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Abstract

Let G be a graph with p vertices and q edges and A = {1, 3, ..., q}
if q is odd or A = {1, 3, ..., q + 1} if q is even. A graph G is said
to admit an odd vertex equitable even labeling if there exists a vertex
labeling f : V (G) → A that induces an edge labeling f∗ defined by
f∗(uv) = f(u) + f(v) for all edges uv such that for all a and b in A,
|vf (a)− vf (b)| ≤ 1 and the induced edge labels are 2, 4, ..., 2q where
vf (a) be the number of vertices v with f(v) = a for a ∈ A. A graph
that admits an odd vertex equitable even labeling is called an odd ver-
tex equitable even graph. Here, we prove that the graph nC4-snake,
CS(n1, n2, ..., nk), ni ≡ 0(mod4),ni ≥ 4, be a generalized kCn -snake,

T bOQSn and T eOQSn are odd vertex equitable even graphs.
Keywords : vertex equitable labeling, vertex equitable graph, odd
vertex equitable even labeling, odd vertex equitable even graph.
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1. Introduction

All graphs considered here are simple, finite, connected and undirected.
Let G(V,E) be a graph with p vertices and q edges. We follow the basic
notations and terminology of graph theory as in [3]. A graph labeling is an
assignment of integers to the vertices or edges or both, subject to certain
conditions and a detailed survery of graph labeling can be found in [2].
The vertex set and the edge set of a graph are denoted by V (G) and E(G)
respectively.

The concept of vertex equitable labeling was due to Lourdusamy and
Seenivasan in [16] and further studied in [5]-[14]. Let G be a graph with
p vertices and q edges and A = {0, 1, 2, ...,

§ q
2

¨
}. A graph G is said to be

vertex equitable if there exists a vertex labeling f : V (G)→ A that induces
an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv such
that for all a and b in A, |vf (a)− vf (b)| ≤ 1 and the induced edge labels are
1, 2, 3, ..., q, where vf (a) is the number of vertices v with f(v) = a for a ∈ A.
The vertex labeling f is known as vertex equitable labeling. A graph G is
said to be a vertex equitable if it admits a vertex equitable labeling.

Motivated by the concept of vertex equitable labeling of graphs, Jeyan-
thi, Maheswari and Vijaya Lakshmi defined a new labeling namely odd
vertex equitable even labeling [15]. A graph G with p vertices and q edges
and A = {1, 3, ..., q} if q is odd or A = {1, 3, ..., q+1} if q is even. A graph
G is said to admit an odd vertex equitable even labeling if there exists a
vertex labeling f : V (G) → A that induces an edge labeling f∗ defined
by f∗(uv) = f(u) + f(v) for all edges uv such that for all a and b in A,
|vf (a)− vf (b)| ≤ 1 and the induced edge labels are 2, 4, ..., 2q where vf (a)
be the number of vertices v with f(v) = a for a ∈ A. A graph that admits
an odd vertex equitable even labeling is called an odd vertex equitable even
graph. In [15] they proved that the graphs like path, Pn ¯ Pm(n,m ≥ 1),
K1,n

S
K1,n−2(n ≥ 3), K2,n, Tp -tree, a ladder Ln, arbitrary super subdivi-

sion of any path Pn are odd vertex equitable even graphs.

Also they proved that the graphs K1,n is an odd vertex equitable even
graph iff n ≤ 2, the graph G = K1,n

S
K1,n−2(n ≥ 3) is an odd vertex

equitable even graph and cycle Cn is an odd vertex equitable even graph if
n ≡ 0 or 1 (mod4). In addition, they proved that if every edge of a graph
G is an edge of a triangle, then G is not an odd vertex equitable even graph.
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We use the following definitions in the subsequent section.

Theorem 1.1. The cycle Cn is an odd vertex equitable even graph if n ≡ 0
or 1 (mod4).

Theorem 1.2. Let G1(p1, q1), G2(P2, q2),...,Gm(pm, qm) be an odd vertex
equitable even graphs with

Pm−1
i=1 qi is even, qm is even or odd and ui, vi

be the vertices of Gi(1 ≤ i ≤ m) labeled by 1, qi if qi is odd or qi + 1 if qi
is even. Then the graph G obtained by identifying v1 with u2 and v2 with
u3 and v3 with u4 and so on until we identify vm−1 with um is also an odd
vertex equitable even graph.

Definition 1.3. The corona G1 ¯G2 of the graphs G1 and G2 is defined
as a graph obtained by taking one copy of G1 (with p vertices) and p copies
of G2 and then joining the i

th vertex of G1 to every vertex of the i
th copy

of G2.

Definition 1.4. Let G1 be a graph with p vertices and G2 be any graph.
A graph G1 bo G2 is obtained from G1 and p copies of G2 by identifying one
vertex of ith copy of G2 with ith vertex of G1.

Definition 1.5. [1] A kCn -snake is defined as a connected graph in which
all the k-blocks are isomorphic to the cycle Cn and the block-cut point
graph is a path. Let P be the path of minimum length that contains all the
cut vertices of a kCn -snake. Barrientos proved that any kCn -snake is rep-
resented by a string s1, s2, ..., sk−2 of integers of length k − 2 where the ith
integer, si on the string is the distance between i

th and (i+1)th cut vertices
on the path P from one extreme and is taken from Sn = {1, 2, ...,

¥n
2

¦
}. The

strings obtained for both extremes are assumed to be the same. Then there
are at most

¥n
2

¦k−2
non isomorphic kCn -snakes. For example, the string

of a 10C4 -snake is shown in Figure 1.1 is 2,2,1,2,1,1,2,1. A kCn -snake is
said to be linear if each integer of its string is

¥n
2

¦
.
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A nCk -snake is said to be linear if each integer of its string is
j
k
2

k
. The

linear nC4 -snake graph with diagonal vertices u1j (1 ≤ j ≤ n+ 1), left to
the diagonal vertices v1j (1 ≤ j ≤ n) and right to the diagonal vertices w1j
(1 ≤ j ≤ n) is denoted by QSn. For example, a linear 3C4 -snake graph
QS3 is shown in Figure 1.2.

Definition 1.6. A generalized kCn -snake is defined as a connected graph
in which each block is isomorphic to a cycle Cn for some n and the block-cut
point graph is a path. It is denoted by CS(n1, n2, ..., nk) where B1,B2,...,Bk

are the consecutive blocks and Bi is isomorphic to Cni . By applying the
same methods used to obtain the strings of a kCn -snake, we can show that
any generalized kCn -snake can also be represented by a string of integers
s1,s2,...,sk−2 of length k − 2 where si−1 ∈ Sni .

Marisol Martínez
figure1-1


Marisol Martínez
figure1-2
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Definition 1.7. [4] Let T be a tree and u0 and v0 be the two adjacent
vertices in T . Let u and v be the two pendant vertices of T such that the
length of the path u0 − u is equal to the length of the path v0 − v. If the
edge u0v0 is deleted from T and u and v are joined by an edge uv, then such
a transformation of T is called an elementary parallel transormation (or an
ept) and the edge u0v0 is called transformable edge. If by the sequence of
ept’s, T can be reduced to a path, then T is called a Tp -tree (transformed
tree) and such sequence regarded as a composition of mappings (ept’s) de-
noted by P , is called a parallel transformation of T . The path, the image
of T under P is denoted as P (T ). A Tp -tree and the sequence of two ept’s
reducing it to a path are illustrated in Figure 1.3.

2. Main Results

In this section, we prove that nC4-snake, CS(n1, n2, ..., nk), ni ≡ 0(mod4),
ni ≥ 4, be a generalized kCn -snake, T bOQSn and T eOQSn are odd vertex
equitable even graphs.

Theorem 2.1. The nC4 -snake is an odd vertex equitable even graph.

Proof. Let G be a nC4 -snake with n blocks and Gi = C4, 1 ≤ i ≤ n− 1
and ui, vi be the vertices with labels 1 and q+1 respectively. By Theorem
1.2, nC4 admits an odd vertex equitable even labeling. An example for odd
vertex equitable even labeling of 3C4 -snake is shown in Figure 2.1.

Marisol Martínez
figure1-3
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Theorem 2.2. Let G = CS(n1, n2, ..., nk),ni ≡ 0(mod4), ni ≥ 4 be a
generalized kCn -snake with its strings s1,s2,...,sk−2 where si ∈ {1}, 1 ≤
i ≤ k. Then G is an odd vertex equitable even graph.

Proof. By Theorem 1.1, the cycle Cn is an odd vertex equitable even
graph if n ≡ 0(mod4). By Theorem 1.2, CS(n1, n2, ..., nk), ni ≡ 0(mod4),
is an odd vertex equitable even graph. An example for odd vertex equitable
even labeling of CS(8, 4, 12) is shown in Figure 2.2.

Marisol Martínez
figure2-1


Marisol Martínez
figure2.2
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Theorem 2.3. If T be a Tp -tree on m vertices, then the graph T bOQSn is
an odd vertex equitable even graph.

Proof. Let T be a Tp -tree with m vertices. By the definition of a trans-
formed tree there exists a parallel transformation P of T such that for the
path P (T ) we have (i) V (P (T )) = V (T ) (ii) E(P (T )) = (E(T )−Ed)

S
Ep

where Ed is the set of edges deleted from T and Ep is the set of edges
newly added through the sequence P = (P1, P2, ..., Pk) of the epts P used
to arrive at the path P (T ). Clearly, Ed and Ep have the same number of
edges.

Now denote the vertices of P (T ) successively by u
0
1, u

0
2, ..., u

0
m starting

from one pendant vertex of P (T ) right up to the other one.
Let ui1, ui2, ..., ui(n+1), vi1, vi2, ..., vin and wi1, wi2, ..., win(1 ≤ i ≤ m) be the

vertices of ith copy of Pn with ui(n+1) = u
0
i.

Then V (T bOQSn) = {uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n + 1 with ui(n+1) =

u
0
i}
S{u0i, vij , wij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and

E(T bOQSn) = {e0i = u
0
iu

0
i+1 : 1 ≤ i ≤ m− 1}SE(QSn).

Here
¯̄̄
V (T bOQSn)¯̄̄ = m(3n+ 1) and

¯̄̄
E(T bOQSn)¯̄̄ = 4mn+m− 1.

Let A = {1, 3, ..., 4mn+m− 1}.

Define a vertex labeling f : V (T bOQSn)→ A as follows:

For 1 ≤ i ≤ m, 1 ≤ j ≤ n+1 f(uij) =
(4n+ 1)(i− 1) + 4j − 3 if i is odd
(4n+ 1)i− (4j − 3) if i is even

.

For 1 ≤ i ≤ m, 1 ≤ j ≤ n.

f(vij) = f(uij), f(wij) =
(4n+ 1)(i− 1) + 4j − 1 if i is odd
(4n+ 1)i− (4j − 1) if i is even

.

For the vertex labeling f , the induced edge labeling f∗ is as follows:

For 1 ≤ i ≤ m− 1 f∗(e0i) = 2(4n+ 1)i.

The induced edge labels of QSn are 2(4n+1)(i−1)+2j(1 ≤ i ≤ m, 1 ≤
j ≤ 2n) if i is odd and 2(4n+1)(i−1)+2j(1 ≤ i ≤ m, 1 ≤ j ≤ 2n) if i is even.

Let vivj be a transformed edge in T for some indices i, j, 1 ≤ i ≤ j ≤ m.
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Let P1 be the ept that deletes the edge vivj and adds an edge vi+tvj−t
where t is the distance of vi from vi+t and the distance of vj from vj−t.

Let P be a parallel transformation of T that contains P1 as one of the
constituent epts. Since vi+tvj−t is an edge in the path P (T ), it follows that
i+ t+ 1 = j − t which implies j = i+ 2t+ 1.

Therefore, i and j are of opposite parity, that is, i is odd and j is even
or vice-versa.

The induced label of the edge vivj is given by f
∗(vivj) = f∗(vivi+2t+1) =

f(vi) + f(vi+2t+1) = 2(4n+ 1)(i+ t) and

f∗(vi+tvj−t) = f∗(vi+tvi+t+1) = f(vi+t)+f(vivi+t+1) = 2(4n+1)(i+t).

Therefore, f∗(vivj) = f∗(vi+tvj−t). It can be verified that the induced
edge labels of T bOQSn are 2, 4, 6, ..., 8mn+ 2m− 2 and |vf (a)− vf (b)| ≤ 1
for all a, b ∈ A.
Hence, T bOQSn is an odd vertex equitable even graph.
An example for odd vertex equitable even labeling of T bOQS2 where T is a
Tp -tree on 8 vertices is shown in Figure 2.3.
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Theorem 2.4. Let T be a Tp -trees onm vertices. Then the graph T eOQSn
is an odd vertex equitable even graph.

Proof. Let T be a Tp -tree with m vertices. By the definition of a trans-
formed tree there exists a parallel transformation P of T such that for the
path P (T ) we have (i) V (P (T )) = V (T ) (ii) E(P (T )) = (E(T )−Ed)

S
Ep

where Ed is the set of edges deleted from T and Ep is the set of edges newly
added through the sequence P = (P1, P2, ..., Pk) of the epts P used to arrive
at the path P (T ). Clearly, Ed and Ep have the same number of edges. Now
denote the vertices of P (T ) successively by u

0
1, u

0
2, ..., u

0
m starting from one

pendant vertex of P (T ) right up to the other one.
Let ui1, ui2, ..., ui(n+1), vi1, vi2, ..., vin and wi1, wi2, ..., win(1 ≤ i ≤ m) be the

vertices of ith copy of Pn.

Marisol Martínez
figure2.3
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Then V (T eOQSn) = {uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n + 1}S{u0i, vij , wij :
1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(T eOQSn) = E(QSn)

S{e0i = u
0
iu

0
i+1 : 1 ≤ i ≤

m− 1}S{e00i = u
0
iui(n+1) : 1 ≤ i ≤ m}.

Here
¯̄̄
V (T eOQSn)¯̄̄ = m(3n+ 2) and

¯̄̄
E(T eOQSn)¯̄̄ = 4mn+ 2m− 1.

Let A = {1, 3, ..., 4mn+ 2m− 1}.
Define a vertex labeling f : V (T eOQSn)→ A as follows:

For 1 ≤ i ≤ m, 1 ≤ j ≤ n+1 f(uij) =
(4n+ 2)(i− 1) + 4j − 3 if i is odd
(4n+ 2)i− (4j − 3) if i is even

.

For 1 ≤ i ≤ m, 1 ≤ j ≤ n.

f(vij) = f(uij), f(wij) =
(4n+ 2)(i− 1) + 4j − 1 if i is odd
(4n+ 2)i− (4j − 1) if i is even

.

f(u
0
i) =

(4n+ 2)i− 1 if i is odd
(4n+ 2)i− (4n+ 1) if i is even

.

For the vertex labeling f , the induced edge labeling f∗ is as follows:

For 1 ≤ i ≤ m− 1 f∗(e0i) = 2(4n+ 2)i,

For 1 ≤ i ≤ m f∗(e
00
i ) =

2(4n+ 2)i− 2 if i is odd
2(4n+ 2)(i− 1) + 2 if i is even

.

The induced edge labels of QSn are 2(4n+2)(i−1)+2j(1 ≤ i ≤ m, 1 ≤
j ≤ 2n) if i is odd and 2(4n+2)(i−1)+2j(1 ≤ i ≤ m, 1 ≤ j ≤ 2n) if i is even.

Let vivj be a transformed edge in T for some indices i, j, 1 ≤ i ≤ j ≤ m.

Let P1 be the ept that deletes the edge vivj and adds an edge vi+tvj−t
where t is the distance of vi from vi+t and the distance of vj from vj−t.

Let P be a parallel transformation of T that contains P1 as one of the
constituent epts. Since vi+tvj−t is an edge in the path P (T ), it follows that
i+ t+ 1 = j − t which implies j = i+ 2t+ 1.

Therefore, i and j are of opposite parity, that is, i is odd and j is even
or vice-versa.

The induced label of the edge vivj is given by f
∗(vivj) = f∗(vivi+2t+1) =

f(vi) + f(vi+2t+1) = 2(4n+ 2)(i+ t) and
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f∗(vi+tvj−t) = f∗(vi+tvi+t+1) = f(vi+t)+f(vivi+t+1) = 2(4n+2)(i+t).

Therefore, f∗(vivj) = f∗(vi+tvj−t).

It can be verified that the induced edge labels of T eOQSn are 2, 4, 6, ..., 8mn+
4m− 2 and |vf (a)− vf (b)| ≤ 1 for all a, b ∈ A.

Hence, T eOQSn is an odd vertex equitable even graph.
An example for odd vertex equitable even labeling of T eOQS2 where T

is a Tp -tree on 8 vertices is shown in Figure 2.4.

Marisol Martínez
figure2.4
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