for all $x, y, z \in S$ and for all $\gamma \in \Gamma$ implies that x = z (resp. y = z).

Let S is a semiprime Γ -semiring. If S is right multiplicatively cancellable semiring, then S may be embedded in Q_r as a sub Γ -semiring. Let $a \in S$. Define $\lambda_{a\gamma}: S \to S$ by $\lambda_{a\gamma}(s) = a\gamma s$ for all $s \in S$ and for all $\gamma \in \Gamma$. It is clear that $\lambda_{a\gamma}$ is a right ΓS -semimodule homomorphism, so that $\lambda_{a\gamma}$ defines

element $\hat{\lambda}_{a\gamma}$ of Q_r . Hence we may define $\psi: S \to Q_r$ by $\psi(a) = \hat{\lambda}_{a\gamma}$ for $a \in S$. ψ is a monomorphism.

Therefore S is sub Γ -semiring of Q_r . We call Q_r the right quotient Γ -semiring of S. For purposes of convenience, we use q instead of $\hat{q} \in Q_r$.

Definition 3. The set

$$C_{\Gamma} := \{ q \in Q_r | q\gamma p = p\gamma q \text{ for all } p \in Q_r \text{ and for all } \gamma \in \Gamma \}$$

is called the generalized centroid of a Γ -semiring S.

Remark 2. Assume that $q = [U, f] \in C_{\Gamma}$. For all $s \in S$, $[S, \lambda_s]$. $[S\beta S, 1_{S\beta}]$. [U, f] = [U, f]. $[S\beta S, 1_{S\beta}]$. $[S, \lambda_s]$ and so there exists $K(\in F) \subseteq U\Gamma S\beta S\Gamma S\cap S\Gamma S\beta S\Gamma U$ such that $\lambda_s 1_{S\beta} f = f 1_{S\beta} \lambda_s$ on K. From here, $(\lambda_s 1_{S\beta} f)(x) = (f 1_{S\beta} \lambda_s)(x)$ for all $x \in K$, i.e., $s\beta f(x) = f(s\beta x)$. Hence f acts as a ΓS -semimodule homomorphism on K.

The following theorem characterizes the quotient Γ -semiring Q_r of S. The proof is same the proof of the corresponding theorem in ring theory and we omit it.

Theorem 2. Let S be a right multiplicatively cancellable semiprime Γ-semiring and Q_r the quotient Γ-semiring of S. Then the Γ-semiring Q_r satisfies the following properties:

- (i) Q_r is semiprime Γ -semiring.
- (ii) For any element q of Q_r , there exists an ideal of $U_q \in F$ which has zero annihilator with a right ΓS -semimodule homomorphism $q: U \to S$, such that $q(U_q) \subseteq S$ (or $q\gamma U_q \subseteq S$ for all $\gamma \in \Gamma$).
- (iii) If $q \in Q_r$ and $q(U_q) = \{0_S\}$ for a certain $U_q \in F$ $(q\gamma U_q = \{0_S\})$ for a certain $U_q \in F$ and for all $\gamma \in \Gamma$), then q = 0.
- (iv) If $U \in F$ and $\Psi : U \to S$ is a right ΓS -semimodule homomorphism, then there exists an element $q \in Q_r$ such that $\Psi(u) = q(u)$ for all $u \in U$ (or $\Psi(u) = q\gamma u$ for all $u \in U$ and for all $\gamma \in \Gamma$).
- (v) Let W be a sub ΓS -semimodule (an (S,S) subbi ΓS -semimodule) in Q_r and $\Psi: W \to Q_r$ a right ΓS -semimodule homomorphism. If W contains the ideal U of S such that $\Psi(U) \subseteq S$ and $AnnU = Ann_r W$, then there is an element $q \in Q_r$ such that $\Psi(b) = q(b)$ for any $b \in W$ (or $\Psi(b) = q\gamma b$ for any $b \in W$ and $\gamma \in \Gamma$) and q(a) = 0 for any $a \in Ann_r W$ (or $q\gamma a = 0$ for any $a \in Ann_r W$ and $\gamma \in \Gamma$).

Theorem 3. Let S be a right multiplicatively cancellable semiprime Γ-semiring and C_{Γ} the generalized centroid of S. Then all elements of C_{Γ} are multiplicatively regular.

Let a be an element of C_{Γ} . Then $a, a^2 \in Q_r$ and so we get Proof. that U_a and U_{a^2} are nonzero ideals which have zero annihilators in S. Hence $J = U_a \cap U_{a^2} \in F$ we consider the mapping $\Psi : J \to S$ defined by $\Psi(a^2\beta x) = a\beta x$ for any $\beta \in \Gamma$ where x runs through the set J. Let $a^2\beta x=a^2\beta y$. Since $a^2\in C_\Gamma$, $x\beta a^2=y\beta a^2$. Let $a^2=[U_{a^2},f]$ and so $[S, \lambda_x]$. $[S\beta S, 1_{S\beta}]$. $[U_{a^2}, f] = [S, \lambda_y]$. $[S\beta S, 1_{S\beta}]$. $[U_{a^2}, f]$. Therefore there exists $K \in F$ such that $K \subseteq U_{a^2} \Gamma S \beta S \Gamma S$ and $\lambda_x 1_{S\beta} f = \lambda_y 1_{S\beta} f$ on K. For all $z \in K$, $(\lambda_x 1_{S\beta} f)(z) = (\lambda_y 1_{S\beta} f)(z)$ and so $x\beta f(z) =$ $y\beta f(z)$. Since S be right multiplicatively cancellable Γ-semiring, we get x = y. Thus $a\beta x = a\beta y$. That is, Ψ is well-defined. It is easy to see that Ψ is right ΓS -semimodule homomorphism. There exists $a_1 \in$ Q_r such that $a_1 \alpha a^2 \beta x = a \beta x$ for all $x \in J$. We have that $a_1 \alpha a^2 =$ a. Let us prove that the element a_1 in C_{Γ} . Let q be an arbitrary element of Q_r . Then $(a_1\alpha a^2)^2\beta q = q\beta(a_1\alpha a^2)^2$ and so $a^4\alpha a_1^2\beta q = a^4\alpha q\beta a_1^2$. Multiplying this equality from left by $a\alpha a_1^3$, we get $a\alpha a_1\beta q = a\alpha q\beta a_1$. Assume that $a = [U_a, d], a_1\beta q = [V, g]$ and $q\beta a_1 = [H, h]$. Therefore [V,g]. $[S\alpha S, 1_{S\alpha}]$. $[U_a,d] = [H,h]$. $[S\alpha S, 1_{S\alpha}]$. $[U_a,d]$ and so there exists $L(\in F) \subseteq U_a \Gamma S \alpha S \Gamma V \cap U_a \Gamma S \alpha S \Gamma H$ such that $g1_{S\alpha}d = h1_{S\alpha}d$ on L. Since $a \in C_{\Gamma}$, there exists $W \in F$ such that d is a ΓS -semimodule homomorphism on W. On the other hand $d^{-1}(W \cap L)$ is an ideal which has zero annihilator in S, of S. Also gd = hd on $d^{-1}(W \cap L) \cap L$. Hence g = h on $W \cap L$. That is, $a_1\beta q = q\beta a_1$. This completes the proof. \square

Lemma 4. C_{Γ} is multiplicatively cancellable Γ -semiring.

Proof. Let $s\beta p = s\beta q$ for $p, q, s \in C_{\Gamma}$. Then

$$[H, h] \cdot [S\beta S, 1_{S\beta}] \cdot [U, f] = [H, h] \cdot [S\beta S, 1_{S\beta}] \cdot [V, g]$$

where p = [U, f], q = [V, g], s = [H, h]. Hence there exists $(\{0_S\} \neq) K \in F$ such that $K \subseteq U\Gamma S\beta S\Gamma H \cap V\Gamma S\beta S\Gamma H$ and $h1_{S\beta}f = h1_{S\beta}g$ on K. Since $f, g, h \in C_{\Gamma}$, there exists $W \in F$ such that $f(x)\beta h(y) = g(x)\beta h(y)$ for all $x, y \in K \cap W$. And so f = g on $K \cap W$. That is, p = q. Thus C_{Γ} is multiplicatively cancellable Γ -semiring. \square

We have showed that all elements of C_{Γ} are multiplicatively regular. For any element $a \in C_{\Gamma}$, there exists an element a_1 in C_{Γ} such that $a_1\beta a^2 = a$. Since C_{Γ} is multiplicatively cancellable Γ -semiring, $a_1\beta a = I$. Thus all nonzero elements of C_{Γ} have multiplicative inverse. Thus we have the following result:

Corollary 1. C_{Γ} is a Γ -semifield.

We now let $S_{\Gamma} = S\Gamma C_{\Gamma}$, a sub Γ -semiring of Q_r containing S. We shall call S_{Γ} the central closure of S. The same proof used in showing that Q_r was semiprime may be employed to show that S_{Γ} is semiprime.

Proposition 1. Let S be right multiplicatively cancellable semiprime Γ -semiring and S_{Γ} be the central closure of S. Then S_{Γ} is a right multiplicatively cancellable semiprime Γ -semiring.

Proof. The proof is similar with the proof of [7, Proposition-2]. But we notice that ideals are in F in the proof. \Box

Theorem 4. Let S be multiplicatively cancellable semiprime Γ -semiring. If a and b are nonzero elements in S_{Γ} such that $a\gamma x\beta b=b\beta x\gamma a$ for all $x\in S$ and for all $\gamma,\beta\in\Gamma$ then there exists $q\in C_{\Gamma}$ and $\gamma\in\Gamma$ such that $q\gamma a=b$.

Proof. The proof is similar with the proof of [7, Theorem-3]. But we notice that ideals are in F in the proof. \Box

Theorem 5. Let $f: S \to S_{\Gamma}$ be an additive map satisfying $f(x\beta y) = f(x)\beta y$ for all $x, y \in S$ and $\beta \in \Gamma$. Then there exists $q \in Q_r(S_{\Gamma})$ such that $f(x) = q\beta x$ for all $x \in S$.

Proof. Let us extend f from S to S_{Γ} according to $\overline{f}(\sum x_i\alpha_i\lambda_i) = \sum f(x_i)\alpha_i\lambda_i$, where $x_i \in S$, $\alpha_i \in \Gamma$ and $\lambda_i \in C_{\Gamma}$. Let $\sum x_i\alpha_i\lambda_i = \sum y_i\alpha_i\beta_i$, $x_i, y_i \in S, \lambda_i, \beta_i \in C_{\Gamma}$. There exists a nonzero ideal K in S such that $\lambda_i\alpha_K \subseteq S$ for every i. For $a \in K$, the sum $\sum x_i\alpha_i(\lambda_i\gamma_a)$ in S. Then,

$$\sum x_i \alpha_i (\lambda_i \gamma a) = \sum y_i \alpha_i (\beta_i \gamma a)$$
$$\sum f(x_i) \alpha_i \lambda_i \gamma a = \sum f(y_i) \alpha_i \beta_i \gamma a$$
$$(\sum f(x_i) \alpha_i \lambda_i) \gamma a = (\sum f(y_i) \alpha_i \beta_i) \gamma a.$$

Since S_{Γ} is a right multiplicatively cancellable semiring, we get $\sum f(x_i)\alpha_i\lambda_i = \sum f(y_i)\alpha_i\beta_i$. And so, $\overline{f}(\sum x_i\alpha_i\lambda_i) = \overline{f}(\sum y_i\alpha_i\beta_i)$. That is, \overline{f} is well-defined. The fact that $\overline{f}(x\alpha y) = \overline{f}(x)\alpha y$ for all $x, y \in S_{\Gamma}$ can be seen by a direct computation. Thus $\overline{f}: S_{\Gamma} \to S_{\Gamma}$ is a right S_{Γ} homomorphism, hence there exists $q \in Q_r(S_{\Gamma})$ such that $\overline{f}(x) = q\beta x$, $x \in S$. Since \overline{f} is an extension of f, this proves the theorem. \square

Acknowledgement 1. The work was supported by grants from CUBAP (F-443).

References

- [1] Dutta, T. K. and Sardar, S. K.: Semiprime ideals and irreducible ideals of Γ-semirings, Novi Sad J. Math., 30 (1), pp. 97-108, (2000).
- [2] Dutta, T. K. and Sardar, S. K.: On the operator semirings of a Γ-semiring; Southeast Asian Bull. Math., 26, pp. 203-213, (2002).
- [3] Rao, M. M. K.: Γ-semirings-I, Southeast Asian Bull. of Math., 19, pp. 49-54, (1995).
- [4] Rao, M. M. K.: Γ-semiring-II, Southeast Asian Bull. of Math., 21, pp. 281-287, (1997).
- [5] Sardar,S. K. and Dasgupta, U.: On primitive Γ-semiring, Novi Sad J. Math., 34 (1), pp. 1-12, (2004).
- [6] Sardar, S.K. : A Note on Γ-Semifield, Int. Math. Forum, 6 (18), pp. 875-879, (2011).
- [7] Yazarlı, H. and Öztürk, M. A.; On the centroid of the prime semirings, Turk Journal of Mathematics, 37 (4), pp. 577-584, (2013).
- [8] Oztürk, M. A.: The Extended Centroid Of The Prime Γ-semirings, Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica, 62 (1), pp. 21-32, (2016).
- [9] Öztürk, M. A. and Jun Y. B.: On the centroid of the prime gamma rings, Comm. Korean Math. Soc. 15 (3), pp. 469-479, (2000).

- [10] Öztürk, M. A. and Jun Y. B.: On the centroid of the prime gamma rings II, Turkish J. Math. 25 (3), pp. 367-377, (2001).
- [11] Öztürk, M. A. and Jun Y. B.: Regularity of the generalized centroid of semiprime gammarings, Commun. Korean Math. Soc. 19 (2), pp. 233-242, (2004).

Hasret Durna

Department of Mathematics,
Faculty of Sciences
Cumhuriyet University,
58140 Sivas,
Turkey

e-mail : hyazarli@cumhuriyet.edu.tr

and

Damla Yilmaz

Department of Mathematics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey

e-mail: dmlylmz36@gmail.com