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Abstract

In this article we introduce the notation difference operator A,
(m > 0 be an integer) for studying some properties defined with inter-
val numbers. We introduced the classes of sequence £(p)(An), e(p)(An,)
and ¢o(p)(An,) and investigate different algebraic properties like com-
pleteness, solidness, convergence free etc.
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1. Introduction

The concept of interval arithmetic was first suggested by Dwyer [15] in
1951. Thereafter the concept has been using in area of science and
technology. The evidence of its development as a formal system and appli-
cation in computational device is found in Moore [8], Moore and Yang [9]
and others ([15], [16], [17] and [20]). Different mathematical concepts were
introduced and studied with interval numbers by several researchers across
the globe. Chiao [13] introduced sequence of interval numbers and defined
usual convergence of sequences of interval number. Sengnl and Eryilmaz
[14] introduced and studied bounded and convergent sequence spaces of
interval numbers and proved that these spaces are complete metric space.
Recently Esi [1-8], Esi and Braha [18], Esi and Esi [19], Esi and Hazarika
[20] and Esi and Catalbas [21] introduced and studied strongly almost-
convergence and statistically almost-convergence of interval numbers.

A set consisting of a closed interval of real numbers x such that a <
z < bis called an interval number. A real interval can also be considered as
a set. We can investigate some properties of interval numbers, for instance
arithmetic properties or analysis properties. We denote the set of all real
valued closed intervals by R. Any elements of R is called closed interval
and denoted by z, that is Z = {x € R : a < z < b}. An interval number
Z is a closed subset of real numbers [15]. Let x; and z, be first and last
points of interval number Z, respectively then we have for x1,zs € R,

i) T1 = a2 & X1, = Ty, L1, = T2

i) si+de={r e Rz, +23, <x <z, +22,}

ili) aZz = {x € R: azr1, <z < azr,}, fora > 0.and ax = {x € R :
azy, <z < axy,}, for a <O0.

iv) 122 = {z € R: min{z1,29,, 21,22, , T1,%2,, 1,22, } < @

é ma${$12$2l7 1:1[:1727,, 1‘17‘1‘2[, xlrx2r}

The set of all interval numbers R is a complete metric space defined by

d(w1, T2) = maz{|r1, — 22,|, |21, — 22,[}
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In the special case, T; = [a,a] and To = [b, b], we obtain usual metric of
R.

Consider the transformation f : N — R, by k — f(k) = z,x = (zy),
then = (Zy) is called sequence of interval numbers. The term Zy, is called
the kth term of sequence (Z) = (Zy).

By w' we denotes the set of all interval numbers with real terms. We
give the following definitions of convergence of interval numbers.

A sequence T = (Zj) of interval numbers is said to be convergent to the
interval number I if for each € > 0 there exists a positive integer kg such
that d(Z,Zo) < € for all k > ko, denoted by limyZy = Zo. This imply that

limpTy, = To & limgxy, = 0, and lilgna:kr = Ty,

An interval valued sequence space E is said to be solid if § = (g) € E
whenever |7y < |Zx|, for all k € N and 7 = (%) € E.

An interval valued sequence space E is said to be monotone if E contains
the canonical pre- image of all its step spaces.

An interval valued sequence space E is said to be convergence free if
7 = (yx) € E whenever Z = (z3) € E and Zy = 0 implies g, = 0.

Throughout the paper, p = (pi) is a sequence of bounded strictly posi-
tive numbers.

Esi[1] define the following interval valued sequence space:

o0
t(p) = {i‘ = (zx) : ) [d(zx, 0)]* < OO}>
k=1
for pp = 1 for all kK € N, we have

lp) = {9_3 = (Tk) : i[d(fk,ﬁ)] < OO}-
k=1

Kizmaz [12] defined the sequence space for crisp set. The concept fur-
ther generalized by Tripathy and Esi [12] as follows:

Let m > 0 be an integer then Z1(A,,) = {(Tx) € w : (Apzk) € Z1},
for Z1 = loo, c and ¢g. Where A,z = T — Tgim, for all kK € N and they
showed that these are Banach spaces under the norm ||z||a,, = Tz::lm\:crl +
W |Apag|. For m = 1, the sequence spaces foo(A),c(A) and co(A) are
studied by Kizmaz [12].
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In this paper we introduce the difference operator for sequence of inter-
val numbers generalized by Tripathy and Esi [22] as follows:

Let = = (Zx) be a sequence of interval numbers and p = (pg) is a
sequence of bounded strictly positive numbers. Let m > 0 be an integer
then

Z(An) = {(7k) € w': (AnZr) € Z} for Z = 0,(An), &(p)(Am) and éo(p)(Anm),

where A2, = ) — Tpm, for all k € N.

2. Main Results

Theorem 2.1: The sequence spaces £(p)(An),¢(p)(An) and &(p)(An)
are complete metric space with respect to the metric defined by

oo

p(Z,5) = D _ld(r, gr)]P* + S%p[d(Amj'k; Andr)]
k=1

Proof: Let (z') be a Cauchy sequence in £(p)(A,,) such that
= (3%) = (2%, 75,75, ....) € £(p)(Ay,) for each i € N. Then for a given
€ > 0, there exists ng € IV, such that

o0

P&, ') = Z[d(‘ﬂc’ jé‘)]pk +sup d(Ap},, Amfi) <eg, forall i, > ng
k=1 k
(2.1)
Then
Z[d@z,fi)]pk < e, forall i,j > ng
k=1

= d(i}c,i‘i) <e¢, forall 4,j > ng and for all k € N.

%

= (7},) is a Cauchy sequence in R and for all k € N.

= (z%) Converges in R and for all k € N as R is a Banach space.
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Let h;.na_:i = Ty, (say) for each k € N and T = (Zy,).
From definition (2.1) we have

d(A, T, J‘:fc) <eg, fori,j > ng and for k € N.

= (Ami‘é) is a Cauchy sequence in R for all k € N.
= (A7) converges in R for all k € N.

Let hj’.nAmii = Y, for each k € N.

Since ™
k € N.

We have

lim > d(z, z])

and

Jim d (T~ Tho): (7

for all i > ng and k € N.
Hence for all i > ny,
Thus we have

[o.9]

k=1

J fi = Iy, for each k € N, therefore

—11_3]

h‘.mg’:i = Iy, exist for each
j

= d(&}, Tk) < &, for all i > ng

k=1

1)) = (@ = Frim), (@ — Fm)) <,

S A(ARTL, ApTy) < €.

Z[d(f};,i‘k)]p’“ + sup(d(AnZh, ApmTr)) < 2¢, for all i > ng.
k

= p(z',Z) < 2, for all i > ny.

ie. 7' — 7, as i — oo in £(p)(An).

And for i > ny,

k

This completes the proof.

sup (d(Ap, Tk, 0)) < sup (d(Am:ik, Ama_cz)) + sup (d(A,ﬂﬁZ,())) < 0.
k k
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Theorem 2.2: The sequence spaces £(p)(Ayn,),¢(p)(An,) and & (p)(An)
are solid.

Proof: Let = (Zx) € £(p)(Ay) and § = (7x) € £(p)(A,,) be interval
valued sequences such that |y;| < |zj| for all k € N.

Then
Z mxkn b < oo
k=1
and
o0 o0
Z[d( myk:> Z mZUk, k< o0.

k=1 k=1
Thus ¥ = (7) € £(p)(A,,) and hence £(p)(A,,) is solid.
This complete the proof.

Theorem 2.3: The sequence spaces £(p)(An),¢(p)(An,) and & (p)(An)
are not convergence free.

Proof: Let m = 2, we consider the interval sequence T = (Zy) as follows

a1 -1 1
5 = {ﬁ,o} AgT — [ﬁm] for all & € N.

Then, for py =1

Sussaon <5 (£) <~

Thus & = (Zy) € Z( (An).
Now let us define § = (y) as follows

gr = [—k2,0], then Aoy = [—k?, (k +2)?], for all k € N.
Then

i Aka, < io: k+2
k=1 k=1
Thus § = (5i) £ £(p)(Am).

Hence £(p)(A,,) is not convergence free.

This completes the proof.
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