Proyecciones Journal of Mathematics
Vol. 37, N ${ }^{o} 3$, pp. 491-501, September 2018.
Universidad Católica del Norte
Antofagasta - Chile

Quasi \mathcal{N}-Open sets and related compactness concepts in bitopological spaces

Samer Al Ghour
Jordan University of Science and Tech., Jordan
and
Haneen Saleh
Jordan University of Science and Tech., Jordan
Received: August 2017. Accepted : May 2018

Abstract

Three types of N-open sets are defined and investigated in bitopological spaces, and via them several compactness are introduced. Several relationships, examples and counter-examples regarding the new concepts are given.

2010 Mathematics Subject Classification : 54A05, 54B05, 54B10, $54 C 08$.

Key Words and Phrases : ω-open set, N-open set, Compact, Countably Compact, Continuous Function.

1. Introduction

Let (X, τ) be a topological space and let A be a subset of X. A point $x \in X$ is called an infinite point (resp. condensation point) of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is infinite (resp. uncountable). The set A is called \mathcal{N}-closed [3, 4] (resp. ω-closed [6]) if it contains all its infinite points (resp. condensation points), the complement of an N-closed (resp. ω-closed) set is called N -open $[3,4]$ (resp. ω-open [7]). For a given topological space (X, τ), we will denote the class of ω-open sets (resp. N -open sets) by τ_{ω} (resp. $\tau_{\mathcal{N}}$). It is known that $\tau_{\mathcal{N}}$ lies between τ and τ_{ω}. Also, it is known that A is N -open (resp. ω-open) if and only if for every $x \in A$, there are $O \in \tau$ and a finite (resp. countable) set G such that $x \in O-G \subseteq A$. Using \mathcal{N}-open sets, Al-Omari and Noorani in [3, 4] gave several characterizations of compact and strongly compact topological spaces.

As a wider structure than classical topological spaces, Kelly in [9] introduced bitopological spaces as an ordered triple (X, τ, σ) of a set X and two topologies τ and σ. Datta in [5] introduced the notion of quasi open sets in bitopological spaces. In [1-2, 11-16, 18-20], several modifications of the concept of quasi open sets are inroduced and used to define new bitopological concepts. In this research, we define and investigate quasi \mathcal{N}-open sets as a new class of sets in bitopological spaces and use them to define reasonable new compactness concepts. We give some characterizations regarding compact bitopological spaces.

2. Three Types of \mathcal{N}-open Sets in Bitopological Spaces

Definition 2.1. [5] Let (X, τ, σ) be a bitopological space.
(a) The smallest topology on X containing $\tau \cup \sigma$ is called the least upper bound topology on X.
(b) A set $A \subseteq(X, \tau, \sigma)$ is said to be semi-open (briefly, s-open) if it is open in the least upper bound topology on X.

If τ and σ are two topologies on a set X, then the least upper bound topology on X will be denoted by $\langle\tau, \sigma\rangle$.

Proposition 2.2. [1] Let τ and σ be two topologies on a set X. Then $A \subseteq(X, \tau, \sigma)$ is s-open if and only if for each $x \in A$ there exist $U \in \tau$, and $V \in \sigma$ such that $x \in U \cap V \subseteq A$.

Definition 2.3. [10] A set $A \subseteq(X, \tau, \sigma)$ is said to be u-open if $A \in \tau \cup \sigma$.

The family of all u-open sets in (X, τ, σ) will be denoted by $u(\tau, \sigma)$.
Definition 2.4. [5] A set $A \subseteq(X, \tau, \sigma)$ is said to be quasi-open (briefly, q-open) if for every $x \in A$ there exists $U_{x} \in \tau$ such that $x \in U_{x} \subseteq A$ or $V_{x} \in \sigma$ such that $x \in V_{x} \subseteq A$. Equivalently: A set $A \subseteq(X, \tau, \sigma)$ is q-open if and only if $A=B \cup C$, where $B \in \tau$ and $C \in \sigma$. A set $A \subseteq(X, \tau, \sigma)$ is said to be q-closed if $X-A$ is q-open.

The family of all q-open sets in (X, τ, σ) will be denoted by $q(\tau, \sigma)$.
Proposition 2.5. [5] For a bitopological space (X, τ, σ), we have the following:
(a) $u(\tau, \sigma) \subseteq q(\tau, \sigma) \subseteq\langle\tau, \sigma\rangle, \tau \cup \sigma \neq q(\tau, \sigma)$ in general and $q(\tau, \sigma) \neq$ $\langle\tau, \sigma\rangle$ in general.
(b) $q(\tau, \sigma)$ is closed under arbitrary union but $q(\tau, \sigma)$ is not a topology on X, in general.
(c) Arbitrary intersection of q-closed sets is q-closed.

Definition 2.6. [1] Let (X, τ, σ) be a bitopological space and let $A \subseteq X$. Then
(a) A is said to be $u-\omega$-open in (X, τ, σ) if $A \in \tau_{\omega} \cup \sigma_{\omega}$. Equivalently: $A \subseteq(X, \tau, \sigma)$ is $u-\omega$-open if and only if $A \in u\left(\tau_{\omega}, \sigma_{\omega}\right)$.
(b) A is said to be $u-\omega$-closed in (X, τ, σ) if $X-A$ is $u-\omega$-open in (X, τ, σ).
(c) A is said to be $s-\omega$-open in (X, τ, σ) if it is an open set in the least upper bound topology on X, of τ_{ω} and σ_{ω}.

Definition 2.7. Let (X, τ, σ) be a bitopological space and let $A \subseteq X$. Then
(a) A is said to be $u-\mathcal{N}$-open in (X, τ, σ) if $A \in \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}}$. Equivalently: $A \subseteq(X, \tau, \sigma)$ is $u-\mathcal{N}$-open if and only if $A \in u\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$.
(b) A is said to be $u-\mathcal{N}$-closed in (X, τ, σ) if $X-A$ is $u-\mathcal{N}$-open in (X, τ, σ).
(c) A is said to be $s-\mathcal{N}$-open in (X, τ, σ) if it is an open set in the least upper bound topology on X, of $\tau_{\mathcal{N}}$ and $\sigma_{\mathcal{N}}$.

For a bitopological space (X, τ, σ), we will denote the family of all u -\mathcal{N}-open sets in (X, τ, σ) by $u-\mathcal{N}(\tau, \sigma)$, and the family of all \mathcal{N}-open sets in the topological space $(X,\langle\tau, \sigma\rangle)$ is denoted by $\langle\tau, \sigma\rangle_{\mathcal{N}}$.

Theorem 2.8. (a) Every u-open set in bitopological space is u - \mathcal{N}-open.
(b) Every u - \mathcal{N}-open set in bitopological space is u - ω-open.

Proof. (a) Let (X, τ, σ) be a bitopological space and let A be a u-open set in (X, τ, σ). Then $A \in u(\tau, \sigma)$. Since $\tau \subseteq \tau_{\mathcal{N}}$ and $\sigma \subseteq \sigma_{\mathcal{N}}$, then $u(\tau, \sigma) \subseteq u\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$. It follows that $A \in u\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ and A is u - \mathcal{N}-open.
(b) Let (X, τ, σ) be a bitopological space and let A be a u-N-open set in (X, τ, σ). Then $A \in u\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$. Since $\tau_{\mathcal{N}} \subseteq \tau \omega$ and $\sigma_{\mathcal{N}} \subseteq \sigma \omega$, then $\mathrm{u}\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right) \subseteq u(\tau \omega, \sigma \omega)$. It follows that $\mathrm{A} \in u(\tau \omega, \sigma \omega)$ and A is u - ω-open.

The following example shows that the converse of each of the two implications in Theorem 2.8 is not true in general:

Example 2.9. Consider $(\mathbf{R}, \tau, \sigma)$ where τ and σ are the left ray and the indiscrete topologies, respectively. It is clear that $\mathbf{R}-\mathbf{Q}$ is $u-\omega$-open but not $u-\mathcal{N}$-open and $\mathbf{R}-\{1\}$ is $u-\mathcal{N}$-open but not u-open.

Theorem 2.10. Let (X, τ, σ) be a bitopological space. Then $\langle\tau, \sigma\rangle_{\mathcal{N}}=$ $\left\langle\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right\rangle$.

Proof. Let $A \in\langle\tau, \sigma\rangle_{\mathcal{N}}$ and let $x \in A$. Then there exist H, F such that $H \in\langle\tau, \sigma\rangle$ and a finite set $F \subseteq X$ such that $x \in H-F \subseteq A$. Since $x \in H \in$ $\langle\tau, \sigma\rangle$, there exist U, V such that $U \in \tau, V \in \sigma$ and $x \in U \cap V \subseteq H$. Note that $U-F \in \tau_{\mathcal{N}}, V-F \in \sigma_{\mathcal{N}}$, and $x \in(U-F) \cap(V-F) \subseteq(U \cap V)-F \subseteq$ $H-F \subseteq A$. It follows that $A \in\left\langle\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right\rangle$. Conversely, let $A \in\left\langle\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right\rangle$ and let $x \in A$. Then there exist $W \in \tau_{\mathcal{N}}$ and $G \in \sigma_{\mathcal{N}}$ such that $x \in W \cap G \subseteq A$. Since $x \in W \cap G$, there exist $U \in \tau, V \in \sigma$ and finite sets $F, M \subseteq X$ such that $x \in U-F \subseteq W$ and $x \in V-M \subseteq G$. Note that $U \cap V \in\langle\tau, \sigma\rangle$ and $F \cap M$ is a finite set. Also, $x \in(U \cap V)-(F \cup M) \subseteq W \cap G \subseteq A$. Thus $A \in\langle\tau, \sigma\rangle_{\mathcal{N}}$.

Theorem 2.11. Let (X, τ, σ) be a bitopological space. Then $u-\mathcal{N}(\tau, \sigma) \subseteq$ $\langle\tau, \sigma\rangle_{\mathcal{N}}$.

Proof. $u-\mathcal{N}(\tau, \sigma)=\tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}} \subseteq\left\langle\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right\rangle=\langle\tau, \sigma\rangle_{\mathcal{N}}$. Since by Theorem 2.10, $\left\langle\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right\rangle=\langle\tau, \sigma\rangle_{\mathcal{N}}$, it follows that $u-\mathcal{N}(\tau, \sigma) \subseteq\langle\tau, \sigma\rangle_{\mathcal{N}}$.

The following example will show respectively, that the inclusion in Theorem 2.11 cannot be replaced by equality, in general.

Example 2.12. Consider the bitopological space $\left(\mathbf{R}, \tau_{l r}, \tau_{r r}\right)$ and let $A=$ $(6,9)$. Then $A \in\langle\tau, \sigma\rangle \subseteq\langle\tau, \sigma\rangle_{\mathcal{N}}$, while $A \notin \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}}=u-\mathcal{N}(\tau, \sigma)$.

As defined in [1], a set $A \subseteq(X, \tau, \sigma)$ is said to be q - ω-open if for every $x \in A$ there exists $U_{x} \in \tau \omega$ suchthat $\in U_{x} \subseteq A$ or $V_{x} \in \sigma \omega$ suchthatx \in $V_{x} \subseteq A$. Equivalently: $A \subseteq(X, \tau, \sigma)$ is q - ω-open if and only if $A \in q(\tau \omega$ $, \sigma \omega)$.Aset $\mathrm{A} \subseteq(X, \tau, \sigma)$ is said to be $q-\omega$-closed if $X-A$ is $q-\omega$-open. The family of all q - ω-open sets in (X, τ, σ) is denoted by $q-\omega(\tau, \sigma)$.

Definition 2.13. A set $A \subseteq(X, \tau, \sigma)$ is said to be $q-\mathcal{N}$-open if for every $x \in A$ there exists $U_{x} \in \tau_{\mathcal{N}}$ such that $x \in U_{x} \subseteq A$ or $V_{x} \in \sigma_{\mathcal{N}}$ such that $x \in V_{x} \subseteq A$. Equivalently: $A \subseteq(X, \tau, \sigma)$ is $q-\mathcal{N}$-open if and only if $A \in$ $q\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$. A set $A \subseteq(X, \tau, \sigma)$ is said to be q - \mathcal{N}-closed if $X-A$ is $q-\mathcal{N}$-open. The family of all q - \mathcal{N}-open sets in (X, τ, σ) is denoted by $q-\mathcal{N}(\tau, \sigma)$.

Theorem 2.14. Let (X, τ, σ) be a bitopological space and $A \subseteq X$. Then the following are equivalent:
(a) A is q - \mathcal{N}-open.
(b) For each $x \in A$ there exists $U \in u(\tau, \sigma)$ and a finite set $F \subseteq X$ such that $x \in U-F \subseteq A$.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: Let A be a $q-\mathcal{N}$-open set and let $x \in A$. Since A is $q-\mathcal{N}$ open, there exist B, C such that $B \in \tau_{\mathcal{N}}, C \in \sigma_{\mathcal{N}}$ and $A=B \cup C$. Without loss of generality we may assume that $x \in B$. Choose $U \in \tau \subseteq u(\tau, \sigma)$ and a finite set $F \subseteq X$ such that $x \in U-F \subseteq B \subseteq A$.
(b) \Longrightarrow (a): By (b), for each $x \in A$ there exists $U_{x} \in u(\tau, \sigma)$ and a finite set $F_{x} \subseteq X$ such that $x \in U_{x}-F_{x} \subseteq A$. Let $B=\bigcup\left\{U_{x}-F_{x}: U_{x} \in \tau\right\}$ and $C=\bigcup\left\{U_{x}-F_{x}: U_{x} \in \sigma\right\}$. Then $B \in \tau_{\mathcal{N}}, C \in \sigma_{\mathcal{N}}$ and $A=B \cup C$. It follows that A is $q-\mathcal{N}$-open.

Theorem 2.15. Let (X, τ, σ) be a bitopological space. Then
(a) $u-\mathcal{N}(\tau, \sigma) \subseteq q-\mathcal{N}(\tau, \sigma)$.
(b) $q(\tau, \sigma) \subseteq q-\mathcal{N}(\tau, \sigma)$.
(c) $q-\mathcal{N}(\tau, \sigma) \subseteq\langle\tau, \sigma\rangle_{\mathcal{N}}$.
(d) $\{\emptyset, X\} \subseteq q-\mathcal{N}(\tau, \sigma)$.
(e) The family $q-\mathcal{N}(\tau, \sigma)$ is closed under arbitrary union.
(f) The family of all q - \mathcal{N}-closed sets in (X, τ, σ) closed under arbitrary intersection.
(g) $q-\mathrm{N}(\tau, \sigma) \subseteq q-\omega(\tau, \sigma)$.

Proof. (a) Since $u(\tau, \sigma) \subseteq q(\tau, \sigma)$ and $u-\mathcal{N}(\tau, \sigma)=u\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ we have, $u\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right) \subseteq q\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)=q-\mathcal{N}(\tau, \sigma)$, then $u-\mathcal{N}(\tau, \sigma) \subseteq q-\mathcal{N}(\tau, \sigma)$.
(b) Let $A \in q(\tau, \sigma)$, then there exist B and C such that $A=B \cup C$, where $B \in \tau$ and $C \in \sigma$. Since $\tau \subseteq \tau_{\mathcal{N}}$ and $\sigma \subseteq \sigma_{\mathcal{N}}$, then $B \in \tau_{\mathcal{N}}$ and $C \in \sigma_{\mathcal{N}}$. Thus, $A \in q\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)=q-\mathcal{N}(\tau, \sigma)$.
(c) Since $q(\tau, \sigma) \subseteq\langle\tau, \sigma\rangle$, it follows that $q-\mathcal{N}(\tau, \sigma)=q\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right) \subseteq$ $\left\langle\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right\rangle$. Thus, by Theorem 2.10 (a), it follows that $q-\mathcal{N}(\tau, \sigma) \subseteq\langle\tau, \sigma\rangle_{\mathcal{N}}$.
(d) Since $\{\emptyset, X\} \subseteq u-\mathcal{N}(\tau, \sigma)$, then by part (a) we have $\{\emptyset, X\} \subseteq q$ $\mathcal{N}(\tau, \sigma)$.
(e) Since $q-\mathcal{N}(\tau, \sigma)=q\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ and $q(\tau, \sigma)$ is closed under arbitrary union, we get that $q\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)=q-\mathcal{N}(\tau, \sigma)$ is closed under arbitrary union.
(f) Let $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be a collection of q - \mathcal{N}-closed sets of (X, τ, σ). Then for all $\alpha \in \Delta, X-A_{\alpha}$ is q - \mathcal{N}-open. Since $\alpha \in \Delta \cap A_{\alpha}=X-$ $\alpha \in \Delta \bigcup\left(X-A_{\alpha}\right)$ and by part (e), $\alpha \in \Delta \bigcup\left(X-A_{\alpha}\right) \in q-\mathcal{N}(\tau, \sigma)$, then $\alpha \in \Delta \bigcap A_{\alpha}$ is q - \mathcal{N}-closed.
(g) Follows from the definitions and Theorem 2.8.

The inclusion in part (a) of Theorem 2.15 cannot be replaced by equality, in general as the following example shows:

Example 2.16. Consider the bitopological space $\left(\mathbf{R}, \tau_{l r}, \tau_{r r}\right)$ and let $A=$ $(-\infty, 0) \cup(1, \infty)$. Then $A \in q-\mathcal{N}(\tau, \sigma)$, but $A \notin u-\mathcal{N}(\tau, \sigma)$.

The following example shows that the inclusion in Theorem 2.15 (b) cannot be replaced by equality, in general.

Example 2.17. Consider the bitopological space ($\mathbf{R}, \tau_{l r}, \tau_{r r}$) and let $A=$ $(-\infty, 1)-\{0\}$. Then $A \in q-\mathcal{N}(\tau, \sigma)-q(\tau, \sigma)$.

The following example shows that the inclusion in Theorem 2.15 (c) cannot be replaced by equality, in general.

Example 2.18. Consider the bitopological space $\left(\mathbf{R}, \tau_{l r}, \tau_{r r}\right)$ and let $A=$ $(0,2)$. Then $A \in\left\langle\tau_{l r}, \tau_{r r}\right\rangle \subseteq\left\langle\tau_{l r}, \tau_{r r}\right\rangle_{\mathcal{N}}$, but $A \notin q-\mathcal{N}(\tau, \sigma)$.

The next example shows that the intersection of two $q-\mathcal{N}$-open sets is not q - \mathcal{N}-open in general. Therefore, the family of all $q-\mathcal{N}$-open sets of a bitopological space (X, τ, σ) does not form a topological space, in general.

Example 2.19. Consider the bitopological space $\left(\mathbf{R}, \tau_{l r}, \tau_{r r}\right)$. Let $A=$ $(-\infty, 2)$ and $B=(0, \infty)$. Then A and B are q - \mathcal{N}-open sets in $\left(\mathbf{R}, \tau_{l r}, \tau_{r r}\right)$, but $A \cap B=(0,2) \notin q-\mathcal{N}\left(\tau_{l r}, \tau_{r r}\right)$.

Theorem 2.20. [1] Let (X, τ, σ) be a bitopological space. Then $q(\tau, \sigma)$ forms a topology on X if and only if $q(\tau, \sigma)=\langle\tau, \sigma\rangle$.

Theorem 2.21. Let (X, τ, σ) be a bitopological space. Then $q-\mathcal{N}(\tau, \sigma)$ is a topology on X if and only if $q-\mathcal{N}(\tau, \sigma)=\langle\tau, \sigma\rangle_{\mathcal{N}}$.

Proof. Necessity. Suppose that $q-\mathcal{N}(\tau, \sigma)$ is a topology on X. By Theorem 2.15 (c), we need only to show that $\langle\tau, \sigma\rangle_{\mathcal{N}} \subseteq q-\mathcal{N}(\tau, \sigma)$. Let $A \in\langle\tau, \sigma\rangle_{\mathcal{N}}$ and let $x \in A$. Then there exists $U_{x} \in\langle\tau, \sigma\rangle$ and a finite set $F_{x} \subseteq X$ such that $x \in U_{x}-F_{x} \subseteq A$. Since $x \in U_{x} \in\langle\tau, \sigma\rangle$, by Proposition 2.2 there exist $H_{x} \in \tau$, and $G_{x} \in \sigma$ such that $x \in H_{x} \cap G_{x} \subseteq A$. Since $q-\mathcal{N}(\tau, \sigma)$ is a topology on $X, H_{x} \in \tau \subseteq q-\mathcal{N}(\tau, \sigma)$ and $G_{x} \in \sigma \subseteq q-\mathcal{N}(\tau, \sigma)$, then $H_{x} \cap G_{x} \in q-\mathcal{N}(\tau, \sigma)$ and so $\left(H_{x} \cap G_{x}\right)-F_{x} \in q-\mathcal{N}(\tau, \sigma)$. By Theorem 2.15 (e), it follows that

$$
\mathrm{A}=\cup\left\{\left(H_{x} \cap G_{x}\right)-F_{x}: x \in A\right\}
$$

is q - \mathcal{N}-open.
Sufficieny. Follows because $\langle\tau, \sigma\rangle_{\mathcal{N}}$ is a topology on X.

3. Compactness

Definition 3.1. A cover \mathcal{U} of the bitopological space (X, τ, σ) is called:
(a) [8] $\tau \sigma$-open if $\mathcal{U} \subseteq u(\tau, \sigma)$.
(b) [17] p-open if it is $\tau \sigma$-open, and \mathcal{U} contains at least one nonempty member of τ and at least one nonempty member of σ.

Definition 3.2. [5] A bitopological space (X, τ, σ) is called:
(a) s-compact if every $\tau \sigma$-open cover of (X, τ, σ) has a finite subcover.
(b) p-compact if every p-open cover of (X, τ, σ) has a finite subcover.

Theorem3.3. $\operatorname{Let}(\mathrm{X}, \tau, \sigma)$ be a bitopological space and let $\mathcal{A}=\{W-F$: $W \in u(\tau, \sigma)$ and $F \subseteq X$ is a finite set $\}$. Then $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ is s-compact if and only if every cover of X consists of elements of \mathcal{A} has a finite subcover.

Proof. Necessity. Suppose $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ is s-compact and let \mathcal{H} be a cover of X with $\mathcal{H} \subseteq \mathcal{A}$. Since $\mathcal{H} \subseteq \mathcal{A} \subseteq \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}}$, then \mathcal{H} is a $\tau_{\mathcal{N}} \sigma_{\mathcal{N}}$-open cover of $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$. Since $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ is s-compact, there exists a finite family of elements of \mathcal{H} covers X.

Sufficiency. Let $\mathcal{H}=\left\{H_{\alpha}: \alpha \in \Delta\right\}$ be a $\tau_{\mathcal{N}} \sigma_{\mathcal{N}}$-open cover of $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$. Then, for each $\alpha \in \Delta, H_{\alpha} \in u\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ and $H_{\alpha} \in \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}}$. Hence $H_{\alpha} \in \tau_{\mathcal{N}}$ or $H_{\alpha} \in \sigma_{\mathcal{N}}$. Therefore, there exist $C_{\alpha} \in u(\tau, \sigma)$ and a finite set F_{α} such
that $H_{\alpha}=C_{\alpha}-F_{\alpha}$. Hence $H_{\alpha} \in \mathcal{A}$ and $\mathcal{H} \subseteq \mathcal{A}$. By assumption, \mathcal{H} has a finite subcover. Therefore, $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ is s-compact.

Theorem 3.4. For a bitopological space (X, τ, σ), the following are equivalent:
(a) (X, τ, σ) is s-compact.
(b) $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ is s-compact.
(c) Each cover of X of elements of $q-\mathcal{N}(\tau, \sigma)$, has a finite subcover.
(d) Each cover of X of elements of $q(\tau, \sigma)$, has a finite subcover.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: Suppose (X, τ, σ) is s-compact. We will apply Theorem 3.3. Let $\mathcal{A}=\{W-F: W \in u(\tau, \sigma)$ and $F \subseteq X$ is a finite set $\}$ and let $\mathcal{H} \subseteq \mathcal{A}$ be a cover of X, say $\mathcal{H}=\left\{W_{\alpha}-F_{\alpha}: \alpha \in \Delta\right.$, where $W_{\alpha} \in u(\tau, \sigma)$ and $F_{\alpha} \subseteq X$ is a finite set $\}$. Note that $\alpha \in \Delta \bigcup W_{\alpha}=X$. Then by (a), there exists a finite set $\Delta^{\prime} \subseteq \Delta$ such that $\left\{W_{\alpha}: \alpha \in \Delta^{\prime}\right\}$ covers X. Put $G=$ $\alpha \in \Delta^{\prime} \cup F_{\alpha}$ and for each $x \in G$, choose $\alpha_{x} \in \Delta$ such that $x \in\left(W_{\alpha_{x}}-F_{\alpha_{x}}\right)$. Thus, $\left\{W_{\alpha}-F_{\alpha}: \alpha \in \Delta^{\prime}\right\} \cup\left\{W_{\alpha_{x}}-F_{\alpha_{x}}: x \in G\right\}$ is a finite subcover of \mathcal{H}.
(b) $\Longrightarrow(\mathrm{c})$: Suppose $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ is s-compact. Let $\mathcal{H}=\left\{H_{\alpha}: \alpha \in\right.$ $\Delta\}$ be a cover of X consists of elements of $q-\mathcal{N}(\tau, \sigma)$. For each $\alpha \in \Delta$, there exist $A_{\alpha} \in \tau_{\mathcal{N}}$ and $B_{\alpha} \in \sigma_{\mathcal{N}}$ such that $H_{\alpha}=A_{\alpha} \cup B_{\alpha}$. Since $\left\{A_{\alpha} \cup B_{\alpha}: \alpha \in \Delta\right\}$ covers X and $\left\{A_{\alpha}, B_{\alpha}: \alpha \in \Delta\right\} \subseteq u\left(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$, then by (b), there exists a finite set $\Delta^{\prime} \subseteq \Delta$ such that $\left\{A_{\alpha}, B_{\alpha}: \alpha \in \Delta^{\prime}\right\}$ covers X. It follows that $\left\{H_{\alpha}: \alpha \in \Delta^{\prime}\right\}$ is a finite subcover of \mathcal{H}.
(c) $\Longrightarrow(\mathrm{d})$: Let \mathcal{H} be a cover of X with $\mathcal{H} \subseteq q(\tau, \sigma)$. Since $q(\tau, \sigma) \subseteq q$ $\mathcal{N}(\tau, \sigma)$, then $\mathcal{H} \subseteq q-\mathcal{N}(\tau, \sigma)$. Therefore, by (c) \mathcal{H} has a finite subcover.
(d) \Longrightarrow (a): Since $u(\tau, \sigma) \subseteq q(\tau, \sigma)$, then by (d) every cover cover of X with elements of $u(\tau, \sigma)$ has a finite subcover. It follows that (X, τ, σ) is s-compact .

Theorem 3.5. For a bitopological space (X, τ, σ), the following are equivalent:
(a) (X, τ, σ) is p-compact.
(b) $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ is p-compact.

Proof. a$) \Longrightarrow(\mathrm{b})$: Let (X, τ, σ) be p-compact. Let $\mathcal{H}=\left\{H_{\alpha}: \alpha \in \Delta\right\}$ be a p-open cover of $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$. Choose $\alpha_{1}, \alpha_{2} \in \Delta$ such that $H_{\alpha_{1}} \in \tau_{\mathcal{N}}-\{\emptyset\}$ and $W_{\alpha_{2}} \in \sigma_{\mathcal{N}}-\{\emptyset\}$. For each $\alpha \in \Delta$, there exists an indexed set ω_{α} such that $H_{\alpha}=\beta \in \omega{ }_{\alpha} \cup\left(V_{\beta}-F_{\beta}\right)$ where $\left\{F_{\beta}: \beta \in \omega_{\alpha}\right.$ is a family of finite subsets of X and $\left\{V_{\beta}: \beta \in \omega{ }_{\alpha} \subseteq \tau\right.$ or $\left\{V_{\beta}: \beta \in \omega{ }_{\alpha} \subseteq \sigma\right.$. For every $i=1,2$, choose $\beta_{i} \in \omega{ }_{\alpha_{i}}$ such that $V_{\beta_{1}} \in \tau-\{\emptyset\}, V_{\beta_{2}} \in \sigma-\{\emptyset\}$. Thus, $\left\{V_{\beta}: \beta \in\right.$
$\left.\alpha \in \Delta \bigcup \omega_{\alpha}\right\}$ is a p-open cover of (X, τ, σ). Since (X, τ, σ) is p-compact, then there exists a finite set $\Delta^{\prime} \subseteq \Delta$ such that for every $\alpha \in \Delta^{\prime}$, there exists a finite set $\Gamma_{\alpha} \subseteq \omega{ }_{\alpha}$ such that $\left\{V_{\beta}: \beta \in \alpha \in \Delta^{\prime} \bigcup \Gamma_{\alpha}\right\}$ covers X. Take $G=$ $\bigcup\left\{F_{\beta}: \beta \in \alpha \in \Delta^{\prime} \cup \Gamma_{\alpha}\right\}$. Then G is finite and $\left\{V_{\beta}-F_{\beta}: \beta \in \alpha \in \Delta^{\prime} \cup \Gamma_{\alpha}\right\}$ is a cover of $X-G$. For each $x \in G$, choose $\alpha_{x} \in \Delta$ such that $x \in H_{\alpha_{x}}$. Thus, $\left\{H_{\alpha}: \alpha \in \Delta^{\prime}\right\} \cup\left\{H_{\alpha_{x}}: x \in G\right\}$ is a finite subcover of \mathcal{H}.
(b) $\Longrightarrow(\mathrm{a})$: Let $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ be p-compact. Let \mathcal{H} be a p-open cover of (X, τ, σ). Then \mathcal{H} is a p-open cover of $\left(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}}\right)$ and hence it has a finite subcover.

Recall that a subset A of a bitopological space (X, τ, σ) is called an s compact subset of (X, τ, σ) if every $\tau \sigma$-open cover of A has a finite subcover.

Theorem 3.6. Let (X, τ, σ) be an s-compact bitopological space and A be a q - \mathcal{N}-closed subset in (X, τ, σ). Then A is an s-compact subset of (X, τ, σ).

Proof. Let (X, τ, σ) be s-compact. Let \mathcal{H} be a $\tau \sigma$-open cover of A and so $\mathcal{H} \subseteq q-\mathcal{N}(\tau, \sigma)$. Note that $X-A \in q-\mathcal{N}(\tau, \sigma)$ and so there are $B \in \tau$ and $C \in \sigma$ such that $X-A=B \cup C$. Thus $\mathcal{H} \cup\{X-A\}$ is a cover of X consists of elements of $q-\mathcal{N}(\tau, \sigma)$. Since (X, τ, σ) is s-compact, by Theorem 3.4, $\mathcal{H} \cup\{X-A\}$ has a finite subcover \mathcal{M}. Let $\mathcal{M}_{1}=\mathcal{M}-\{X-A\}$. Then \mathcal{M}_{1} is finite, $\mathcal{M}_{1} \subseteq \mathcal{H}$, and \mathcal{M}_{1} covers A. It follows that A is an s-compact subset of (X, τ, σ).

Corollary 3.7. Let (X, τ, σ) be s-compact and $A \subseteq X$. If A is u - \mathcal{N}-closed subset in (X, τ, σ), then A is an s-compact subset of (X, τ, σ).

Proof. Follows from Theorem 3.6.

References

[1] S. Al Ghour and S. Issa, On u - ω-open and q - ω-open sets in bitopological spaces, Missouri J. Math. Sci., Vol. 24 , No. 1, pp. 37-53, (2012).
[2] T. A. Al-Hawary and A. Al-Omari, Quasi b-open sets in bitopological spaces, Abhath AL-Yarmouk Journal, Vol. 21, pp. 1- 14, (2012).
[3] A. Al-Omari and MS. Noorani, New characterization of compact spaces, Proceedings of the 5th Asian Mathematical Conference, Malaysia, pp. 53-60, (2009).
[4] A. Al-Omari and MS. Noorani, Characterizations of strongly compact spaces, Int. J. Math. Math. Sci., Art. ID 573038, 9 pages (2009).
[5] M. Datta, Projective Bitopological Spaces, J. Austral. Math. Soc., Vol. 13 , pp. 327-334, (1972).
[6] H. Hdeib, ω-closed mappings, Revista Colomb. De Matem., Vol. XVI 16, pp. 65-78, (1982).
[7] H. Hdeib, ω-continuous Functions, Dirasat Journal, Vol. 16, pp. 136153, (1989).
[8] P. Fletcher, B. Hoyle and C. Patty, The Comparison of topologies, Duke Math. J., Vol. 36, pp. 325-331, (1969).
[9] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc., Vol. 13, pp. 71-89, (1963).
[10] A. Kılıçman and Z. Salleh, A note on Pairwise Continuous mappings and bitopological spaces, Eur. J. Pure Appl. Math., Vol. 2, pp. 325337, (2009).
[11] J. Y. Lee and J.J. Lee, Quasi-semi-open sets and quasi-semi-continuity, Ulsan Inst. Tech. Rep., Vol. 13, pp. 171-173, (1982).
[12] S. N. Maheshwari, P.C. Jain and G. I. Chae, On quasiopen sets, Ulsan Inst. Tech. Rep., Vol. 11, pp. 291-292, (1980).
[13] S. N. Maheshwari, G.I. Chae and S. S. Thakur, Quasi semiopen sets, Univ. Ulsan Rep., Vol. 17, pp. 133-137, (1986).
[14] T. Noiri and V. Popa, Separation axioms in quasi m-bitopological spaces, Fasc. Math., Vol. 38, pp. 75-85, (2007).
[15] V. Popa, Quasi preopen sets and quasi almost continuity in bitopological spaces, Stud. Cerc. Bacau, pp. 180-184, (1984).
[16] V. Popa, On some properties of quasi semi-separate spaces, Lucr. St. Mat. Fis. Inst. Petrol-Gaze, Ploiesti, pp. 71-76, (1990).
[17] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Nederl. Akad. Wetensch. Proc. Ser. A 74, Indag. Math., Vol. 33, pp. 135-145, (1971).
[18] S. S. Thakur and P. Paik, Quasi alpha-sets, J. Indian Acad. Math., Vol. 7, pp. 91-95, (1985).
[19] S. S. Thakur and P. Paik, Quasi α-connectedness in bitopological spaces, J. Indian Acad. Math., Vol. 9, pp. 91-95, (1987).
[20] S. S. Thakur and P. Verma, Quasi semi preopen sets, Vikram Math. J., Vol. 11, pp. 57-61, (1991).

Samer Al Ghour

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan
e-mail : algore@just.edu.jo
and

Haneen Saleh

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan
e-mail :

