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Abstract

Let G be a graph and some pebbles are distributed on its vertices. A
pebbling move (step) consists of removing two pebbles from one vertex,
throwing one pebble away, and moving the other pebble to an adjacent
vertex. The t-pebbling number of a graph G is the least integer m such
that from any distribution of m pebbles on the vertices of G, we can
move t pebbles to any specified vertex by a sequence of pebbling moves.
In this paper, we determine the t-pebbling number of Lamp graphs.
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1. Introduction

Pebbling in graphs was first considered by Chung [1]. Graph Pebbling
is a network optimization model for the transportation of resources that
are consumed in transit. The central problem in this model asks whether
discrete pebbles from one set of vertices can be moved to another while
pebbles are lost in the process. The graph pebbling model was born as
a method for solving a combinatorial number theory conjecture of Paul
Erdős [2, 3]. Lemke [4] has given different version of the conjecture. The
conjecture has got applications to problems in combinatorial group theory
and p-adic diophantine equations. Here, the term graph refers to a simple
graph. A configuration C of pebbles on a graph G = (V,E) can be thought
of as a function C : V (G) → N ∪ {0}. The value C(v) equals the number
of pebbles placed at vertex v, and the size of the configuration is the num-
ber |C| = P

v∈V (G)C(v) of pebbles placed in total on G. Suppose C is a
configuration of pebbles on a graph G. A pebbling move (step) consists of
removing two pebbles from one vertex and then placing one pebble at an
adjacent vertex. We say a pebble can be moved to a vertex v, the target
vertex, if we can apply pebbling moves repeatedly (if necessary) so that in
the resulting configuration the vertex v has at least one pebble.

Definition 1.1. [5] The pebbling number of a vertex v in a graph G, f(v,G),
is the smallest positive integer m such that however m pebbles are placed
on the vertices of the graph, a pebble can be moved to v in finite number of
pebbling moves, each move removes two pebbles of one vertex and placing
one on an adjacent vertex. The pebbling number of G, f(G), is defined to
be the maximum of the pebbling numbers of its vertices.

Thus the pebbling number of a graph G, f(G), is the least m such that,
for any configuration of m pebbles to the vertices of G, we can move a peb-
ble to any vertex by a sequence of moves, each move removes two pebbles
of one vertex and placing one on an adjacent vertex.

Definition 1.2. [5] The t-pebbling number of a vertex v in a graph G,
ft(v,G), is the smallest positive integer m such that however m pebbles
are placed on the vertices of the graph, t pebbles can be moved to v in
finite number of pebbling moves, each move removes two pebbles of one
vertex and placing one on an adjacent vertex. The t-pebbling number of
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G, ft(G), is defined to be the maximum of the pebbling numbers of its
vertices.

Thus the t-pebbling number of a graph G, ft(G), is the least m such
that, for any configuration of m pebbles to the vertices of G, we can move
t pebbles to any vertex by a sequence of moves, each move removes two
pebbles of one vertex and placing one on an adjacent vertex.

Fact 1.3. [12] For any vertex v of a graph G, f(v,G) ≥ n where n =
|V (G)|.

Fact 1.4. [12] The pebbling number of a graph G satisfies

f(G) ≥ max{2diam(G), |V (G)|}.

Now, we state the known pebbling results of the Jahangir graph J2,m
which will be used to prove the results of Section 2.

Definition 1.5. [11] Jahangir graph Jn,m for m ≥ 3 is a graph on nm+ 1
vertices, consisting of a cycle Cnm with one additional vertex which is
adjacent to m vertices of Cnm at distance n to each other on Cnm.

Marisol Martínez
figu-1
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The pebbling number of Jahangir graph J2,m (m ≥ 3) is as follows:

Theorem 1.6. For the Jahangir graph J2,3, f(J2,3) = 8.

Theorem 1.7. For the Jahangir graph J2,7, f(J2,7) = 23.

Theorem 1.8. For the Jahangir graph J2,m wherem ≥ 8, f(J2,m) = 2m+
10.

Lourdusamy et al. determined the t-pebbling number of Jahangir graph
J3,m (for m ≥ 3) in [5]. And also they determined the t-pebbling number
for squares of cycles (t ≥ 2) in [6] and for some wheel related graphs in [8].

Remark 1.9. Consider a graph G with n vertices and f(G) pebbles are
placed on its vertices. Suppose we choose a target vertex v from G to put a
pebble on it. If C(v) ≥ 1 or C(u) ≥ 2 where uv ∈ E(G), then we can move
one pebble to v easily. So, we always assume that C(v) = 0 and C(u) ≤ 1
for all uv ∈ E(G) when v is the target vertex.

Lemma 1. If H is a spanning connected subgraph of G, then ft(G) ≤
ft(H).

Proof. Let x be the t-pebbling number of the graph H. Obviously,
G may or may not contain some more edges than H. Clearly, adding the
remaining edges of G to H will not increase the t-pebbling number of G.
Thus ft(G) ≤ x = ft(H). 2

In the next section, we define the Lamp graph and then determine its
t-pebbling number.
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2. The t-pebbling number of Lamp graphs

Definition 2.1. The join G + H of two graphs G and H is the graph
with vertex set V (G + H) = V (G) ∪ V (H) and edge set E(G + H) =
E(G) ∪E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

Definition 2.2. The wheel Wn is defined as the join Cn+K1. The vertex
K1 is the apex vertex and the vertices on the underlying cycle are called
rim vertices. The edges of the underlying cycle are called the rim edges
and the edges joining the apex and the rim vertices are called spoke edges.

Definition 2.3. The Lamp graph is obtained from the wheel graph Wn

(n ≥ 3) by adding a new vertex corresponding to each rim edge of the
wheel and make the new vertex adjacent to end vertices of corresponding
rim edge. We denote the Lamp graph by Ln.

Labeling for Ln: Let n ≥ 3. Let v2n+1 be the label of the center vertex and
then label the other vertices of Ln by v1, v2, · · · , v2n such that deg(v1) = 5,
deg(v2) = 2, · · · deg(v2n−1) = 5, deg(v2n) = 2. An illustration of the Lamp
graph L8 is shown in Figure 2.

We define the sets S1 = {v1, v3, · · · , v2n−1} and S2 = {v2, v4, · · · , v2n}
from the labeling of Ln.

Theorem 2.4. For L3, the t-pebbling number is ft(L3) = 4(t− 1) + 8.

Proof. Let C(v4) = 4(t − 1) + 3, C(v6) = 3, C(v7) = 1 and C(vi) = 0
for all i 6= 4, 6, 7. Then we cannot move t pebbles to v2. Thus ft(L3) ≥
4(t− 1) + 8.

Since J2,3 is a spanning subgraph of L3 and by Lemma 1, we have
f(L3) ≤ f(J2,3) = 8 (Theorem ??). So the result is true for t = 1. Assume
the result is true for t0 ≥ 2. Now consider the distribution of 4(t − 1) + 8
pebbles on the vertices of L3. Clearly, we can move one pebble to any
target vertex vi at a cost of at most four pebbles, since C(L3) ≥ 12 and
f(L3) = 8. After moving one pebble to vi, the remaining number of pebbles
on the vertices of L3 is at least 4(t−2)+8. Hence we can move the additional
t− 1 pebbles to vi, by induction. Thus ft(L3) ≤ 4(t− 1) + 8. 2



508 A. Lourdusamy, F. Patrick and T. Mathivanan

Theorem 2.5. For L4, the t-pebbling number is ft(L4) = 8(t− 1) + 11.

Proof. Let C(v6) = 8(t − 1) + 7, C(v4) = C(v8) = C(v9) = 1 and
C(vi) = 0 for all i 6= 4, 6, 8, 9. Then we cannot move t pebbles to v2. Thus
ft(L4) ≥ 8(t− 1) + 11.

We have three cases to prove f(L4) ≤ 11. Consider the distribution of
11 pebbles on the vertices of L4.

Case 1: Let v9 be the target vertex.
Clearly, C(v9) = 0 and C(vi) ≤ 1 for all vi ∈ S1 by Remark 1.9. Since,
C(S2) ≥ 7, there exists a vertex, say v2, such that C(v2) ≥ 2. If C(v1) = 1
or C(v3) = 1 or C(v4) ≥ 2 or C(v8) ≥ 2 then we can move one pebble to
v9 easily. Assume C(v1) = 0, C(v3) = 0, C(v4) ≤ 1, and C(v8) ≤ 1. Now,
we can move one pebble to v9 easily, since C(v2) ≥ 4 or C(v6) ≥ 4 .

Case 2: Let v1 be the target vertex.
Clearly, C(v1) = 0, C(v2) ≤ 1, C(v3) ≤ 1, C(v7) ≤ 1, C(v8) ≤ 1 and
C(v9) ≤ 1, by Remark 1.9. Let C(v5) ≥ 2. If C(v5) ≥ 4, then clearly
we are done. If C(v5) = 2 or 3 then either C(v4) ≥ 2 or C(v6) ≥ 2.
So, we can move two pebbles to v3 or v7 and hence one pebble can be
moved to v1. Assume C(v5) ≤ 1. Without loss of generality, we assume
C(v4) ≥ 3. If C(v4) ≥ 4 then clearly we are done. Assume C(v4) = 3 and
hence C(v6) ≥ 2. Clearly we are done if C(v5) = 1 or C(v7) = 1. Assume
C(v5) = C(v7) = 0 and hence we get C(v6) ≥ 4. Thus we can move one
pebble to v1 easily.

Case 3: Let v2 be the target vertex.
Clearly, C(v2) = 0, C(v1) ≤ 1 and C(v3) ≤ 1, by Remark 1.9. Let C(v4) ≥
2. If C(v4) ≥ 4 then clearly we are done. Assume C(v4) = 2 or 3 then
clearly C(v3) = 0, C(v5) ≤ 1 and C(v9) ≤ 1 (otherwise, we can move one
pebble to v2). If C(v7) ≥ 4 or C(v8) ≥ 4 or C(v7) ≥ 2 and C(v8) ≥ 2
then we can move two pebbles to v1 and then we move one pebble to v2
from v1. So, we assume C(v1) + C(v7) + C(v8) ≤ 4 such that we cannot
move one pebble to v2. This implies that C(v6) ≥ 2. Clearly we are done
if C(v5) = 1. Let C(v7) ≥ 2. Thus we can move one pebble to v1 from v7.
If C(v9) = 1 then we can move another one pebble to v1 using the pebbles
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at v4 and v6. If C(v9) = 0 then we get C(v6) ≥ 4 and hence we can move
another one pebble to v1 using the pebbles at v6. Assume C(v7) ≤ 1. In
a similar way, we assume C(v8) ≤ 1. This implies that C(v6) ≥ 3. Clearly
we are done if C(v5) = 1. Otherwise, we get C(v6) ≥ 4 and hence we can
move two pebbles to v3 from v6 and v4. Thus we can move one pebble to
v2.

Assume C(v4) ≤ 1. Similarly, we assume C(v8) ≤ 1. Assume C(v9) ≥ 2.
Clearly, we are done if C(v9) ≥ 4 or C(v3) = 1 or C(v1) = 1. Assume
C(v3) = 0 or C(v1) = 0. Let C(v9) = 2 or 3. Since either C(v6)+C(v5) ≥ 4
or C(v6) + C(v7) ≥ 4, we can move one pebble to either v3 or v1. Since
C(v9) ≥ 2, we can move another one pebble to v1 or v3 and hence we can
move one pebble to v2. So, we assume C(v9) ≤ 1. Also, we must have
C(v5) ≤ 1 and C(v7) ≤ 1 (otherwise one pebble could be moved to v2).
Thus we have C(v6) ≥ 4. Clearly, we are done if C(v1) = 1 or C(v3) = 1.
Assume C(v1) = 0 and C(v3) = 0. Thus we get C(v6) ≥ 6. Clearly, we are
done if C(v5) = 1 or C(v7) = 1. Assume C(v5) = 0 and C(v7) = 0. Now,
we have C(v6) ≥ 8 and hence we can move one pebble to v2 easily.

So, the result is true for t = 1. Assume the result is true for t0 ≥ 2.
Now consider the distribution of 8(t − 1) + 11 pebbles on the vertices of
L4. Clearly, we can move one pebble to any target vertex vi at a cost of at
most eight pebbles, since C(L4) ≥ 19 and f(L4) = 11. After moving one
pebble to vi, the remaining number of pebbles on the vertices of L4 is at
least 8(t− 2) + 11. Hence we can move the additional t− 1 pebbles to vi,
by induction. Thus ft(L4) ≤ 8(t− 1) + 11. 2

Theorem 2.6. For L5, the t-pebbling number is ft(L5) = 8(t− 1) + 13.

Proof. Let C(v8) = 8(t − 1) + 7, C(v4) = C(v5) = C(v6) = C(v10) =
C(v11) = 1 and C(vi) = 0 for all i 6= 4, 5, 6, 8, 10, 11. Then we cannot move
t pebbles to v2. Thus ft(L5) ≥ 8(t− 1) + 13.

We have three cases to prove f(L5) ≤ 13. Consider the distribution of
13 pebbles on the vertices of L5.
Case 1: Let v11 be the target vertex.
Clearly, C(v11) = 0 and C(vi) ≤ 1 for all vi ∈ S1 by Remark 1.9. Since,
C(S2) ≥ 8, there exists a vertex, say v2, such that C(v2) ≥ 2. Clearly,
we are done if C(v2) ≥ 4. If C(v1) = 1 or C(v3) = 1 or C(v4) ≥ 2 or
C(v10) ≥ 2 then we can move one pebble to v11 easily. Assume C(v1) = 0,
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C(v3) = 0, C(v4) ≤ 1, and C(v10) ≤ 1. Now, we can move one pebble to
v11 easily, since C(v6) ≥ 4 or C(v8) ≥ 4 .

Case 2: Let v1 be the target vertex.
Clearly, C(v1) = 0, C(v2) ≤ 1, C(v3) ≤ 1, C(v9) ≤ 1, C(v10) ≤ 1 and
C(v11) ≤ 1, by Remark 1.9. Let C(v5) ≥ 2. If C(v5) ≥ 4, then clearly
we are done. Assume C(v5) = 2 or 3. If C(v3) = 1 or C(v11) = 1 or
C(v4) ≥ 2 or C(v7) ≥ 2 then we can move one pebble to v1 easily. So, we
assume C(v3) = 0 or C(v11) = 0 or C(v4) ≥ 1 or C(v7) ≥ 1. Then we have
C(v6)+C(v8) ≥ 5. Clearly we can move one pebble to v11 using the pebbles
at v6 and v8 and also we move one more pebble to v11 from v5. Thus we
can move one pebble to v1 through v11. Assume C(v5) ≤ 1. In a similar
way, we assume C(v7) ≤ 1. Now, we have C(v4) + C(v6) + C(v8) ≥ 6.
Assume C(v4) ≥ 2. Clearly, we are done if C(v4) ≥ 4. Let C(v4) = 2 or 3.
Clearly, we are done if C(v3) = 1 or both C(v5) = C(v11) = 1; if not then
we have either C(v6) ≥ 4 or C(v8) ≥ 4. In either cases, we can move one
pebble to v1. So, we assume C(v4) ≤ 1. In a similar way, we assume that
C(v7) ≤ 1. Thus we have C(v6) ≥ 4. Clearly, we are done if C(v3) = 1 or
C(v9) = 1 or C(v11) = 1. Assume C(v3) = C(v9) = C(v11) = 0. Now we
have C(v6) ≥ 7. We are done if C(v5) = 1 or C(v7) = 1. If not, then we
get C(v6) ≥ 8 and hence we can move one pebble to v1.

Case 3: Let v2 be the target vertex.
Clearly, C(v2) = 0, C(v1) ≤ 1 and C(v3) ≤ 1, by Remark 1.9. Let C(v4) ≥
2. If C(v4) ≥ 4 then clearly we are done. Assume C(v4) = 2 or 3 then
clearly C(v3) = 0, C(v5) ≤ 1 and C(v11) ≤ 1 (otherwise, we can move one
pebble to v2). If C(v6) ≥ 4 or C(v7) ≥ 4 or both C(v6) ≥ 2 and C(v7) ≥ 2
then we can move two pebbles to v3 and then we move one pebble to v2
from v3. So, we assume C(v6) + C(v7) ≤ 4 such that we cannot move one
pebble to v3. Let C(v6) ≥ 2. Clearly we are done if C(v5) = 1 or both
C(v7) = 1 and C(v11) = 1. Otherwise, we get C(v8) +C(v9) +C(v10) ≥ 5.
Clearly, we are done if C(v9) ≥ 4 or C(v10) ≥ 4 or both C(v9) ≥ 2 and
C(v10) ≥ 2. Assume C(v10) ≥ 2. If C(v1) = 1 then we can move one pebble
to v2 easily. Let C(v1) = 0. Assume C(v7) = 1 and C(v11) = 0. We can
move one pebble to v9. Clearly we can move one pebble to v1 through v9,
since either C(v9) = 1 or C(v8) ≥ 2 and hence one pebble could be moved
to v2. Now, assume C(v7) = 0 and C(v11) = 1. Clearly we can move one
pebble to v11 from the pebbles at the vertices v6 and v8 and hence one
pebble could be moved to v1. Then we can move one pebble to v2 easily.
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Assume C(v7) = C(v11) = 0. Now we have C(v8) + C(v9) ≥ 4 and hence
we can move one pebble to v1. Thus we can move one pebble to v2 easily.
Assume C(v10) ≤ 1. In a similar way, we assume that C(v9) ≤ 1. Clearly,
C(v8) ≥ 3. We can move one pebble to v11 or v1. Thus we are done if
C(v1) = 1 or C(v11) = 1. Otherwise, we get C(v8) ≥ 4. Thus we move one
pebble to v5 from v8 and hence we are done. Thus we can move one pebble
to v2 when C(v6) ≥ 2. So we assume that C(v6) ≤ 1. In a similar way, we
could assume that C(v7) ≤ 1. Again we get C(v8) + C(v9) + C(v10) ≥ 5.
By our previous discussions, we could send one pebble to v1 or v11 easily.
Clearly, we are done if C(v1) = 1 or C(v11) = 1. Assume C(v1) = 0 and
C(v11) = 0. Either we can move one pebble to v3 or two pebbles to v1
from the remaining distributions when C(v4) = 2 or 3. So, we assume that
C(v4) ≤ 1. In a similar way, we can assume that C(v10) ≤ 1, C(v5) ≤ 1
and C(v9) ≤ 1. Assume C(v11) ≥ 2. We can move one pebble to v2 easily,
if C(v11) = 2 or 3 or C(v11) ≥ 4. Assume C(v11) ≤ 1. Now, we have
C(v8) + C(v9) ≥ 5. Clearly, we can move one pebble to v2 if C(v1) = 1 or
both C(v11) = 1 and C(v3) = 1. If not, we have C(v8) + C(v9) ≥ 7. We
can move one pebble to v2 easily except the distribution C(v8) = 7 and
C(v9) = 0. We have either C(v7) = C(v11) = 1 or C(v7) = C(v3) = 1.
Hence we can move one pebble to v2 for this distribution too. Thus we can
always move one pebble to v2.

So, the result is true for t = 1. Assume the result is true for t0 ≥ 2.
Now consider the distribution of 8(t − 1) + 13 pebbles on the vertices of
L5. Clearly, we can move one pebble to any target vertex vi at a cost of at
most eight pebbles, since C(L5) ≥ 21 and f(L5) = 13. After moving one
pebble to vi, the remaining number of pebbles on the vertices of L5 is at
least 8(t− 2) + 13. Hence we can move the additional t− 1 pebbles to vi,
by induction. Thus ft(L5) ≤ 8(t− 1) + 13. 2

Theorem 2.7. For L6, the t-pebbling number is ft(L6) = 16(t− 1) + 20.

Proof. Let C(v8) = 16(t−1)+15, C(v4) = C(v6) = C(v10) = C(v12) = 1
and C(vi) = 0 for all i 6= 4, 6, 8, 10, 12. Then we cannot move t pebbles to
v2. Thus ft(L6) ≥ 16(t−1)+20. We have three cases to prove f(L6) ≤ 20.
Consider the distribution of 20 pebbles on the vertices of L6.
Case 1: Let v13 be the target vertex.
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Clearly, C(v13) = 0 and C(vi) ≤ 1 for all vi ∈ S1 by Remark 1.9. Since,
C(S2) ≥ 14, there exists a vertex, say v2, such that C(v2) ≥ 3. Clearly,
we are done if C(v2) ≥ 4. If C(v1) = 1 or C(v3) = 1 or C(v4) ≥ 2 or
C(v12) ≥ 2 then we can move one pebble to v13 easily. Assume C(v1) = 0,
C(v3) = 0, C(v4) ≤ 1, and C(v12) ≤ 1. Now, we can move one pebble to
v13 easily, since C(v6) ≥ 4 or C(v8) ≥ 4 or C(v10) ≥ 4.

Case 2: Let v1 be the target vertex.

Clearly, C(v1) = 0 and C(vi) ≤ 1 for all i ∈ {2, 3, 11, 12, 13} by Re-
mark 1.9. Let C(v5) ≥ 2. If C(v3) = 1 or C(v13) = 1 or a vertex of
S1−{v1, v3, v11} has more than one pebble then we can move one pebble to
v1 easily. Otherwise, there exists a vertex, say v6, of S2−{v2, v12}, contains
more than three pebbles and hence we are done. Assume C(vi) ≤ 1 for all
vi ∈ S1 − {v1, v3, v11}. Clearly, S2 − {v2, v12} ≥ 13, and so we can move
two pebbles to v13 and hence we are done.

Case 3: Let v2 be the target vertex.
Clearly, C(v2) = 0, C(v1) ≤ 1 and C(v3) ≤ 1 by Remark 1.9. If C(v5) ≥ 4
then clearly we are done. So, we assume that C(v5) ≤ 3. Similarly, we
assume that C(v11) ≤ 3. Let C(v7) ≥ 4. If C(v1) = 1 or C(v3) = 1 or
C(v4) ≥ 2 or C(v5) ≥ 2 or C(v11) ≥ 2 or C(v12) ≥ 2 or C(v13) ≥ 2 then
we can move one pebble to v2 easily. Assume that C(v1) = 0, C(v3) = 0,
C(v4) ≤ 1, C(v5) ≤ 1, C(v11) ≤ 1, C(v12) ≤ 1 and C(v13) ≤ 1. Also we
can move one pebble to v2 if C(v9) ≥ 4. So, we assume C(v9) ≤ 3. Let
C(v7) = 6 or 7. Clearly we are done if C(v9) ≥ 2 or C(v6) ≥ 2 or C(v13) = 1
or C(v5) = 1. So, we assume that C(v9) ≤ 1, C(v6) ≤ 1, C(v13) = 0 and
C(v5) = 0. This implies that, we have both C(v8) ≥ 2 and C(v10) ≥ 2 and
hence we can move one pebble to v2 by moving four pebbles to v13 using
the pebbles at the vertices v7, v8 and v10. Let C(v7) = 4 or 5. Assume
C(v9) = 2 or 3. Clearly we are done if C(v11) = 1 or p(v13) = 1. Now,
we have C(v6) + C(v8) + C(v10) ≥ 10. Clearly, we are done if C(v6) ≥ 4
or C(v10) ≥ 4. If not, then we have C(v8) ≥ 4. If C(v6) ≥ 2, then we
move one pebble to v5 and then we move three more pebbles to v5 from the
vertices v7 and v8 and hence we are done. So, we assume that C(v6) ≤ 1
and also C(v10) ≤ 1 in a similar way. Thus we have C(v8) ≥ 8 and hence
we can one pebble to v2 by moving four pebbles to v13 using the pebbles
at the vertices v7, v8. Now we assume that C(v7) ≤ 3. In a similar way, we
assume that C(v9) ≤ 3. If four vertices of S1 − {v1, v3} have two or more
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pebbles each then clearly we can move four pebbles to v13 and hence one
pebble can be moved to v2 from v13.

Subcase 3.1: Three vertices of S1−{v1, v3} have two or more pebbles each.

Clearly we are done if C(v1) = 1 or C(v3) = 1 or C(v13) = 1 or
C(v4) ≥ 2 or C(v5) ≥ 2 or C(v11) ≥ 2 or C(v12) ≥ 2. Assume C(v1) =
C(v3) = C(v13) = 0 and C(v4) ≤ 1, C(v5) ≥ 2, C(v11) ≥ 2, and C(v12) ≤ 1.
Clearly, C(v6) +C(v8) +C(v10) ≥ 9 and hence we can move one pebble to
v13 from the vertices v6, v8 and v10. Thus we can move one pebble to v2
using the pebbles at the three vertices of S1 − {v1, v3}.

Subcase 3.2: Two vertices of S1−{v1, v3} have two or more pebbles each.
Clearly, we are done if C(v1) = 1 or C(v3) = 1 or C(v4) ≥ 2 or C(v5) ≥ 2
or C(v11) ≥ 2 or C(v12) ≥ 2 or C(v13) ≥ 2. Let C(v13) = 1 and so we can
move three pebbles to v13 from the two vertices of S1 − {v1, v3} and v6, v8
and v10. Assume C(v13) = 0 and so C(v6) + C(v8) + C(v10) ≥ 11. Thus
we can move two pebbles to v13 from the vertices v6, v8 and v10 and then
we move two more pebbles to v13 from the two vertices of S1−{v1, v3} and
hence we are done.

Subcase 3.3: One vertex of S1 − {v1, v3} has two or more pebbles.
Clearly, we are done if C(v1) = 1 or C(v3) = 1 or C(v4) ≥ 2 or C(v5) ≥ 2
or C(v11) ≥ 2 or C(v12) ≥ 2 or C(v13) ≥ 2. Let C(v13) = 1 and so
C(v6) + C(v8) + C(v10) ≥ 12. Thus we can move three pebbles to v13
from the vertex of S1 − {v1, v3} and the vertices v6, v8 and v10. Assume
C(v13) = 0 and let v5 is the vertex of S1− {v1, v3} contains more than one
pebble on it. So C(v6) + C(v8) + C(v10) ≥ 13. If C(v7) = 1 or C(v9) = 1
then we can move three pebbles to v13 from v6, v8 and v10 and hence we
are done since C(v5) ≥ 2. Assume C(v7) = C(v9) = 0 and so we can move
three pebbles to v13 from v6, v8 and v10 and hence we are done. In a similar
way, we can move one pebble to v2 if C(v11) ≥ 2, C(v7) ≥ 2 and C(v9) ≥ 2.

Subcase 3.4: No vertex of S1 − {v1, v3} has two or more pebbles.
Clearly, we are done if C(v1) = 1 or C(v3) = 1 or C(v4) ≥ 2 or C(v5) ≥ 2
or C(v11) ≥ 2 or C(v12) ≥ 2 or C(v13) ≥ 2. Thus we have C(v6) +
C(v8) + C(v10) ≥ 14. Let C(v13) = 1. Clearly we can move three pebbles
to v13 if C(v7) = 1 or C(v9) = 1. Assume C(v7) = C(v9) = 0 and so
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we can move three pebbles to v13 since C(v6) + C(v8) + C(v10) ≥ 15 and
hence we are done. Assume C(v13) = 0. Without loss of generality, we
let C(v6) ≥ 5. If C(v4) = 1 or C(v5) = 1 or C(v7) = 1 then we can
move two pebbles to v3 and hence we are done. Assume C(v4) = C(v5) =
C(v7) = 0. Let C(v8) ≥ 2. If C(v9) = 1 then we move one pebble to v13
and then we move another three pebbles to v13 from v6, v8 and v10 since
C(v6)+C(v8)+C(v10)−2 ≥ 16 and hence we are done. Assume C(v9) = 0
and so C(v6)+C(v8)+C(v10) ≥ 20. Clearly we can move one pebble to v2
from v6, v8 and v10. So, the result is true for t = 1. Assume the result is
true for t0 ≥ 2. Now consider the distribution of 16(t− 1) + 20 pebbles on
the vertices of L6. Clearly, we can move one pebble to any target vertex
vi at a cost of at most sixteen pebbles, since C(L6) ≥ 36 and f(L6) = 20.
After moving one pebble to vi, the remaining number of pebbles on the
vertices of L6 is at least 16(t− 2) + 20. Hence we can move the additional
t− 1 pebbles to vi, by induction. Thus ft(L6) ≤ 16(t− 1) + 20. 2

Theorem 2.8. For L7, the t-pebbling number is ft(L7) = 16(t− 1) + 23.

Proof. Let C(v8) = 16(t− 1)+ 15, C(v4) = C(v6) = C(v10) = C(v14) =
1, C(v12) = 3 and C(vi) = 0 for all i 6= 4, 6, 8, 10, 12, 14. Then we cannot
move t pebbles to v2. Thus ft(L7) ≥ 16(t−1)+23. Since J2,7 is a spanning
subgraph of L7 and by Lemma 1, we have f(L7) ≤ f(J2,7) = 23 (Theorem
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figu-2
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1.7). So the result is true for t = 1. Assume the result is true for t0 ≥ 2.
Now consider the distribution of 16(t − 1) + 23 pebbles on the vertices of
L7. Clearly, we can move one pebble to any target vertex vi at a cost of at
most sixteen pebbles, since C(L7) ≥ 39 and f(L7) = 23. After moving one
pebble to vi, the remaining number of pebbles on the vertices of L7 is at
least 16(t− 2) + 23. Hence we can move the additional t− 1 pebbles to vi,
by induction. Thus ft(L7) ≤ 16(t− 1) + 23. 2

Theorem 2.9. For Ln (n ≥ 8), the t-pebbling number is
ft(Ln) = 16(t− 1) + 2n+ 10.

Proof. Consider the following distribution for Ln (n ≥ 8):
If n is odd, let C(vn+1) = 16(t − 1) + 15, C(vn−3) = 3, C(vn+5) = 3,
C(x) = 1 where x /∈ N [v2], x /∈ N [vn+1], x /∈ N [vn−3], and x /∈ N [vn+5], and
C(y) = 0 where y ∈ N [v2], y ∈ N(vn+1), y ∈ N(vn−3), and y ∈ N(vn+5).
If n is even, let C(vn+2) = 16(t − 1) + 15, C(vn−2) = 3, C(vn+6) = 3,
C(x) = 1 where x /∈ N [v2], x /∈ N [vn+2], x /∈ N [vn−2], and x /∈ N [vn+6], and
C(y) = 0 where y ∈ N [v2], y ∈ N(vn+2), y ∈ N(vn−2), and y ∈ N(vn+6).
Then, we cannot move a pebble to v2. The total number of pebbles placed
in both configurations are 16(t− 1) + 15+ 2(3) + (n− 4)(1) + (n− 8)(1) =
16(t− 1) + 2n+ 9. Therefore, ft(Ln) ≥ 16(t− 1) + 2n+ 10.

Since J2,n is a spanning subgraph of Ln (n ≥ 8) and by Lemma 1, we
have f(Ln) ≤ f(J2,n) = 2n + 10 (Theorem ??). So the result is true for
t = 1. Assume the result is true for t0 ≥ 2. Now consider the distribution
of 16(t− 1) + 2n+ 10 pebbles on the vertices of Ln. Clearly, we can move
one pebble to any target vertex vi at a cost of at most sixteen pebbles,
since C(Ln) ≥ 2n + 26 and f(Ln) = 2n + 10. After moving one pebble
to vi, the remaining number of pebbles on the vertices of Ln is at least
16(t− 2) + 2n+ 10. Hence we can move the additional t− 1 pebbles to vi,
by induction. Thus ft(Ln) ≤ 16(t− 1) + 2n+ 10. 2
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[3] P. Erdős, A. Ginzburg and A. Ziv, A theorem in additive number
theory, Bull. Res. Council Israel, 10F, pp. 41-43, (1961).

[4] D. Kleitman and P. Lemke, An addition theorem on the integers mod-
ulon, J. Number Theory, 31, pp. 335-345, (1989).

[5] A. Lourdusamy and T. Mathivanan, The t-pebbling number of Ja-
hangir graph J3,m, Proyecciones Journal of Mathematics, 34 (2), pp.
161-174, (2015).

[6] A. Lourdusamy and T. Mathivanan, The t-pebbling number of squares
of cycles, Journal of Prime Research in Mathematics, 11, pp. 61-76,
(2015).

[7] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, The
pebbling number of the square of an odd cycle, Sciencia Acta Xaveri-
ana, 3 (2), pp. 21-38, (2012).

[8] A. Lourdusamy, F. Patrick and T. Mathivanan, The t-pebbling number
of some wheel related graphs, Journal of Prime Research in Mathemat-
ics, 12, pp. 35-44, (2016).

[9] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, On peb-
bling Jahangir graph, General Mathematics Notes, 5 (2), pp. 42-49,
(2011).

[10] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, Pebbling
number for Jahangir graph J2,m (3 ≤ m ≤ 7), Sciencia Acta Xaveriana,
3 (1), pp. 87-106, (2012).

[11] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, The t-
pebbling number of Jahangir graph, International Journal of Math-
ematical Combinatorics, 1, pp. 92-95, (2012).



The t-pebbling number of Lamp graphs 517

[12] L. Pachter, H.S. Snevily and B. Voxman, On pebbling graphs, Con-
gressus Numerantium, 107, pp. 65-80, (1995).

A. Lourdusamy
Department of Mathematics,
St. Xavier’s College (Autonomous)
Palayamkottai 627 002,
India
e-mail : lourdusamy15@gmail.com

F. Patrick
Department of Mathematics,
St. Xavier’s College (Autonomous)
Palayamkottai 627 002,
India
e-mail : patrick881990@gmail.com

and

T. Mathivanan
Department of Mathematics,
St. Xavier’s College (Autonomous)
Palayamkottai 627 002,
India
e-mail : tahit van man@yahoo.com


