Proyecciones Journal of Mathematics Vol. 37, Nº 4, pp. 613-625, December 2018. Universidad Católica del Norte Antofagasta - Chile

Odd Vertex equitable even labeling of cyclic snake related graphs

P. Jeyanthi Govindammal Aditanar College for Women, India and

A. Maheswari Kamaraj College of Engineering and Technology, India Received: January 2018. Accepted: March 2018

Abstract

Let G be a graph with p vertices and q edges and $A = \{1, 3, ..., q\}$ if q is odd or $A = \{1, 3, ..., q+1\}$ if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \le 1$ and the induced edge labels are 2, 4, ..., 2q where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. Here, we prove that the graph nC_4 -snake, $CS(n_1, n_2, ..., n_k)$, $n_i \equiv 0 \pmod{4}, n_i \ge 4$, be a generalized kC_n -snake, $T\widehat{O}QS_n$ and $T\widehat{O}QS_n$ are odd vertex equitable even graphs.

Keywords: vertex equitable labeling, vertex equitable graph, odd vertex equitable even labeling, odd vertex equitable even graph.

AMS Subject Classification (2010): 05C78

1. Introduction

All graphs considered here are simple, finite, connected and undirected. Let G(V, E) be a graph with p vertices and q edges. We follow the basic notations and terminology of graph theory as in [3]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and a detailed survery of graph labeling can be found in [2]. The vertex set and the edge set of a graph are denoted by V(G) and E(G) respectively.

The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan in [16] and further studied in [5]-[14]. Let G be a graph with p vertices and q edges and $A = \{0, 1, 2, ..., \left\lceil \frac{q}{2} \right\rceil \}$. A graph G is said to be vertex equitable if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \le 1$ and the induced edge labels are 1, 2, 3, ..., q, where $v_f(a)$ is the number of vertices v with f(v) = a for $a \in A$. The vertex labeling f is known as vertex equitable labeling. A graph G is said to be a vertex equitable if it admits a vertex equitable labeling.

Motivated by the concept of vertex equitable labeling of graphs, Jeyanthi, Maheswari and Vijaya Lakshmi defined a new labeling namely odd vertex equitable even labeling [15]. A graph G with p vertices and q edges and $A = \{1, 3, ..., q\}$ if q is odd or $A = \{1, 3, ..., q + 1\}$ if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \le 1$ and the induced edge labels are 2, 4, ..., 2q where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. In [15] they proved that the graphs like path, $P_n \odot P_m(n, m \ge 1)$, $K_{1,n-2}(n \ge 3)$, $K_{2,n}$, T_p -tree, a ladder L_n , arbitrary super subdivision of any path P_n are odd vertex equitable even graphs.

Also they proved that the graphs $K_{1,n}$ is an odd vertex equitable even graph iff $n \leq 2$, the graph $G = K_{1,n} \bigcup K_{1,n-2} (n \geq 3)$ is an odd vertex equitable even graph and cycle C_n is an odd vertex equitable even graph if $n \equiv 0$ or 1 (mod 4). In addition, they proved that if every edge of a graph G is an edge of a triangle, then G is not an odd vertex equitable even graph.

We use the following definitions in the subsequent section.

Theorem 1.1. The cycle C_n is an odd vertex equitable even graph if $n \equiv 0$ or $1 \pmod{4}$.

Theorem 1.2. Let $G_1(p_1, q_1), G_2(P_2, q_2), ..., G_m(p_m, q_m)$ be an odd vertex equitable even graphs with $\sum_{i=1}^{m-1} q_i$ is even, q_m is even or odd and u_i, v_i be the vertices of $G_i (1 \le i \le m)$ labeled by 1, q_i if q_i is odd or $q_i + 1$ if q_i is even. Then the graph G obtained by identifying v_1 with u_2 and v_2 with u_3 and v_3 with u_4 and so on until we identify v_{m-1} with u_m is also an odd vertex equitable even graph.

Definition 1.3. The corona $G_1 \odot G_2$ of the graphs G_1 and G_2 is defined as a graph obtained by taking one copy of G_1 (with p vertices) and p copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex of the i^{th} copy of G_2 .

Definition 1.4. Let G_1 be a graph with p vertices and G_2 be any graph. A graph G_1 \hat{o} G_2 is obtained from G_1 and p copies of G_2 by identifying one vertex of i^{th} copy of G_2 with i^{th} vertex of G_1 .

Definition 1.5. [1] A kC_n -snake is defined as a connected graph in which all the k-blocks are isomorphic to the cycle C_n and the block-cut point graph is a path. Let P be the path of minimum length that contains all the cut vertices of a kC_n -snake. Barrientos proved that any kC_n -snake is represented by a string $s_1, s_2, ..., s_{k-2}$ of integers of length k-2 where the i^{th} integer, s_i on the string is the distance between i^{th} and $(i+1)^{th}$ cut vertices on the path P from one extreme and is taken from $S_n = \{1, 2, ..., \lfloor \frac{n}{2} \rfloor \}$. The strings obtained for both extremes are assumed to be the same. Then there are at most $\left|\frac{n}{2}\right|^{k-2}$ non isomorphic kC_n -snakes. For example, the string of a $10C_4$ -snake is shown in Figure 1.1 is 2,2,1,2,1,1,2,1. A kC_n -snake is said to be linear if each integer of its string is $\lfloor \frac{n}{2} \rfloor$.

Figure 1.1: An embedding of $10C_4$ -snake

A nC_k -snake is said to be linear if each integer of its string is $\left\lfloor \frac{k}{2} \right\rfloor$. The linear nC_4 -snake graph with diagonal vertices u_{1j} $(1 \leq j \leq n+1)$, left to the diagonal vertices v_{1j} $(1 \leq j \leq n)$ and right to the diagonal vertices w_{1j} $(1 \leq j \leq n)$ is denoted by QS_n . For example, a linear $3C_4$ -snake graph QS_3 is shown in Figure 1.2.

Figure 1.2: A linear $3C_4$ -snake QS_3

Definition 1.6. A generalized kC_n -snake is defined as a connected graph in which each block is isomorphic to a cycle C_n for some n and the block-cut point graph is a path. It is denoted by $CS(n_1, n_2, ..., n_k)$ where $B_1, B_2, ..., B_k$ are the consecutive blocks and B_i is isomorphic to C_{n_i} . By applying the same methods used to obtain the strings of a kC_n -snake, we can show that any generalized kC_n -snake can also be represented by a string of integers $s_1, s_2, ..., s_{k-2}$ of length k-2 where $s_{i-1} \in S_{n_i}$.

Definition 1.7. [4] Let T be a tree and u_0 and v_0 be the two adjacent vertices in T. Let u and v be the two pendant vertices of T such that the length of the path $u_0 - u$ is equal to the length of the path $v_0 - v$. If the edge u_0v_0 is deleted from T and u and v are joined by an edge uv, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge u_0v_0 is called transformable edge. If by the sequence of ept's, T can be reduced to a path, then T is called a T_p -tree (transformed tree) and such sequence regarded as a composition of mappings (ept's) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as P(T). A T_p -tree and the sequence of two ept's reducing it to a path are illustrated in Figure 1.3.

Figure 1.3

2. Main Results

In this section, we prove that nC_4 -snake, $CS(n_1, n_2, ..., n_k)$, $n_i \equiv 0 \pmod{4}$, $n_i \geq 4$, be a generalized kC_n -snake, $T\widehat{O}QS_n$ and $T\widehat{O}QS_n$ are odd vertex equitable even graphs.

Theorem 2.1. The nC_4 -snake is an odd vertex equitable even graph.

Proof. Let G be a nC_4 -snake with n blocks and $G_i = C_4, 1 \le i \le n-1$ and u_i, v_i be the vertices with labels 1 and q+1 respectively. By Theorem 1.2, nC_4 admits an odd vertex equitable even labeling. An example for odd vertex equitable even labeling of $3C_4$ -snake is shown in Figure 2.1.

Figure 2.1

Theorem 2.2. Let $G = CS(n_1, n_2, ..., n_k), n_i \equiv 0 \pmod{4}, \ n_i \geq 4$ be a generalized kC_n -snake with its strings $s_1, s_2, ..., s_{k-2}$ where $s_i \in \{1\}, 1 \leq i \leq k$. Then G is an odd vertex equitable even graph.

Proof. By Theorem 1.1, the cycle C_n is an odd vertex equitable even graph if $n \equiv 0 \pmod{4}$. By Theorem 1.2, $CS(n_1, n_2, ..., n_k)$, $n_i \equiv 0 \pmod{4}$, is an odd vertex equitable even graph. An example for odd vertex equitable even labeling of CS(8,4,12) is shown in Figure 2.2.

Figure 2.2

Theorem 2.3. If T be a T_p -tree on m vertices, then the graph $T\widehat{O}QS_n$ is an odd vertex equitable even graph.

Proof. Let T be a T_p -tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path P(T) we have (i) V(P(T)) = V(T) (ii) $E(P(T)) = (E(T) - E_d) \cup E_p$ where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the epts P used to arrive at the path P(T). Clearly, E_d and E_p have the same number of edges.

Now denote the vertices of P(T) successively by $u'_1, u'_2, ..., u'_m$ starting from one pendant vertex of P(T) right up to the other one. Let $u_{i1}, u_{i2}, ..., u_{i(n+1)}, v_{i1}, v_{i2}, ..., v_{in}$ and $w_{i1}, w_{i2}, ..., w_{in} (1 \le i \le m)$ be the vertices of i^{th} copy of P_n with $u_{i(n+1)} = u'_i$.

Then
$$V(T\widehat{O}QS_n) = \{u_{ij} : 1 \leq i \leq m, 1 \leq j \leq n+1 \text{ with } u_{i(n+1)} = u_i'\} \bigcup \{u_i', v_{ij}, w_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\} \text{ and } E(T\widehat{O}QS_n) = \{e_i' = u_i'u_{i+1}' : 1 \leq i \leq m-1\} \bigcup E(QS_n).$$
Here $|V(T\widehat{O}QS_n)| = m(3n+1)$ and $|E(T\widehat{O}QS_n)| = 4mn+m-1.$
Let $A = \{1, 3, ..., 4mn+m-1\}.$

Define a vertex labeling $f: V(T\widehat{O}QS_n) \to A$ as follows:

For
$$1 \le i \le m, 1 \le j \le n+1$$
 $f(u_{ij}) = (4n+1)(i-1)+4j-3$ if i is odd $(4n+1)i-(4j-3)$ if i is even

For $1 \le i \le m, 1 \le j \le n$.

$$f(v_{ij}) = f(u_{ij}), f(w_{ij}) =$$
$$(4n+1)(i-1) + 4j - 1$$
if i is odd
$$(4n+1)i - (4j-1)$$
if i is even .

For the vertex labeling f, the induced edge labeling f^* is as follows:

For
$$1 \le i \le m - 1$$
 $f^*(e'_i) = 2(4n + 1)i$.

The induced edge labels of QS_n are $2(4n+1)(i-1)+2j(1 \le i \le m, 1 \le j \le 2n)$ if i is odd and $2(4n+1)(i-1)+2j(1 \le i \le m, 1 \le j \le 2n)$ if i is even.

Let $v_i v_j$ be a transformed edge in T for some indices $i, j, 1 \le i \le j \le m$.

Let P_1 be the ept that deletes the edge $v_i v_j$ and adds an edge $v_{i+t} v_{j-t}$ where t is the distance of v_i from v_{i+t} and the distance of v_j from v_{j-t} .

Let P be a parallel transformation of T that contains P_1 as one of the constituent epts. Since $v_{i+t}v_{j-t}$ is an edge in the path P(T), it follows that i+t+1=j-t which implies j=i+2t+1.

Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge $v_i v_j$ is given by $f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) = f(v_i) + f(v_{i+2t+1}) = 2(4n+1)(i+t)$ and

$$f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = f(v_{i+t}) + f(v_iv_{i+t+1}) = 2(4n+1)(i+t).$$

Therefore, $f^*(v_iv_j) = f^*(v_{i+t}v_{j-t})$. It can be verified that the induced edge labels of $T\widehat{O}QS_n$ are 2, 4, 6, ..., 8mn + 2m - 2 and $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence, $T\widehat{O}QS_n$ is an odd vertex equitable even graph.

An example for odd vertex equitable even labeling of $T\widehat{O}QS_2$ where T is a T_p -tree on 8 vertices is shown in Figure 2.3.

Theorem 2.4. Let T be a T_p -trees on m vertices. Then the graph $T\widetilde{O}QS_n$ is an odd vertex equitable even graph.

Proof. Let T be a T_p -tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path P(T) we have (i) V(P(T)) = V(T) (ii) $E(P(T)) = (E(T) - E_d) \bigcup E_p$ where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the epts P used to arrive at the path P(T). Clearly, E_d and E_p have the same number of edges. Now denote the vertices of P(T) successively by $u'_1, u'_2, ..., u'_m$ starting from one pendant vertex of P(T) right up to the other one.

Let $u_{i1}, u_{i2}, ..., u_{i(n+1)}, v_{i1}, v_{i2}, ..., v_{in} \text{ and } w_{i1}, w_{i2}, ..., w_{in} (1 \le i \le m) \text{ be the}$ vertices of i^{th} copy of P_n .

Then $V(T\widetilde{O}QS_n) = \{u_{ij} : 1 \leq i \leq m, 1 \leq j \leq n+1\} \bigcup \{u'_{i}, v_{ij}, w_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\}$ and $E(T\widetilde{O}QS_n) = E(QS_n) \bigcup \{e'_{i} = u'_{i}u'_{i+1} : 1 \leq i \leq n\}$ $m-1\} \bigcup \{e_i'' = u_i' u_{i(n+1)} : 1 \le i \le m\}.$

Here $|V(T\widetilde{O}QS_n)| = m(3n+2)$ and $|E(T\widetilde{O}QS_n)| = 4mn + 2m - 1$.

Let $A = \{1, 3, ..., 4mn + 2m - 1\}.$

Define a vertex labeling $f: V(TOQS_n) \to A$ as follows:

For
$$1 \le i \le m, 1 \le j \le n+1$$
 $f(u_{ij}) = \begin{cases} (4n+2)(i-1)+4j-3 & \text{if } i \text{ is odd} \\ (4n+2)i-(4j-3) & \text{if } i \text{ is even} \end{cases}$

For $1 \le i \le m, 1 \le j \le n$.

For
$$1 \le i \le m, 1 \le j \le n$$
.
 $f(v_{ij}) = f(u_{ij}), f(w_{ij}) = \begin{cases} (4n+2)(i-1) + 4j - 1 & \text{if } i \text{ is odd} \\ (4n+2)i - (4j-1) & \text{if } i \text{ is even} \end{cases}$

$$f(u'_i) = \begin{cases} (4n+2)i - 1 & \text{if } i \text{ is odd} \\ (4n+2)i - (4n+1) & \text{if } i \text{ is even} \end{cases}$$

$$f(u'_i) = \begin{cases} (4n+2)i - 1 & \text{if } i \text{ is odd} \\ (4n+2)i - (4n+1) & \text{if } i \text{ is even} \end{cases}$$

For the vertex labeling f, the induced edge labeling f^* is as follows:

For
$$1 \le i \le m - 1$$
 $f^*(e'_i) = 2(4n + 2)i$,

For
$$1 \le i \le m$$
 $f^*(e_i'') = 2(4n+2)i-2$ if i is odd $2(4n+2)(i-1)+2$ if i is even

 $j \le 2n$) if i is odd and $2(4n+2)(i-1)+2j(1 \le i \le m, 1 \le j \le 2n)$ if i is even.

Let $v_i v_j$ be a transformed edge in T for some indices $i, j, 1 \le i \le j \le m$.

Let P_1 be the ept that deletes the edge $v_i v_j$ and adds an edge $v_{i+t} v_{j-t}$ where t is the distance of v_i from v_{i+t} and the distance of v_j from v_{j-t} .

Let P be a parallel transformation of T that contains P_1 as one of the constituent epts. Since $v_{i+t}v_{j-t}$ is an edge in the path P(T), it follows that i + t + 1 = j - t which implies j = i + 2t + 1.

Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge $v_i v_j$ is given by $f^*(v_i v_j) = f^*(v_i v_{i+2t+1}) =$ $f(v_i) + f(v_{i+2t+1}) = 2(4n+2)(i+t)$ and

$$f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = f(v_{i+t}) + f(v_iv_{i+t+1}) = 2(4n+2)(i+t).$$

Therefore, $f^*(v_i v_j) = f^*(v_{i+t} v_{j-t})$.

It can be verified that the induced edge labels of $T\widetilde{O}QS_n$ are 2,4,6,...,8mn+4m-2 and $|v_f(a)-v_f(b)|\leq 1$ for all $a,b\in A$.

Hence, $T\widetilde{O}QS_n$ is an odd vertex equitable even graph.

An example for odd vertex equitable even labeling of $T\widetilde{O}QS_2$ where T is a T_p -tree on 8 vertices is shown in Figure 2.4.

Figure 2.4

References

- [1] C. Barrientos, Difference Vertex Labelings, Ph.D. Thesis, Universitat Politecnica de Catalunya, Barcelona, (2004).
- [2] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 19, (2017)#DS6.
- [3] F. Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
- [4] S. M. Hedge and Sudhakar Shetty, On Graceful Trees, Applied Mathematics E-Notes, 2, pp. 192-197, (2002).
- [5] P. Jeyanthi and A. Maheswari, Some results on vertex equitable labeling, Open J. Discrete Math., 2, pp. 51-57, (2012).
- [6] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of Transformed Trees, Journal of Algorithms and Computation, 44, pp. 9-20, (2013).
- [7] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of cyclic snakes and bistar graphs, Journal of Scientific Research, 6, (1), pp. 79-85, (2014).
- [8] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of families of graphs, Graph theory Notes of New York, LXVII, pp. 34-42, (2014).
- [9] P.Jeyanthi and A. Maheswari, Vertex Equitable Labeling of Super Subdivision Graphs, Scientific International, 27 (4), pp. 1-3, (2015).
- [10] P. Jeyanthi, A. Maheswari and M. Vijayalakshmi, Vertex equitable labeling of cycle and star related graphs, Journal of Scientific Research, 7, pp. 33-42, (2015).
- [11] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of cycle and path related graphs, Utilitas Mathematica, 98, pp. 215-226, (2015).
- [12] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Vertex equitable labeling of Double Alternate Snake Graphs, Journal of Algorithms and Computation, 46, pp. 27-34, (2015).

- [13] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, New Results on Vertex Equitable Labeling, Journal of Algebra Combinatorics Discrete structures and Applications, 3, (2), pp. 97-104, (2016).
- [14] P.Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Vertex Equitable Labeling of Union of Cyclic Snake graphs, Proyectiones Journal of Mathematics, 35, (2), pp. 177-186, (2016).
- [15] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Odd Vertex Equitable Even Labeling, Proyectiones Journal of Mathematics, 36, (1), pp. 1-11, (2017).
- [16] A. Lourdusamy and M. Seenivasan, Vertex equitable labeling of graphs, Journal of Discrete Mathematical Sciences and Cryptography, 11, (6), pp. 727-735, (2008).

P. Jeyanthi

Research Centre,
Department of Mathematics,
Govindammal Aditanar College for Women,
Tiruchendur-628215, Tamilnadu,
India
e-mail: jeyajeyanthi@rediffmail.com

and

A. Maheswari

Department of Mathematics,
Kamaraj College of Engineering and Technology,
Virudhunagar, Tamilnadu,
India
e-mail: bala_nithin@yahoo.co.in