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Universidad Católica del Norte
Antofagasta - Chile

Abstract

The method of invariant embedding for the solutions of boundary
value problems yields an equivalent formulation to the initial bound-
ary value problems by a system of Riccati operator differential equa-
tions. A combined technique based on invariant embedding approach
and Yosida regularization is proposed in this paper for solving abstract
Riccati problems and Dirichlet problems for the Poisson equation over
a circular domain. We exhibit, in polar coordinates, the associated
Neumann to Dirichlet operator, somme concrete properties of this op-
erator are given. It also comes that from the existence of a solution
for the corresponding Riccati equation, the problem can be solved in
appropriate Sobolev spaces.

Subjclass : 35J05, 35J25, 34A12.
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1. Introduction

For studying some questions of control theory, transport theory, quadratic
eigenvalue and filtering problems, one faces the problem of solving Riccati
operator differential equations over a given domain. This equation has
been studied by several authors in different contexts, Lions [8] using a
Galerkin method, Bensoussan [2] in the context of Kalman filtering and
others. Henry and Ramos have proposed in [5] the technique of invariant
embedding, introduced by Bellman in [1], for the resolution of Poisson’s
problem in a cylindrical domain. The problem is embedded in a family
of similar problems defined on subcylinders limited by a moving boundary
and they obtained a factorization in two uncoupled problems of parabolic
type, see [9], [10], [11], [12], [13] and [6]. Here, this method is used on the
same kind of equations on circular domains, which corresponds to certain
problems of mathematical physics and in particular the problems of fluid
mechanics and viscosity. Our work is based essentially on the techniques
developed in [7] and [13].

Precisely, this work concerns the factorization of a second order elliptic
boundary value problem defined in a bounded regular domain, in a system
of uncoupled initial value problems, using the technique of invariant em-
bedding. But because the induced Riccati operator differential equations
consists of unbounded linear operators, a combined technique based on
invariant embedding and Yosida regularization is used for solving Riccati
problems over an open circular domain.

Consider the abstract differential Riccati equation in polar coordinates:

∂P

∂ρ
− 1

ρ2
P

∂2

∂θ2
P − 1

ρ
P − I = 0,(1.1)

0 < b < ρ < a, θ ∈ ]0, 2π[(1.2)

with the initial condition P (a) = 0. This problem has been proposed in [7]
for the study of Dirichlet problem for the Poisson equation defined over an
open disk Ω of R2:

(P0)
(
−∆u = f in Ω
u |Γa= 0

(1.3)

where Γa = ∂Ω is the boundary of Ω and P (x) is the Neumann to Dirichlet
operator on Γx the annulus centered at the origin with radius x ∈ ]b, a[ . I
is the identity operator.
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The well-posedness of (1.1) was proved in [7]. This result was essen-
tially established via the technique of factorization of second order elliptic
boundary value problems. The purpose of the factorization method is :
proving the equivalence between a boundary value problem and system of
uncoupled first order initial value problems. The way of obtaining it was
the Galerkin method in [7] and is the Yosida regularization here.

In this paper we present a direct study of the abstract differential Riccati
equations arising from the factorization of the Poisson equations in a circu-
lar domain using a Yosida regularization. Here the Neumann to Dirichlet
operator satisfying the Riccati equation is determined via a Yosida regu-
larization technique. In particular, due to the unboundedness of certain
operators, the fixed point argument often used in similar situations does
not work any more. Our approach is rigorous and to our knowledge, the
established results are obtained in a new and interesting way, in particular
they allow us to provide more information on systems of uncoupled first
order initial value problems.

The paper is organized in the following way. In section 2, we describe
the factorization method by space invariant embedding of boundary value
problems, (P0) is reduced to a system of initial value problems using an
operator satisfying a Riccati equation. The obtained Riccati equation is
the analogous of the block LU factorization of a block tridiagonal matrix.

In section 3, we introduce the Yosida regularization technique of the
corresponding Riccati equation in polar coordinates. We construct a fam-
ily of regularizing operators for the considered problem and we prove the
convergence of this method.

The strong limit on regularization permits to define in section 4 the so-
called Neumann to Dirichlet operator in polar coordinates. We give more
concrete properties of this operator, it also comes that from the existence
of a solution for the corresponding Riccati equation the problem (P0) can
be solved in appropriate Sobolev spaces.

2. Factorization Method by space invariant embedding

We use now a space invariant embedding technique along the radius of
the annulus centered at the origin with inner radius b and outer radius a,
0 < b < a, this technique is inspired in the temporal invariant embedding
used by J.-L. Lions for the control of parabolic systems, it allows one to
solve many boundary value problems in a simple way. The aim of the
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present section is to show how to factorize a second order elliptic bound-
ary value problem in a circular domain, in a system of uncoupled initial
value problems. This factorization can be viewed as an infinite dimensional
extension of the block Gauss factorization for linear systems.

2.1. Motivation

We consider the boundary value problem on the interval ]0, 1[ for the one-
dimensional Schrödinger equation:(

−αd2u
dρ2 + βu = f, ρ ∈ ]0, 1[

du
dρ (0) = u0 and u(1) = u1

where α, β ∈ ]0,+∞[ , u0, u1 ∈ R and f ∈ L2 (]0, 1[) .

We are motivated to factorize the Schrödinger operator −α d2

dρ2 +β with

the constant potential β, we are then led to search two function A (ρ) and
B (ρ) such that:

− α
d2

dρ2
+ β = −α

µ
d

dρ
+A (ρ)

¶µ
d

dρ
+B (ρ)

¶
.

So, for each u ∈ C2 (]0, 1[) , we obtain:

−αd
2u

dρ2
+βu = −αd

2u

dρ2
−α (A (ρ) +B (ρ))

du

dρ
−α

µ
dB (ρ)

dρ
+A (ρ)B (ρ)

¶
u.

By identification, one must have:(
A (ρ) +B (ρ) = 0,

−α
³
dB(ρ)
dρ +A (ρ)B (ρ)

´
= β.

Thus, B (ρ) = −A (ρ) and dA
dρ + A2 = β

α . If we set A(0) = 0 and

φ(ρ) = −du
dρ + A(ρ)u, then φ(0) = −du

dρ (0) = −u0 and we deduce the
following system of uncoupled equations:⎧⎪⎪⎨⎪⎪⎩

dA
dρ +A2 = β

α , A(0) = 0
dφ
dρ +Aφ = f

α , φ(0) = −u0
du
dρ −Aφ = −φ u(1) = u1

where the equation in A is a Riccati equation.
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2.2. Riccati equation associated with the problem (P0)

Let us consider the Dirichlet problem (P0) for the Poisson equation in the
open annulus ]b, a[ × ]0, 2π[ and introduce the polar coordinates u(x, y) =
û(ρ, θ), x = ρ cos θ, y = ρ sin θ, ρ ∈ ]b, a[ and θ ∈ ]0, 2π[ , then:

(P1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂
2û

∂ρ2
− 1

ρ

∂û

∂ρ
− 1

ρ2
∂2û

∂θ2
= f inbΩ = ]b, a[× ]0, 2π[ ,

û |Γa= 0,R
Γb

∂û

∂ρ
dΓb = 0,

û |θ=0= û |θ=2π,
∂û

∂θ
|θ=0=

∂û

∂θ
|θ=2π,

where Γr is the circle centred at the origin, with radius r, r = a, b. The
choise of the boundary conditions on Γb corresponds to a nul total flux.

We embed this problem in the family of similar problems defined by:

(Ps,h)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂
2ûs
∂ρ2

− 1
ρ

∂ûs
∂ρ
− 1

ρ2
∂2ûs
∂θ2

= f inbΩ \ bΩs = ]s, a[× ]0, 2π[ ,
ûs |Γa= 0,
∂ûs
∂ρ

|Γs= h,

ûs |θ=0= ûs |θ=2π,
∂ûs
∂θ

|θ=0=
∂ûs
∂θ

|θ=2π .

By linearity of (Ps,h), the operator on Γs : h 7→ ûs|Γs is affine, so:

ûs|Γs = P (s)h+ r(s).

where P (s) is the Neumann to Dirichlet map for the annulus bΩ\ bΩs. In fact
P (s) is the opposite of the Neumann-Dirichlet operator as the Neumann
data is −h.

Furthermore, the solution ûs of (Ps,h) is given by:

ûs(ρ, θ) = (P (ρ)
∂ûs
∂ρ |Γs)(θ) + r(ρ, θ).(2.1)
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Formally derive the identity (2.1) with respect to ρ and use the equation
satisfied by ûs, we obtain:

∂ûs
∂ρ = ∂P

∂ρ
∂ûs
∂ρ + P ∂2ûs

∂ρ2 +
∂r
∂ρ

= ∂P
∂ρ

∂ûs
∂ρ + P

³
−f − 1

ρ2
∂2ûs
∂θ2
− 1

ρ
∂ûs
∂ρ

´
+ ∂r

∂ρ

= ∂P
∂ρ

∂ûs
∂ρ − Pf − P 1

ρ2
∂2

∂θ2

³
P ∂ûs

∂ρ + r
´
− P 1

ρ
∂ûs
∂ρ +

∂r
∂ρ

=
³
∂P
∂ρ − P 1

ρ2
∂2

∂θ2P − P 1
ρ

´
∂ûs
∂ρ − Pf − P 1

ρ2
∂2r
∂θ2 +

∂r
∂ρ

Considering
∂ûs
∂ρ

arbitrary, one gets the following decoupled system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂P

∂ρ
− 1

ρ2
P

∂2

∂θ2
P − 1

ρ
P − I = 0, P (a) = 0,

−Pf − P
1

ρ2
∂2r

∂θ2
+

∂r

∂ρ
= 0, r(a) = 0,

P
∂ûs
∂ρ
− ûs = −r.

where the initial conditions for P and r are directly obtained from (2.1)
written at ρ = a. Note that the decoupled system of initial value problems
in P, r, u is equivalent to the boundary value problems as claimed in [7].

Let P be the solution of the corresponding Riccati equation:

∂P

∂ρ
− 1

ρ2
P

∂2

∂θ2
P − 1

ρ
P − I = 0, P (a) = 0(2.2)

we put

P (ρ) = ρQ(ρ)(2.3)

Then

ρ
∂Q

∂ρ
−Q

∂2

∂θ2
Q− I = 0, Q (a) = 0.(2.4)

By making the change of variables r = ln ρ, we get:

∂Q

∂r
−Q

∂2

∂θ2
Q− I = 0, Q (ln a) = 0.(2.5)
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3. Yosida regularization technique

Approximation methods play an important role in nonlinear analysis. A
number of problems in variational analysis and in optimization theory give
rise to nonsmooth functions with possibly infinite values defined on finite
or infinite dimensional spaces. Our focus here is on the existence of solu-
tions of boundary value problems via the Yosida regularization technique.
This spectral method (see e.g. [4]) has been studied and has proven to be
advantageous compared to other approaches. The key point to our analysis
is to construct a family of regularizing operators for the considered problem
and we prove the convergence of this method.

We denote by:

Hk
ρ,P (0, 2π) =

(
v : v ∈ L2 (0, 2π) ,

1

ρj
∂jv

∂θj
∈ L2 (0, 2π),

j = 1, ..., k and v(0) = v(2π)}(3.1)

with 0 < b < ρ < a, k = 1, 2.

where H = L2 (0, 2π) is the Hilbert space of Lebesgue square integrable
functions on (0, 2π) equipped with the natural inner product (f, g) =
2πR
0
f(θ)g(θ)dθ.

Let A = − d2

dθ2
be the unbounded self-adjoint operator defined on H

with domain D(A) = H2
ρ,P (0, 2π) and let An be its Yosida regularization

given by:
An = nI − n2(nI +A)−1, n ∈ N∗.

An is well defined on H since the spectrum of A is embedded in [0,+∞[.
We also notice that:

lim
n→+∞

Anh = Ah, for all h ∈ D(A).

Each An is a positive operator on H and so we can define the positive

square root A
1/2
n of An. Furthermore, A

1/2
n is the infinitesimal generator of

the strongly continuous one-parameter semigroup:

wn(r) = exp
³
2A1/2n (ln a− r)

´
, r ≤ ln a, n ∈ N∗.(3.2)

Taking into account that A
1/2
n is selfadjoint, then wn(r) is also self-

adjoint for all n ∈N∗. We have:
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(wn(r) + I )h, h) = (exp(A1/2n (ln a− r))h, exp(A1/2n (ln a− r))h) + (h, h)

≥ khk2 , for all h ∈ H.

wn(r) + I is continuous, then by Lax-Milgram theorem, we may con-
clude that it is invertible on H with:°°°wn(r) + I )−1

°°°
L(H)

≤ 1, for all r ≤ ln a and n ∈ N∗.

Let for every n ∈ N∗, Pn be the solution of the corresponding Riccati
equation to An :

∂Pn
∂ρ

+
1

ρ2
PnAnPn −

1

ρ
Pn − I = 0, Pn(a) = 0.(3.3)

and

Qn =
Pn
ρ

(3.4)

satisfying:

∂Qn

∂r
+QnAnQn − I = 0, Qn (ln a) = 0(3.5)

From [3], the equation (3.5) admits a solution given by:

Qn(r) = −A−1/2n (wn(r)− I)(wn(r) + I)−1, n ∈N∗.(3.6)

Lemma 3.1. For 0 < b < ρ < a , n ∈ N∗,

Pn(ρ) = −ρA−1/2n (wn(ln ρ)− I)(wn(ln ρ) + I)−1

is well defined and Pn(ρ) ∈ L(H) is negative self-adjoint operator on H.
Moreover,

Pn ∈ C1([b, a];L(H)).(3.7)
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Proof. For ρ ∈ [b, a], Pn(ρ) is a product of self-adjoint, positive and
bounded operators on H which commute with each other and consequently
we may conclude that Pn(ρ) is self-adjoint, negative and bounded on H.
For arbitrary ρ ∈ [b, a] :

Qn(ln ρ)−Qn(ln ρ0) = −2A−1/2n

h
(wn(ln ρ0) + I)−1 − (wn(ln ρ) + I)−1

i
= −2A−1/2n (wn(ln ρ)− wn(ln ρ0))(wn(ln ρ0) + I)−1(wn(ln ρ) + I)−1.

As wn(ln ρ) = exp(2A
1
2
n (ln a − ln ρ)) is an uniformly continuous semi-

group, we conclude that:

lim
ρ→ρ0

k(Qn(ln ρ)−Qn(ln ρ0)k = 0

and so Pn ∈ C([b, a];L(H)). We also have:
Qn(ln ρ)−Qn(ln ρ0)

ρ− ρ0
= −2A−1/2n

wn(ln ρ)− wn(ln ρ0)

ρ− ρ0
(wn(ln ρ0)+I)

−1(wn(ln ρ)+I)
−1

and thus, for the same reason as before, ∂Pn
∂ρ ∈ C([b, a];L(H)). Conse-

quently, Pn ∈ C1([b, a];L(H)). 2

Lemma 3.2. Let 0 < b < ρ < a. For each h ∈ H, there exists a constant
M(h) ≥ 0 such that:

kPn(ρ)hk ≤ a M(h), for all ρ ∈ [b, a], n ∈ N∗.

Proof. Since by construction An andQn commute, then from the Riccati
equation (3.5), we have:

(A−1n
∂Qn

∂r
h, h) + (Q2n(r)h, h) = (A

−1
n h, h), n ∈ N∗.

As Qn is a self-adjoint, then:

(A−1n
∂Qn

∂r
(r)h, h)+kQn(r)hk2 = (A−1n h, h), for all h ∈ H, r ≤ ln a, n ∈ N∗.

We may conclude from (3.6) that A−1n
∂Qn

∂r
is positive and so:

kQn(r)hk2 ≤ (A−1n h, h) →
n−→∞

(A−1h, h), for all h ∈ H, r ∈ [ln b, ln a] ,
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and consequently the sequence (Qn(r)h)n∈N∗ is bounded in H, or for each
h ∈ H, there exists a constant M(h) ≥ 0 such that:

kQn(r)hk ≤M(h), for all r ∈ [ln b, ln a] , n ∈ N∗.

Returning to the variable ρ, we can write:

kQn(ln ρ)hk ≤M(h), for all ρ ∈ [b, a] , n ∈N∗.

Thus,

kPn(ρ)hk = kρQn(ln ρ)hk ≤ a M(h), for all ρ ∈ [b, a] , n ∈ N∗. 2

We verify in fact that the sequence (Pn(ρ)h)n∈N∗ is uniformly conver-
gent in a sense that we explain in the following main theorem.

Theorem 3.3. For each h ∈ H, the sequence (Pn(ρ)h)n∈N∗ converges in
H, the limit is attained uniformly for ρ ∈ [b, a] .

Proof. We have from (3.5) and by virtue of the commutativity of An

and Qn(r) :

An
∂Qn(r)

∂r
+A2nQ

2
n(r) = An

∂(AnQn(r))

∂r
+ (AnQn(r))

2 = An, n ∈ N∗.

Denote by Tn(r) the operator (−AnQn(r)) , then:

− ∂Tn(r)

∂r
+ T 2n(r) = An, n ∈ N∗.

For each r ∈ [ln b, ln a] , consider the sequence (Tn(r)h)n∈N∗ . Note that
for each r ≤ ln a and n,m ∈ N∗, Tn(r) and Tm(r) commute with each
other. So we have:

∂

∂r
(−Tn(r) + Tm(r)) + (Tn(r) + Tm(r))(Tn(r)− Tm(r)) = (An −Am).

By multiplying by (Tn(r)− Tm(r))h, h ∈ H, it results that:
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( ∂∂r (−Tn(r) + Tm(r))h, (Tn(r)− Tm(r))h)+

+((Tn(r) + Tm(r))(Tn(r)− Tm(r))h, (Tn(r)− Tm(r))h) =

= ((An −Am)h, (Tn(r)− Tm(r))h).

As (Tn(r) + Tm(r)) is a positive operator,

((Tn(r) + Tm(r))(Tn(r)− Tm(r))h, (Tn(r)− Tm(r))h) ≥ 0, for all h ∈ H

we obtain:

(− ∂

∂r
(Tn(r)− Tm(r))h, (Tn(r)− Tm(r))h)

≤ ((An −Am)h, (Tn(r)− Tm(r))h)

and

−1
2

∂

∂r
kTn(r)− Tm(r))hk2 = − kTn(r)− Tm(r))hk

∂

∂r
kTn(r)− Tm(r))hk

≤ k(An −Am)hk k(Tn(r)− Tm(r))hk

thus,

− ∂

∂r
k(Tn(r)− Tm(r))hk ≤ k(An −Am)hk .

Now integrate this inequality between r and ln a. Using Lemma (3.2)
and the condition Tn(ln a) = 0, we obtain for r ∈ [ln b, ln a] and h ∈ H :

k(Tn(r)− Tm(r))hk ≤ (ln a− r) k(An −Am)hk
≤ ln a k(An −Am)hk .

Since Anh −→
n→∞

Ah, for all h ∈ H, and as k(An −Am)hk does not
depend on r, we conclude that for each h ∈ H, (Tn(r)h)n∈N∗ is a Cauchy
sequence in H, uniformly with respect to r ∈ [ln b, ln a] . Consequently, by
the same reasoning on the equation for Qn, we deduce that the sequence:

Pn(r)h = −ρA−1n Tn(r)h = −ρ(I+
1

n
A)A−1Tn(r)h = −ρA−1Tn(r)h−

ρ

n
Tn(r)h

is strongly convergent in H uniformly with respect to r ∈ [ln b, ln a] . 2
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4. Neumann to Dirichlet operator P (ρ)

After passing to the limit when n tends to infinity, we find the Neumann to
Dirichlet operator P (ρ) which is of interest for various kinds of problems as
domain decomposition or the definition of transparent boundary conditions.
Indeed, we can now define P (ρ)h = lim

n→+∞
Pn(ρ)h, as a L(H) operator, for

each ρ ∈ [b, a] .

Theorem 4.1. The operator Q =
P (ρ)

ρ
is a weak solution of Riccati equa-

tion (2.5) in the following sense:

∂

∂r
(Qh, g) +

µ
∂

∂θ
Qh,

∂

∂θ
Qg

¶
= (h, g), for all h, g ∈ H,(4.1)

satisfying the condition Q(ln a) = 0.

Proof. We get from (3.5) and the self-adjointness of A
1/2
n and Qn(r) :

(
∂Qn

∂r
h, g) + (A1/2n Qn(r)h,A

1/2
n Qn(r)g) = (h, g), for all h, g ∈ H.

Let ϕ ∈ D(]ln b, ln a[), the space of infinitely-differentiable function of
compact support in ]ln b, ln a[ . Multiplication of the previous differential
equation with the appropriate function rϕ(r) ∈ D(]ln b, ln a[) and integra-
tion of the resulting equation on ]ln b, ln a[ :

ln aZ
ln b

(
∂Qn

∂r
h, g)rϕ(r)dr +

ln aZ
ln b

(A1/2n Qn(r)h,A
1/2
n Qn(r)g)rϕ(r)dr(4.2)

=
ln aR
ln b
(h, g)rϕ(r)dr. (4.3)

From Fubini’s theorem and integration by parts, we obtain since
Qn (ln a) = 0 and Qn (ln b) = 0 :

ln aZ
ln b

(
∂Qn

∂r
h, g)rϕ(r)dr =

ln aZ
ln b

⎛⎝ 2πZ
0

∂Qn

∂r
hgdθ

⎞⎠ rϕ(r)dr
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=

2πZ
0

⎛⎝ ln aZ
ln b

∂Qn

∂r
rϕ(r)dr

⎞⎠hgdθ

=

2πZ
0

⎛⎜⎝[Qnrϕ(r)]
ln a
ln b| {z }

=0

−
ln aZ
ln b

Qn
∂

∂r
(rϕ(r)) dr

⎞⎟⎠hgdθ

= −
ln aZ
ln b

(Qnf, g) rϕ
0(r)dr −

ln aZ
ln b

(Qnf, g)ϕ(r)dr.

For each h, g fixed in H, we have:

lim
n→+∞

(Qn(r)h, g)ϕ
0(r) = (Q(r)h, g)ϕ0(r), r ∈ [ln b, ln a]

and from Lemma 3.2 :

¯̄
(Qn(r)h, g)ϕ

0(r)
¯̄
≤M(h). kgk

¯̄
ϕ0(r)

¯̄
, r ∈ [ln b, ln a] , n ∈ N∗.

since each An is bounded and
°°°A1/2n

°°° = kAnk1/2 , for all n ∈ N∗, if we put

in the proof of theorem (3.3) Tn(r) = A
1
2
nQn(r), we can demonstrate in the

same way that lim
n→+∞

A
1/2
n Qn(r)h = A

1
2Q(r), then:

lim
n→+∞

(A1/2n Qn(r)h,A
1/2
n Qn(r)g)ϕ(r)

= (A1/2Q(r)h,A1/2Q(r)g)ϕ(r), r ∈ [ln b, ln a]
and¯̄̄
(A1/2n Qn(r)h,A

1/2
n Qn(r)g)ϕ(r)

¯̄̄
≤M(h)M(g) |ϕ(r)| , r ∈ [ln b, ln a] , n ∈ N∗.

By Lebesgue’s theorem we can pass to the limit as n → ∞ under the
integral sign in (4.2), then (4.1) is satisfied in the sense of distributions on
] ln b, ln a[ for all h, g in H. Furthermore, since Qn(ln a)h = 0, for all h ∈ H
and n ∈ N∗, then Q(ln a) = 0. 2

Remark 4.2. In fact P (ρ)h = lim
n→+∞

Pn(ρ)h ∈ H1
ρ,P (0, 2π) for each h ∈

H and ρ ∈ [b, a] . Indeed, it is proved in Theorem 4.1 that A1/2Q is in L(H).
Then it is sufficient to notice that A1/2 defines an isomorphism between
H1
ρ,P (0, 2π) and H to get the result.
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Proposition 4.3. ∂Q
∂r is a positive operator on H :

(
∂Q

∂r
h, h) ≥ 0, for all h ∈ H.

Proof. From Theorem 4.1, we know that for all f, g ∈ H and n ∈N∗ :

(
∂

∂r
Qh, g) +

µ
∂

∂θ
Qh,

∂

∂θ
Qg

¶
= (h, g)

(
∂Qn

∂r
h, g) + (A1/2n Qn(r)h,A

1/2
n Qn(r)g) = (h, g).

Taking into account that for each h ∈ H, Qn(r)h −→
n→+∞

Q(r)h, uni-

formly with respect r ∈ [ln b, ln a] , we may conclude that:

(
∂Qn

∂r
h, h) −→

n→+∞
(
∂Q

∂r
h, h), for all h ∈ H.

On the other hand, since ∂Qn

∂r ≥ 0, then (
∂Q
∂r h, h) ≥ 0, for all h ∈ H. 2

Remark 4.4. The results previously established on the Neumann to Dirich-
let operator provide an equivalent formulation of the problem (P0) and
solves this problem in an elegant way.

Acknowledgement: Authors are thankful to the honorable referee for
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