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Abstract

Esi and Yasemin [9] defined the metric spaces c0(f, p, s), c(f, p, s),
l∞(f, p, s) and lp(f, p, s) of sequences of interval numbers by a mod-
ulus function. In this study, we consider a generalization for double
sequences of these metric spaces by taking a ψ function, satisfying the
following conditions, instead of s parameter. For this aim, let ψ(k, l)
be a positive function for all k, l ∈N such that

(i) lim
k,l→∞

ψ(k, l) = 0,

(ii) ∆2ψ(k, l) = ψ(k − 1, l − 1)− 2ψ(k, l) + ψ(k + 1, l + 1) ≥ 0.

or

ψ(k, l) = 1.

Therefore, according to class of functions which satisfying the condi-
tions (i) and (ii) we deal with the metric spaces c20(f, p, ψ), c

2(f, p, ψ),

l
2

∞(f, p, ψ) and l
2

p(f, p, ψ) of double sequences of interval numbers de-
fined by a modulus function.

Subjclass [2010] : 46A45, 54E50, 40A05, 40C05, 40J05.

Keywords : Complete space, interval number, modulus function,
double sequence space.
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1. Introduction

The concept of interval arithmetic was first introduced by Dwyer in [2].
Interval arithmetic or interval analysis is a method developed by math-
ematicians since the 1950s and 1960s as an approach to putting bounds
on matrix computation errors, rounding errors and measurement errors in
mathematical computation and thus developing numerical methods that
yield reliable results, [2], [3], [17], [20], [21]. One approach to dealing
with such numerical errors is a technique called interval arithmetic. In
2002, Kuo-Ping Chiao gave the sequences of interval numbers and defined
usual convergence of sequences of interval number. In subsequent years, M.
Şengönül and A. Eryılmaz studied bounded and convergent sequence spaces
of interval numbers in [24] and proved that these spaces are complete met-
ric space. In [4]-[8],[9],[13],[14],[15] and [16] studied different properties of
interval numbers.

Let us recall some definitions related to interval numbers. The set of
all real valued closed intervals is denoted by R. Any element of R is called
interval number and denoted by A = [xl, xr]. Assume that xl and xr are
first and last points of A interval number, respectively. Then for A1, A2 ∈ R

1. A1 = A2 ⇔ x1l = x2l , x1r = x2r
2. A1 +A2 = {x ∈ R : x1l + x2l ≤ x ≤ x1r + x2r}

3. αA1 =

(
{x ∈ R : αx1r ≤ x ≤ αx1l} , α < 0;
{x ∈ R : αx1l ≤ x ≤ αx1r} , α ≥ 0.

4. A1.A2 =
n
x ∈ R : min

n
x1i .x2j ; i, j = l, r

o
≤ x ≤ max

n
x1i .x2j ; i, j = l, r

oo
.

In [22], we know that the set R is a complete metric space by the metric

d(A1, A2) = max {|x1l − x2l |, |x1r − x2r |} .

In case A1 = [a, a] and A2 = [b, b], it coincides with usual metric of R.
The sequence (f(k)) = A = (Ak) defined with transformation f : N → R
is called sequence of interval numbers and the Ak is called kth term of
sequence A = (Ak). ω denotes the set of all sequences of interval numbers
with real terms and the algebraic properties of ω can be found in [19].

The definition of convergence of sequences of interval numbers as follows
[1]:

A sequence A = (Ak) of interval numbers is said to be convergent to
the interval number A0 if for each � > 0 there exists a positive integer k0
such that d(Ak, A0) < � for all k ≥ k0 and we denote it by limk Ak = A0.
Thus,
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lim
k
Ak = A0 ⇔ lim

k
Akl = A0l , lim

k
Akr = A0r .

We recall that modulus function is a function f : [0,∞)→ [0,∞) such
that (a)f(x) = 0 if and only if x = 0, (b)f(x + y) ≤ f(x) + f(y) for all
x, y ≥ 0, (c)f is increasing, (d)f is continuous from the right at zero.

It follows from (a) and (d) that f must be continuous everywhere on
[0,∞).

Let p = (pk) be a bounded sequence of strictly positive real numbers.
If H = supk pk, then for any complex numbers ak and bk

| ak + bk |pk≤ C(| ak |pk + | bk |pk),(1.1)

where C = max(1, 2H−1).

An interval sequence x = (xk) ∈ ω is said to be interval Cauchy sequence
if for every � > 0 there exists a k0 ∈ N such that d(xn, xm) < � whenever
n,m > k0.

Now we give the definition of solid:
A set ofX sequences of interval numbers is said to be solid (or normal) if

(Bk) ∈ X whenever d(Bk, 0) ≤ d(Ak, 0) for all k ∈ N, for some (Ak) ∈ X.

2. Preliminaries

Let us define transformation f from N×N to R by f(i, j) = (xi,j). Then
x = (xi,j) is called sequence of double interval numbers. The xi,j is called
(i, j)th term of sequence x [12].

An interval valued double sequence (Ak,l) is said to be convergent in the
Pringsheim sense to an interval number A0 if for every � > 0 there exists a
n ∈N such that

d(Ak,l, A0) < �

for k, l ≥ n. In this case we write P − limAk,l = A0 [23].
We denote by c2 the set of all convergent in the Pringsheim sense double

sequence of interval numbers.

An interval valued double sequence (Ak,l) is said to be bounded if there
exists a positive number B such that d(Ak,l, 0) ≤ B for all k, l ∈ N.

We will denote the set of all bounded double sequences of interval num-

bers by the symbol l
2
∞. It should be noted that c

2 is not the subset of

l
2
∞.
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The definition of solid for double sequence spaces of interval numbers
is given as follows:

An interval valued double sequence spaces E
2
is said to be solid if

y = (yk,l) ∈ E
2
whenever | yk,l |≤| xk,l | for all k, l ∈ N and x = (xk,l) ∈

E
2
[10].

Let p = (pi,j) be a double sequence of positive real numbers. If 0 <
pi,j ≤ supi,j pi,j = H < ∞ and D = max(1, 2H−1), then for ai,j , bi,j for all
i, j ∈ N, we have

| ai,j + bi,j |pi,j≤ D(| ai,j |pi,j + | bi,j |pi,j ).(2.1)

On the other hand ψ(k, l) be a positive function for all k, l ∈ N such
that

limk,l→∞ ψ(k, l) = 0,

∆2ψ(k, l) = ψ(k − 1, l − 1)− 2ψ(k, l) + ψ(k + 1, l + 1) ≥ 0
or

ψ(k, l) = 1.

We will show that M is the set of all ψ(k, l) that provide above condi-
tions.

Suppose that f is a modulus function, p = (pk,l) is a sequence of strictly
positive real numbers and ψ ∈ M . Accordingly, the sets of interval num-
ber sequences which generalize to the sets of double sequences of interval
numbers introduced in [9] are given as follows.

c20(f, p, ψ) = {A = (Ak,l) : limk,l ψ(k, l)[f(d(Ak,l, 0))]
pk,l = 0, ψ ∈M}

c2(f, p, ψ) = {A = (Ak,l) : limk,l ψ(k, l)[f(d(Ak,l, A0))]
pk,l = 0, ψ ∈M}

l
2
∞(f, p, ψ) = {A = (Ak,l) : supk,l ψ(k, l)[f(d(Ak,l, 0))]

pk,l <∞, ψ ∈M}
and

l
2
p(f, p, ψ) = {A = (Ak,l) :

P
k,l ψ(k, l)[f(d(Ak,l, 0))]

pk,l <∞, ψ ∈M}.

Aim of this study is to give the metric spaces c20(f, p, ψ), c
2(f, p, ψ),

l
2
∞(f, p, ψ) and l

2
p(f, p, ψ) of double sequences of interval numbers and in-

vestigate the relations between them.

3. Main results

Now, we may begin with the following theorem.
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The sets c20(f, p, ψ), c
2(f, p, ψ), l

2
∞(f, p, ψ) and l

2
p(f, p, ψ) of double se-

quences of interval numbers are closed under the coordinate wise addition
and scalar multiplication.

Proof. We consider only the space l
2
∞(f, p, ψ). Let us define

+:l
2
∞(f, p, ψ)× l

2
∞(f, p, ψ)→ l

2
∞(f, p, ψ)

• : R× l
2
∞(f, p, ψ)→ l

2
∞(f, p, ψ).

Suppose that A,B ∈ l
2
∞(f, p, ψ). Then we can write

supk,l ψ(k, l)[f(d(Ak,l, 0))]
pk,l <∞

and

supk,l ψ(k, l)[f(d(Bk,l, 0))]
pk,l <∞.

Since d(Ak,l +Bk,l, 0) ≤ d(Ak,l, 0)+ d(Bk,l, 0) and f is a modulus func-
tion, then we have

f(d(Ak,l+Bk,l, 0)) ≤ f(d(Ak,l, 0)+d(Bk,l, 0)) ≤ f(d(Ak,l, 0))+f(d(Bk,l, 0)).

Also, since p = (pk,l) is a sequence of strictly positive real numbers, we
can write 0 ≤ h = infk,l pk,l ≤ pk,l ≤ supk,l pk,l = H < ∞. If we choose

M = max(1, 2H−1), we get
[f(d(Ak,l +Bk,l, 0))]

pk,l ≤ [f(d(Ak,l, 0)) + f(d(Bk,l, 0))]
pk,l

≤M [f(d(Ak,l, 0))]
pk,l +M [f(d(Bk,l, 0))]

pk,l .

Because ψ(k, l) is bounded, we obtain
supk,l ψ(k, l)[f(d(Ak,l +Bk,l, 0))]

pk,l

≤ supk,l ψ(k, l)M [f(d(Ak,l, 0))]
pk,l + supk,l ψ(k, l)M [f(d(Bk,l, 0))]

pk,l <
∞.

Thus, A+B ∈ l
2
∞(f, p, ψ).

Now, let A ∈ l
2
∞(f, p, ψ) and α ∈ R. Then

supk,l ψ(k, l)[f(d(Ak,l, 0))]
pk,l <∞.

Since d(αAk,l, 0) = |α|d(Ak,l, 0) and f is a modulus function, we can
write

f(d(αAk,l, 0)) = f(|α|d(Ak,l, 0)) ≤ |α|f(d(Ak,l, 0)).

Because p = (pk,l) is a sequence of strictly positive real numbers, we
have

[f(d(αAk,l, 0))]
pk,l ≤ |α|pk,l [f(d(Ak,l, 0))]

pk,l

and because ψ(k, l) is bounded, we obtain
supk,l ψ(k, l)[f(d(αAk,l, 0))]

pk,l ≤ supk,l ψ(k, l)|α|pk,l [f(d(Ak,l, 0))]
pk,l <

∞.
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Therefore, αA ∈ l
2
∞(f, p, ψ).

The proof is similarly done for the spaces c20(f, p, ψ), c
2(f, p, ψ) and

l
2
p(f, p, ψ). 2

The sets c20(f, p, ψ), c
2(f, p, ψ), l

2
∞(f, p, ψ) and l

2
p(f, p, ψ) of double se-

quences of interval numbers are complete metric spaces with respect to the
metrics

d∞(A,B) = sup
k,l

ψ(k, l)[f(d(Ak,l, Bk,l))]
pk,l
M

and

dp(A,B) = {
X
k,l

ψ(k, l)[f(d(Ak,l, Bk,l))]
pk,l} 1

M

respectively, where A = (Ak,l) and B = (Bk,l) are elements of the sets

c20(f, p, ψ), c
2(f, p, ψ), l

2
∞(f, p, ψ) and l

2
p(f, p, ψ) andM = max(1, supk,l pk,l =

H).

Proof. We consider only the space c20(f, p, ψ), since the proof is similar

for the spaces c2(f, p, ψ), l
2
∞(f, p, ψ) and l

2
p(f, p, ψ). It is obviously seen

that d∞ is a metric on c20(f, p, ψ). We will prove the completeness of the

space c20(f, p, ψ). Assume that (A
i
) is any Cauchy sequence in the space

c20(f, p, ψ), where A
i
= (A

(i)
k,0, A

(i)
k,1, A

(i)
k,2, ...) for all k ∈ N. Therefore, for a

given � > 0 there exists a positive integer n0(�) such that

d∞(A
i
, A

j
) = sup

k,l
ψ(k, l)[f(d(A

(i)
k,l, A

(j)
k,l ))]

pk,l
M < �(3.1)

for all i, j > n0(�). We have for each fixed k, l ∈ N from (3.3) that

ψ(k, l)[f(d(A
(i)
k,l, A

(j)
k,l ))]

pk,l
M < �(3.2)

for all i, j > n0(�). (3.4) means that

lim
i,j→∞

ψ(k, l)[f(d(A
(i)
k,l, A

(j)
k,l ))]

pk,l
M = 0.(3.3)

Because ψ(k, l) 6= 0 for all k, l ∈ N and f is continuous, we obtain from
(3.5) that

f [ lim
i,j→∞

(d(A
(i)
k,l, A

(j)
k,l ))] = 0.(3.4)
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Thus, since f is modulus function, we can get by (3.6) that

lim
i,j→∞

d(A
(i)
k,l, A

(j)
k,l ) = 0.(3.5)

This means that (A
(i)
k,l) is a Cauchy sequence in R for every fixed

k, l ∈ N. Since R is complete, it converges, say A
(i)
k,l → Ak,l as i → ∞.

Using these infinitely many limits, we defined the interval sequence (Ak,l) =
(Ak,0, Ak,1, Ak,2, ...) for all k ∈ N. Let us pass to limit firstly as j →∞ and

nextly taking supremum over k, l ∈ N in (3.4) we have d∞(A
i
, Ak,l) ≤ �.

Since (A
(i)
k,l) ∈ c20(f, p, ψ) for each i ∈N, there exists a k0 ∈ N such that

ψ(k, l)[f(d(A
(i)
k,l, 0))]

pk,l < �
for every k, l ≥ k0(�) and for each fixed i ∈ N.

From triangle inequality, we can write

ψ(k, l)[f(d(Ak,l, 0))]
pk,l ≤ Cψ(k, l)[f(d(A

(i)
k,l, Ak,l))]

pk,l+Cψ(k, l)[f(d(A
(i)
k,l, 0))]

pk,l

for all i, k, l ∈ N, where C = max(1, 2H−1). Now for all k, l ≥ k0(�), we
obtain

ψ(k, l)[f(d(Ak,l, 0))]
pk,l ≤ 2�.

This gives that (Ak,l) ∈ c20(f, p, ψ). Because (A
(i)
k,l) was an arbitrary

Cauchy sequence, the space c20(f, p, ψ) is complete. 2

The spaces c20(f, p, ψ), l
2
∞(f, p, ψ) and l

2
p(f, p, ψ) are solid.

Proof. Assume thatX
2
(f, p, ψ) shows the anyone of the spaces c20(f, p, ψ),

l
2
∞(f, p, ψ) and l

2
p(f, p, ψ). Let

d(Bk,l, 0) ≤ d(Ak,l, 0)(3.6)

holds for some (Ak,l) ∈ X
2
(f, p, ψ). Because the modulus function is in-

creasing, we can clearly see by (3.8) that
limk,l ψ(k, l)[f(d(Bk,l, 0))]

pk,l ≤ limk,l ψ(k, l)[f(d(Ak,l, 0))]
pk,l ,

supk,l ψ(k, l)[f(d(Bk,l, 0))]
pk,l ≤ supk,l ψ(k, l)[f(d(Ak,l, 0))]

pk,l ,P
k,l ψ(k, l)[f(d(Bk,l, 0))]

pk,l ≤Pk,l ψ(k, l)[f(d(Ak,l, 0))]
pk,l .

The above inequalities give that (Bk,l) ∈ X
2
(f, p, ψ). 2

Let infk,l pk,l = h > 0. Then (a) If (Ak,l) ∈ c2 then (Ak,l) ∈ c2(f, p, ψ),

(b) If (Ak,l) ∈ c2(p, ψ) then (Ak,l) ∈ c2(f, p, ψ), (c) If β = limt
f(t)
t > 0 then

c2(p, ψ) = c2(f, p, ψ).
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Proof. (a) Let (Ak,l) ∈ c2. Then limk,l d(Ak,l, A0) = 0. Since f is
modulus function, then

limk,l f(d(Ak,l, A0)) = f [limk,l(d(Ak,l, A0))] = f(0) = 0.

Moreover infk,l pk,l = h > 0, then limk,l[f(d(Ak,l, A0))]
h = 0. Thus, for

0 < � < 1, ∃k0 such that for all k, l > k0 [f(d(Ak,l, A0))]
h < � < 1, as

pk,l ≥ h for all k, l,
[f(d(Ak,l, A0))]

pk,l ≤ [f(d(Ak,l, A0))]
h < � < 1,

then we have
limk,l[f(d(Ak,l, A0))]

pk,l = 0.

Since ψ(k, l) is bounded, we can write
limk,l ψ(k, l)[f(d(Ak,l, A0))]

pk,l = 0.

Thus (Ak,l) ∈ c2(f, p, ψ).
(b) Suppose that (Ak,l) ∈ c2(p, ψ), then limk,l ψ(k, l)(d(Ak,l, A0))

pk,l = 0.
Let � > 0 and choose δ with 0 < δ < 1, such that f(t) < � for 0 ≤ t ≤ δ.
Now we define

I1 = {k, l ∈N : d(Ak,l, A0) ≤ δ}
and

I2 = {k, l ∈N : d(Ak,l, A0) > δ}.

For d(Ak,l, A0) > δ
d(Ak,l, A0) < d(Ak,l, A0)δ

−1 < 1 + [|d(Ak,l, A0)|]
where k, l ∈ I2 and [|t|] denotes the integer of t. From properties of modulus
function, for d(Ak,l, A0) > δ, we obtain

f(d(Ak,l, A0)) < 1 + [|d(Ak,l, A0)|]f(1) ≤ 2f(1)d(Ak,l, A0)δ
−1.

For d(Ak,l, A0) ≤ δ, f(d(Ak,l, A0)) < �, where k, l ∈ I1. So
ψ(k, l)[f(d(Ak,l, A0))]

pk,l = ψ(k, l)[f(d(Ak,l, A0))]
pk,l

ck,l∈I1 + ψ(k, l)[f(d(Ak,l, A0))]
pk,lck,l∈I2

≤ ψ(k, l)�H + [2f(1)δ−1]Hψ(k, l)[d(Ak,l, A0)]
pk,l → 0

as k, l →∞.

Then we obtain (Ak,l) ∈ c2(f, p, ψ).
(c) From (b), we know that c2(p, ψ) ⊂ c2(f, p, ψ). So we must show that

c2(f, p, ψ) ⊂ c2(p, ψ). For any modulus function, the existence of positive
limit β is given in Maddox [18]. Now, β > 0 and let (Ak,l) ∈ c2(f, p, ψ).
Since β > 0 for every t > 0, we write f(t) ≥ βt. From this inequality, we
obtain that (Ak,l) ∈ c2(p, ψ). 2
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Let f and g be two modulus functions. Then
(a) c2(f, p, ψ) ∩ c2(g, p, ψ) ⊂ c2(f + g, p, ψ),
(b) Let ψ1, ψ2 ∈ M and ψ1(k, l) ≤ ψ2(k, l) for all k, l ∈ N. Then

c2(f, p, ψ2) ⊂ c2(f, p, ψ1).

Proof. (a) Let (Ak,l) ∈ c2(f, p, ψ) ∩ c2(g, p, ψ). From (2.1), we obtain
[(f+g)(d(Ak,l, A0))]

pk,l = [f(d(Ak,l, A0)) + g(d(Ak,l, A0))]
pk,l

≤ C[f(d(Ak,l, A0))]
pk,l +C[g(d(Ak,l, A0))]

pk,l .
Since ψ(k, l) is bounded, we can write
ψ(k, l)[(f + g)(d(Ak,l, A0))]

pk,l

≤ Cψ(k, l)[f(d(Ak,l, A0))]
pk,l + Cψ(k, l)[g(d(Ak,l, A0))]

pk,l .
Thus we have (Ak,l) ∈ c2(f + g, p, ψ).
(b) Let ψ1(k, l) ≤ ψ2(k, l) for all k, l ∈ N.
Therefore
ψ1(k, l)[f(d(Ak,l, A0))]

pk,l ≤ ψ2(k, l)[f(d(Ak,l, A0))]
pk,l .

This inequality shows that c2(f, p, ψ2) ⊂ c2(f, p, ψ1). 2

Let f be a modulus function, then (a) l
2
∞ ⊂ l

2
∞(f, p, ψ), (b) If f is

bounded then l
2
∞(f, p, ψ) = ω2, where ω2 is the set of all double sequence

spaces of interval numbers.

Proof. (a) Suppose that (Ak,l) ∈ l
2
∞. Then there exists a positive

integer M such that d(Ak,l, 0) ≤ M . As f is bounded then f [d(Ak,l, 0)] is
also bounded. Therefore

ψ(k, l)[f(d(Ak,l, 0))]
pk,l ≤ ψ(k, l)[Mf(1)]pk,l ≤ ψ(k, l)[Mf(1)]H <∞.

Hence (Ak,l) ∈ l
2
∞(f, p, ψ).

(b) Let f be bounded. Then for any (Ak,l) ∈ ω2,
ψ(k, l)[f(d(Ak,l, 0))]

pk,l ≤ ψ(k, l)Lpk,l ≤ ψ(k, l)LH <∞.

Therefore l
2
∞(f, p, ψ) = ω2. 2
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