Proyecciones Journal of Mathematics Vol. 37, N^o 3, pp. 491-501, September 2018. Universidad Católica del Norte Antofagasta - Chile

Quasi \mathcal{N} -Open sets and related compactness concepts in bitopological spaces

Samer Al Ghour Jordan University of Science and Tech., Jordan and Haneen Saleh Jordan University of Science and Tech., Jordan Received : August 2017. Accepted : May 2018

Abstract

Three types of N-open sets are defined and investigated in bitopological spaces, and via them several compactness are introduced. Several relationships, examples and counter-examples regarding the new concepts are given.

2010 Mathematics Subject Classification : *54A05*, *54B05*, *54B10*, *54C08*.

Key Words and Phrases : ω -open set, N-open set, Compact, Countably Compact, Continuous Function.

1. Introduction

Let (X, τ) be a topological space and let A be a subset of X. A point $x \in X$ is called an infinite point (resp. condensation point) of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is infinite (resp. uncountable). The set A is called \mathcal{N} -closed [3, 4] (resp. ω -closed [6]) if it contains all its infinite points (resp. condensation points), the complement of an N-closed (resp. ω -closed) set is called N-open [3, 4] (resp. ω -open [7]). For a given topological space (X, τ) , we will denote the class of ω -open sets (resp. N-open sets) by τ_{ω} (resp. $\tau_{\mathcal{N}}$). It is known that $\tau_{\mathcal{N}}$ lies between τ and τ_{ω} . Also, it is known that A is N-open (resp. ω -open) if and only if for every $x \in A$, there are $O \in \tau$ and a finite (resp. countable) set G such that $x \in O - G \subseteq A$. Using \mathcal{N} -open sets, Al-Omari and Noorani in [3, 4] gave several characterizations of compact and strongly compact topological spaces.

As a wider structure than classical topological spaces, Kelly in [9] introduced bitopological spaces as an ordered triple (X, τ, σ) of a set X and two topologies τ and σ . Datta in [5] introduced the notion of quasi open sets in bitopological spaces. In [1–2, 11-16, 18-20], several modifications of the concept of quasi open sets are inroduced and used to define new bitopological concepts. In this research, we define and investigate quasi \mathcal{N} -open sets as a new class of sets in bitopological spaces and use them to define reasonable new compactness concepts. We give some characterizations regarding compact bitopological spaces.

2. Three Types of \mathcal{N} -open Sets in Bitopological Spaces

Definition 2.1. [5] Let (X, τ, σ) be a bitopological space.

(a) The smallest topology on X containing $\tau \cup \sigma$ is called the least upper bound topology on X.

(b) A set $A \subseteq (X, \tau, \sigma)$ is said to be semi-open (briefly, *s*-open) if it is open in the least upper bound topology on X.

If τ and σ are two topologies on a set X, then the least upper bound topology on X will be denoted by $\langle \tau, \sigma \rangle$.

Proposition 2.2. [1] Let τ and σ be two topologies on a set X. Then $A \subseteq (X, \tau, \sigma)$ is s-open if and only if for each $x \in A$ there exist $U \in \tau$, and $V \in \sigma$ such that $x \in U \cap V \subseteq A$.

Definition 2.3. [10] A set $A \subseteq (X, \tau, \sigma)$ is said to be *u*-open if $A \in \tau \cup \sigma$.

The family of all u-open sets in (X, τ, σ) will be denoted by $u(\tau, \sigma)$.

Definition 2.4. [5] A set $A \subseteq (X, \tau, \sigma)$ is said to be quasi-open (briefly, q-open) if for every $x \in A$ there exists $U_x \in \tau$ such that $x \in U_x \subseteq A$ or $V_x \in \sigma$ such that $x \in V_x \subseteq A$. Equivalently: A set $A \subseteq (X, \tau, \sigma)$ is q-open if and only if $A = B \cup C$, where $B \in \tau$ and $C \in \sigma$. A set $A \subseteq (X, \tau, \sigma)$ is said to be q-closed if X - A is q-open.

The family of all q-open sets in (X, τ, σ) will be denoted by $q(\tau, \sigma)$.

Proposition 2.5. [5] For a bitopological space (X, τ, σ) , we have the following:

(a) $u(\tau, \sigma) \subseteq q(\tau, \sigma) \subseteq \langle \tau, \sigma \rangle, \ \tau \cup \sigma \neq q(\tau, \sigma)$ in general and $q(\tau, \sigma) \neq \langle \tau, \sigma \rangle$ in general.

(b) $q(\tau, \sigma)$ is closed under arbitrary union but $q(\tau, \sigma)$ is not a topology on X, in general.

(c) Arbitrary intersection of q-closed sets is q-closed.

Definition 2.6. [1] Let (X, τ, σ) be a bitopological space and let $A \subseteq X$. Then

(a) A is said to be $u - \omega$ -open in (X, τ, σ) if $A \in \tau_{\omega} \cup \sigma_{\omega}$. Equivalently: $A \subseteq (X, \tau, \sigma)$ is $u - \omega$ -open if and only if $A \in u(\tau_{\omega}, \sigma_{\omega})$.

(b) A is said to be $u - \omega$ -closed in (X, τ, σ) if X - A is $u - \omega$ -open in (X, τ, σ) .

(c) A is said to be $s - \omega$ -open in (X, τ, σ) if it is an open set in the least upper bound topology on X, of τ_{ω} and σ_{ω} .

Definition 2.7. Let (X, τ, σ) be a bitopological space and let $A \subseteq X$. Then

(a) A is said to be $u - \mathcal{N}$ -open in (X, τ, σ) if $A \in \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}}$. Equivalently: $A \subseteq (X, \tau, \sigma)$ is $u - \mathcal{N}$ -open if and only if $A \in u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$.

(b) A is said to be $u - \mathcal{N}$ -closed in (X, τ, σ) if X - A is $u - \mathcal{N}$ -open in (X, τ, σ) .

(c) A is said to be $s - \mathcal{N}$ -open in (X, τ, σ) if it is an open set in the least upper bound topology on X, of $\tau_{\mathcal{N}}$ and $\sigma_{\mathcal{N}}$.

For a bitopological space (X, τ, σ) , we will denote the family of all *u*- \mathcal{N} -open sets in (X, τ, σ) by *u*- $\mathcal{N}(\tau, \sigma)$, and the family of all \mathcal{N} -open sets in the topological space $(X, \langle \tau, \sigma \rangle)$ is denoted by $\langle \tau, \sigma \rangle_{\mathcal{N}}$.

Theorem 2.8. (a) Every *u*-open set in bitopological space is u- \mathcal{N} -open.

(b) Every u- \mathcal{N} -open set in bitopological space is u- ω -open.

Proof. (a) Let (X, τ, σ) be a bitopological space and let A be a u-open set in (X, τ, σ) . Then $A \in u(\tau, \sigma)$. Since $\tau \subseteq \tau_{\mathcal{N}}$ and $\sigma \subseteq \sigma_{\mathcal{N}}$, then $u(\tau, \sigma) \subseteq u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$. It follows that $A \in u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ and A is u- \mathcal{N} -open.

(b) Let (X, τ, σ) be a bitopological space and let A be a u-N-open set in (X, τ, σ) . Then $A \in u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$. Since $\tau_{\mathcal{N}} \subseteq \tau_{\omega}$ and $\sigma_{\mathcal{N}} \subseteq \sigma_{\omega}$, then $u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}) \subseteq u(\tau_{\omega}, \sigma_{\omega})$. It follows that $A \in u(\tau_{\omega}, \sigma_{\omega})$ and A is $u-\omega$ -open.

The following example shows that the converse of each of the two implications in Theorem 2.8 is not true in general:

Example 2.9. Consider $(\mathbf{R}, \tau, \sigma)$ where τ and σ are the left ray and the indiscrete topologies, respectively. It is clear that $\mathbf{R} - \mathbf{Q}$ is $u - \omega$ -open but not $u - \mathcal{N}$ -open and $\mathbf{R} - \{1\}$ is $u - \mathcal{N}$ -open but not u-open.

Theorem 2.10. Let (X, τ, σ) be a bitopological space. Then $\langle \tau, \sigma \rangle_{\mathcal{N}} = \langle \tau_{\mathcal{N}}, \sigma_{\mathcal{N}} \rangle$.

Proof. Let $A \in \langle \tau, \sigma \rangle_{\mathcal{N}}$ and let $x \in A$. Then there exist H, F such that $H \in \langle \tau, \sigma \rangle$ and a finite set $F \subseteq X$ such that $x \in H - F \subseteq A$. Since $x \in H \in \langle \tau, \sigma \rangle$, there exist U, V such that $U \in \tau, V \in \sigma$ and $x \in U \cap V \subseteq H$. Note that $U - F \in \tau_{\mathcal{N}}, V - F \in \sigma_{\mathcal{N}}$, and $x \in (U - F) \cap (V - F) \subseteq (U \cap V) - F \subseteq H - F \subseteq A$. It follows that $A \in \langle \tau_{\mathcal{N}}, \sigma_{\mathcal{N}} \rangle$. Conversely, let $A \in \langle \tau_{\mathcal{N}}, \sigma_{\mathcal{N}} \rangle$ and let $x \in A$. Then there exist $W \in \tau_{\mathcal{N}}$ and $G \in \sigma_{\mathcal{N}}$ such that $x \in W \cap G \subseteq A$. Since $x \in W \cap G$, there exist $U \in \tau, V \in \sigma$ and finite sets $F, M \subseteq X$ such that $x \in U - F \subseteq W$ and $x \in V - M \subseteq G$. Note that $U \cap V \in \langle \tau, \sigma \rangle$ and $F \cap M$ is a finite set. Also, $x \in (U \cap V) - (F \cup M) \subseteq W \cap G \subseteq A$. Thus $A \in \langle \tau, \sigma \rangle_{\mathcal{N}}$.

Theorem 2.11. Let (X, τ, σ) be a bitopological space. Then $u - \mathcal{N}(\tau, \sigma) \subseteq \langle \tau, \sigma \rangle_{\mathcal{N}}$.

Proof. $u \cdot \mathcal{N}(\tau, \sigma) = \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}} \subseteq \langle \tau_{\mathcal{N}}, \sigma_{\mathcal{N}} \rangle = \langle \tau, \sigma \rangle_{\mathcal{N}}$. Since by Theorem 2.10, $\langle \tau_{\mathcal{N}}, \sigma_{\mathcal{N}} \rangle = \langle \tau, \sigma \rangle_{\mathcal{N}}$, it follows that $u \cdot \mathcal{N}(\tau, \sigma) \subseteq \langle \tau, \sigma \rangle_{\mathcal{N}}$.

The following example will show respectively, that the inclusion in Theorem 2.11 cannot be replaced by equality, in general.

Example 2.12. Consider the bitopological space $(\mathbf{R}, \tau_{lr}, \tau_{rr})$ and let A = (6,9). Then $A \in \langle \tau, \sigma \rangle \subseteq \langle \tau, \sigma \rangle_{\mathcal{N}}$, while $A \notin \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}} = u \cdot \mathcal{N}(\tau, \sigma)$.

As defined in [1], a set $A \subseteq (X, \tau, \sigma)$ is said to be q- ω -open if for every $x \in A$ there exists $U_x \in \tau \omega$ such that $x \in U_x \subseteq A$ or $V_x \in \sigma \omega$ such that $x \in V_x \subseteq A$. Equivalently: $A \subseteq (X, \tau, \sigma)$ is q- ω -open if and only if $A \in q(\tau \omega, \sigma \omega)$. A set $A \subseteq (X, \tau, \sigma)$ is said to be q- ω -closed if X - A is q- ω -open. The family of all q- ω -open sets in (X, τ, σ) is denoted by q- $\omega(\tau, \sigma)$.

Definition 2.13. A set $A \subseteq (X, \tau, \sigma)$ is said to be q- \mathcal{N} -open if for every $x \in A$ there exists $U_x \in \tau_{\mathcal{N}}$ such that $x \in U_x \subseteq A$ or $V_x \in \sigma_{\mathcal{N}}$ such that $x \in V_x \subseteq A$. Equivalently: $A \subseteq (X, \tau, \sigma)$ is q- \mathcal{N} -open if and only if $A \in q(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$. A set $A \subseteq (X, \tau, \sigma)$ is said to be q- \mathcal{N} -closed if X - A is q- \mathcal{N} -open. The family of all q- \mathcal{N} -open sets in (X, τ, σ) is denoted by q- $\mathcal{N}(\tau, \sigma)$.

Theorem 2.14. Let (X, τ, σ) be a bitopological space and $A \subseteq X$. Then the following are equivalent:

(a) A is q- \mathcal{N} -open.

(b) For each $x \in A$ there exists $U \in u(\tau, \sigma)$ and a finite set $F \subseteq X$ such that $x \in U - F \subseteq A$.

Proof. (a) \Longrightarrow (b): Let A be a q- \mathcal{N} -open set and let $x \in A$. Since A is q- \mathcal{N} -open, there exist B, C such that $B \in \tau_{\mathcal{N}}, C \in \sigma_{\mathcal{N}}$ and $A = B \cup C$. Without loss of generality we may assume that $x \in B$. Choose $U \in \tau \subseteq u(\tau, \sigma)$ and a finite set $F \subseteq X$ such that $x \in U - F \subseteq B \subseteq A$.

(b) \Longrightarrow (a): By (b), for each $x \in A$ there exists $U_x \in u(\tau, \sigma)$ and a finite set $F_x \subseteq X$ such that $x \in U_x - F_x \subseteq A$. Let $B = \bigcup \{U_x - F_x : U_x \in \tau\}$ and $C = \bigcup \{U_x - F_x : U_x \in \sigma\}$. Then $B \in \tau_N, C \in \sigma_N$ and $A = B \cup C$. It follows that A is q-N-open.

Theorem 2.15. Let (X, τ, σ) be a bitopological space. Then

(a) $u - \mathcal{N}(\tau, \sigma) \subseteq q - \mathcal{N}(\tau, \sigma)$.

(b) $q(\tau, \sigma) \subseteq q \mathcal{N}(\tau, \sigma)$.

- (c) $q \mathcal{N}(\tau, \sigma) \subseteq \langle \tau, \sigma \rangle_{\mathcal{N}}$.
- (d) $\{\emptyset, X\} \subseteq q \cdot \mathcal{N}(\tau, \sigma)$.

(e) The family $q - \mathcal{N}(\tau, \sigma)$ is closed under arbitrary union.

(f) The family of all q- \mathcal{N} -closed sets in (X, τ, σ) closed under arbitrary intersection.

(g) q-N $(\tau, \sigma) \subseteq q - \omega (\tau, \sigma)$.

Proof. (a) Since $u(\tau, \sigma) \subseteq q(\tau, \sigma)$ and $u \cdot \mathcal{N}(\tau, \sigma) = u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ we have , $u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}) \subseteq q(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}) = q \cdot \mathcal{N}(\tau, \sigma)$, then $u \cdot \mathcal{N}(\tau, \sigma) \subseteq q \cdot \mathcal{N}(\tau, \sigma)$.

(b) Let $A \in q(\tau, \sigma)$, then there exist B and C such that $A = B \cup C$, where $B \in \tau$ and $C \in \sigma$. Since $\tau \subseteq \tau_{\mathcal{N}}$ and $\sigma \subseteq \sigma_{\mathcal{N}}$, then $B \in \tau_{\mathcal{N}}$ and $C \in \sigma_{\mathcal{N}}$. Thus, $A \in q(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}) = q \cdot \mathcal{N}(\tau, \sigma)$.

(c) Since $q(\tau, \sigma) \subseteq \langle \tau, \sigma \rangle$, it follows that $q \cdot \mathcal{N}(\tau, \sigma) = q(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}) \subseteq \langle \tau_{\mathcal{N}}, \sigma_{\mathcal{N}} \rangle$. Thus, by Theorem 2.10 (a), it follows that $q \cdot \mathcal{N}(\tau, \sigma) \subseteq \langle \tau, \sigma \rangle_{\mathcal{N}}$. (d) Since $\{\emptyset, X\} \subseteq u \cdot \mathcal{N}(\tau, \sigma)$, then by part (a) we have $\{\emptyset, X\} \subseteq q \cdot \mathcal{N}(\tau, \sigma)$.

(e) Since $q \cdot \mathcal{N}(\tau, \sigma) = q(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ and $q(\tau, \sigma)$ is closed under arbitrary union, we get that $q(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}}) = q \cdot \mathcal{N}(\tau, \sigma)$ is closed under arbitrary union.

(f) Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a collection of q- \mathcal{N} -closed sets of (X, τ, σ) . Then for all $\alpha \in \Delta, X - A_{\alpha}$ is q- \mathcal{N} -open. Since $\alpha \in \Delta \bigcap A_{\alpha} = X - \alpha \in \Delta \bigcup (X - A_{\alpha})$ and by part (e), $\alpha \in \Delta \bigcup (X - A_{\alpha}) \in q$ - $\mathcal{N}(\tau, \sigma)$, then $\alpha \in \Delta \bigcap A_{\alpha}$ is q- \mathcal{N} -closed.

(g) Follows from the definitions and Theorem 2.8.

The inclusion in part (a) of Theorem 2.15 cannot be replaced by equality, in general as the following example shows:

Example 2.16. Consider the bitopological space $(\mathbf{R}, \tau_{lr}, \tau_{rr})$ and let $A = (-\infty, 0) \cup (1, \infty)$. Then $A \in q$ - $\mathcal{N}(\tau, \sigma)$, but $A \notin u$ - $\mathcal{N}(\tau, \sigma)$.

The following example shows that the inclusion in Theorem 2.15 (b) cannot be replaced by equality, in general.

Example 2.17. Consider the bitopological space $(\mathbf{R}, \tau_{lr}, \tau_{rr})$ and let $A = (-\infty, 1) - \{0\}$. Then $A \in q$ - $\mathcal{N}(\tau, \sigma) - q(\tau, \sigma)$.

The following example shows that the inclusion in Theorem 2.15 (c) cannot be replaced by equality, in general.

Example 2.18. Consider the bitopological space $(\mathbf{R}, \tau_{lr}, \tau_{rr})$ and let A = (0, 2). Then $A \in \langle \tau_{lr}, \tau_{rr} \rangle \subseteq \langle \tau_{lr}, \tau_{rr} \rangle_{\mathcal{N}}$, but $A \notin q - \mathcal{N}(\tau, \sigma)$.

The next example shows that the intersection of two q- \mathcal{N} -open sets is not q- \mathcal{N} -open in general. Therefore, the family of all q- \mathcal{N} -open sets of a bitopological space (X, τ, σ) does not form a topological space, in general.

Example 2.19. Consider the bitopological space $(\mathbf{R}, \tau_{lr}, \tau_{rr})$. Let $A = (-\infty, 2)$ and $B = (0, \infty)$. Then A and B are q- \mathcal{N} -open sets in $(\mathbf{R}, \tau_{lr}, \tau_{rr})$, but $A \cap B = (0, 2) \notin q$ - $\mathcal{N}(\tau_{lr}, \tau_{rr})$.

Theorem 2.20. [1] Let (X, τ, σ) be a bitopological space. Then $q(\tau, \sigma)$ forms a topology on X if and only if $q(\tau, \sigma) = \langle \tau, \sigma \rangle$.

Theorem 2.21. Let (X, τ, σ) be a bitopological space. Then q- $\mathcal{N}(\tau, \sigma)$ is a topology on X if and only if q- $\mathcal{N}(\tau, \sigma) = \langle \tau, \sigma \rangle_{\mathcal{N}}$.

Proof. Necessity. Suppose that $q \cdot \mathcal{N}(\tau, \sigma)$ is a topology on X. By Theorem 2.15 (c), we need only to show that $\langle \tau, \sigma \rangle_{\mathcal{N}} \subseteq q \cdot \mathcal{N}(\tau, \sigma)$. Let $A \in \langle \tau, \sigma \rangle_{\mathcal{N}}$ and let $x \in A$. Then there exists $U_x \in \langle \tau, \sigma \rangle$ and a finite set $F_x \subseteq X$ such that $x \in U_x - F_x \subseteq A$. Since $x \in U_x \in \langle \tau, \sigma \rangle$, by Proposition 2.2 there exist $H_x \in \tau$, and $G_x \in \sigma$ such that $x \in H_x \cap G_x \subseteq A$. Since $q \cdot \mathcal{N}(\tau, \sigma)$ is a topology on X, $H_x \in \tau \subseteq q \cdot \mathcal{N}(\tau, \sigma)$ and $G_x \in \sigma \subseteq q \cdot \mathcal{N}(\tau, \sigma)$, then $H_x \cap G_x \in q \cdot \mathcal{N}(\tau, \sigma)$ and so $(H_x \cap G_x) - F_x \in q \cdot \mathcal{N}(\tau, \sigma)$. By Theorem 2.15 (e), it follows that

$$A = \cup \{ (H_x \cap G_x) - F_x : x \in A \}$$

is q- \mathcal{N} -open.

Sufficieny. Follows because $\langle \tau, \sigma \rangle_{\mathcal{N}}$ is a topology on X.

3. Compactness

Definition 3.1. A cover \mathcal{U} of the bitopological space (X, τ, σ) is called:

(a) [8] $\tau \sigma$ -open if $\mathcal{U} \subseteq u(\tau, \sigma)$.

(b) [17] *p*-open if it is $\tau\sigma$ -open, and \mathcal{U} contains at least one nonempty member of τ and at least one nonempty member of σ .

Definition 3.2. [5] A bitopological space (X, τ, σ) is called:

- (a) s-compact if every $\tau\sigma$ -open cover of (X, τ, σ) has a finite subcover.
- (b) *p*-compact if every *p*-open cover of (X, τ, σ) has a finite subcover.

Theorem3.3. Let (X, τ, σ) be a bitopological space and let $\mathcal{A} = \{W - F : W \in u(\tau, \sigma) \text{ and } F \subseteq X \text{ is a finite set} \}$. Then $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ is s-compact if and only if every cover of X consists of elements of \mathcal{A} has a finite subcover.

Proof. Necessity. Suppose $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ is s-compact and let \mathcal{H} be a cover of X with $\mathcal{H} \subseteq \mathcal{A}$. Since $\mathcal{H} \subseteq \mathcal{A} \subseteq \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}}$, then \mathcal{H} is a $\tau_{\mathcal{N}}\sigma_{\mathcal{N}}$ -open cover of $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$. Since $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ is s-compact, there exists a finite family of elements of \mathcal{H} covers X.

Sufficiency. Let $\mathcal{H} = \{H_{\alpha} : \alpha \in \Delta\}$ be a $\tau_{\mathcal{N}} \sigma_{\mathcal{N}}$ -open cover of $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$. Then, for each $\alpha \in \Delta$, $H_{\alpha} \in u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ and $H_{\alpha} \in \tau_{\mathcal{N}} \cup \sigma_{\mathcal{N}}$. Hence $H_{\alpha} \in \tau_{\mathcal{N}}$ or $H_{\alpha} \in \sigma_{\mathcal{N}}$. Therefore, there exist $C_{\alpha} \in u(\tau, \sigma)$ and a finite set F_{α} such that $H_{\alpha} = C_{\alpha} - F_{\alpha}$. Hence $H_{\alpha} \in \mathcal{A}$ and $\mathcal{H} \subseteq \mathcal{A}$. By assumption, \mathcal{H} has a finite subcover. Therefore, $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ is *s*-compact.

Theorem 3.4. For a bitopological space (X, τ, σ) , the following are equivalent:

- (a) (X, τ, σ) is s-compact.
- (b) $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ is s-compact.
- (c) Each cover of X of elements of q- $\mathcal{N}(\tau, \sigma)$, has a finite subcover.
- (d) Each cover of X of elements of $q(\tau, \sigma)$, has a finite subcover.

Proof. (a) \Longrightarrow (b): Suppose (X, τ, σ) is s-compact. We will apply Theorem 3.3. Let $\mathcal{A} = \{W - F : W \in u(\tau, \sigma) \text{ and } F \subseteq X \text{ is a finite set}\}$ and let $\mathcal{H} \subseteq \mathcal{A}$ be a cover of X, say $\mathcal{H} = \{W_{\alpha} - F_{\alpha} : \alpha \in \Delta, \text{ where } W_{\alpha} \in u(\tau, \sigma) \text{ and } F_{\alpha} \subseteq X \text{ is a finite set}\}$. Note that $\alpha \in \Delta \bigcup W_{\alpha} = X$. Then by (a), there exists a finite set $\Delta' \subseteq \Delta$ such that $\{W_{\alpha} : \alpha \in \Delta'\}$ covers X. Put $G = \alpha \in \Delta' \bigcup F_{\alpha}$ and for each $x \in G$, choose $\alpha_x \in \Delta$ such that $x \in (W_{\alpha_x} - F_{\alpha_x})$. Thus, $\{W_{\alpha} - F_{\alpha} : \alpha \in \Delta'\} \cup \{W_{\alpha_x} - F_{\alpha_x} : x \in G\}$ is a finite subcover of \mathcal{H} .

(b) \Longrightarrow (c): Suppose $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ is s-compact. Let $\mathcal{H} = \{H_{\alpha} : \alpha \in \Delta\}$ be a cover of X consists of elements of q- $\mathcal{N}(\tau, \sigma)$. For each $\alpha \in \Delta$, there exist $A_{\alpha} \in \tau_{\mathcal{N}}$ and $B_{\alpha} \in \sigma_{\mathcal{N}}$ such that $H_{\alpha} = A_{\alpha} \cup B_{\alpha}$. Since $\{A_{\alpha} \cup B_{\alpha} : \alpha \in \Delta\}$ covers X and $\{A_{\alpha}, B_{\alpha} : \alpha \in \Delta\} \subseteq u(\tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$, then by (b), there exists a finite set $\Delta' \subseteq \Delta$ such that $\{A_{\alpha}, B_{\alpha} : \alpha \in \Delta'\}$ covers X. It follows that $\{H_{\alpha} : \alpha \in \Delta'\}$ is a finite subcover of \mathcal{H} .

(c) \Longrightarrow (d): Let \mathcal{H} be a cover of X with $\mathcal{H} \subseteq q(\tau, \sigma)$. Since $q(\tau, \sigma) \subseteq q$ - $\mathcal{N}(\tau, \sigma)$, then $\mathcal{H} \subseteq q$ - $\mathcal{N}(\tau, \sigma)$. Therefore, by (c) \mathcal{H} has a finite subcover.

(d) \implies (a): Since $u(\tau, \sigma) \subseteq q(\tau, \sigma)$, then by (d) every cover cover of X with elements of $u(\tau, \sigma)$ has a finite subcover. It follows that (X, τ, σ) is s-compact.

Theorem 3.5. For a bitopological space (X, τ, σ) , the following are equivalent:

- (a) (X, τ, σ) is *p*-compact.
- (b) $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ is *p*-compact.

Proof. (a) \Longrightarrow (b): Let (X, τ, σ) be *p*-compact. Let $\mathcal{H} = \{H_{\alpha} : \alpha \in \Delta\}$ be a *p*-open cover of $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$. Choose $\alpha_1, \alpha_2 \in \Delta$ such that $H_{\alpha_1} \in \tau_{\mathcal{N}} - \{\emptyset\}$ and $W_{\alpha_2} \in \sigma_{\mathcal{N}} - \{\emptyset\}$. For each $\alpha \in \Delta$, there exists an indexed set ω_{α} such that $H_{\alpha} = \beta \in \omega_{\alpha} \bigcup (V_{\beta} - F_{\beta})$ where $\{F_{\beta} : \beta \in \omega_{\alpha} \subseteq \sigma$. For every i = 1, 2, choose $\beta_i \in \omega_{\alpha_i}$ such that $V_{\beta_1} \in \tau - \{\emptyset\}, V_{\beta_2} \in \sigma - \{\emptyset\}$. Thus, $\{V_{\beta} : \beta \in \omega_{\beta_1} \in \sigma\}$ $\alpha \in \Delta \bigcup \omega_{\alpha}$ is a *p*-open cover of (X, τ, σ) . Since (X, τ, σ) is *p*-compact, then there exists a finite set $\Delta' \subseteq \Delta$ such that for every $\alpha \in \Delta'$, there exists a finite set $\Gamma_{\alpha} \subseteq \omega_{\alpha}$ such that $\{V_{\beta} : \beta \in \alpha \in \Delta' \bigcup \Gamma_{\alpha}\}$ covers *X*. Take $G = \bigcup \{F_{\beta} : \beta \in \alpha \in \Delta' \bigcup \Gamma_{\alpha}\}$. Then *G* is finite and $\{V_{\beta} - F_{\beta} : \beta \in \alpha \in \Delta' \bigcup \Gamma_{\alpha}\}$ is a cover of X - G. For each $x \in G$, choose $\alpha_x \in \Delta$ such that $x \in H_{\alpha_x}$. Thus, $\{H_{\alpha} : \alpha \in \Delta'\} \cup \{H_{\alpha_x} : x \in G\}$ is a finite subcover of \mathcal{H} .

(b) \Longrightarrow (a): Let $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ be *p*-compact. Let \mathcal{H} be a *p*-open cover of (X, τ, σ) . Then \mathcal{H} is a *p*-open cover of $(X, \tau_{\mathcal{N}}, \sigma_{\mathcal{N}})$ and hence it has a finite subcover.

Recall that a subset A of a bitopological space (X, τ, σ) is called an scompact subset of (X, τ, σ) if every $\tau\sigma$ -open cover of A has a finite subcover.

Theorem 3.6. Let (X, τ, σ) be an *s*-compact bitopological space and *A* be a *q*- \mathcal{N} -closed subset in (X, τ, σ) . Then *A* is an *s*-compact subset of (X, τ, σ) .

Proof. Let (X, τ, σ) be s-compact. Let \mathcal{H} be a $\tau\sigma$ -open cover of A and so $\mathcal{H} \subseteq q \cdot \mathcal{N}(\tau, \sigma)$. Note that $X - A \in q \cdot \mathcal{N}(\tau, \sigma)$ and so there are $B \in \tau$ and $C \in \sigma$ such that $X - A = B \cup C$. Thus $\mathcal{H} \cup \{X - A\}$ is a cover of Xconsists of elements of $q \cdot \mathcal{N}(\tau, \sigma)$. Since (X, τ, σ) is s-compact, by Theorem 3.4, $\mathcal{H} \cup \{X - A\}$ has a finite subcover \mathcal{M} . Let $\mathcal{M}_1 = \mathcal{M} - \{X - A\}$. Then \mathcal{M}_1 is finite, $\mathcal{M}_1 \subseteq \mathcal{H}$, and \mathcal{M}_1 covers A. It follows that A is an s-compact subset of (X, τ, σ) .

Corollary 3.7. Let (X, τ, σ) be *s*-compact and $A \subseteq X$. If A is *u*- \mathcal{N} -closed subset in (X, τ, σ) , then A is an *s*-compact subset of (X, τ, σ) .

Proof. Follows from Theorem 3.6.

References

- S. Al Ghour and S. Issa, On u-ω-open and q-ω-open sets in bitopological spaces, Missouri J. Math. Sci., Vol. 24, No. 1, pp. 37–53, (2012).
- [2] T. A. Al-Hawary and A. Al-Omari, Quasi b-open sets in bitopological spaces, Abhath AL-Yarmouk Journal, Vol. 21, pp. 1- 14, (2012).

- [3] A. Al-Omari and MS. Noorani, New characterization of compact spaces, Proceedings of the 5th Asian Mathematical Conference, Malaysia, pp. 53-60, (2009).
- [4] A. Al-Omari and MS. Noorani, Characterizations of strongly compact spaces, Int. J. Math. Math. Sci., Art. ID 573038, 9 pages (2009).
- [5] M. Datta, Projective Bitopological Spaces, J. Austral. Math. Soc., Vol. 13, pp. 327–334, (1972).
- [6] H. Hdeib, ω-closed mappings, Revista Colomb. De Matem., Vol. XVI 16, pp. 65-78, (1982).
- [7] H. Hdeib, ω-continuous Functions, Dirasat Journal, Vol. 16, pp. 136– 153, (1989).
- [8] P. Fletcher, B. Hoyle and C. Patty, The Comparison of topologies, Duke Math. J., Vol. 36, pp. 325–331, (1969).
- [9] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc., Vol. 13, pp. 71–89, (1963).
- [10] A. Kılıçman and Z. Salleh, A note on Pairwise Continuous mappings and bitopological spaces, Eur. J. Pure Appl. Math., Vol. 2, pp. 325– 337, (2009).
- [11] J. Y. Lee and J.J. Lee, Quasi-semi-open sets and quasi-semi-continuity, Ulsan Inst. Tech. Rep., Vol. 13, pp. 171–173, (1982).
- [12] S. N. Maheshwari, P.C. Jain and G. I. Chae, On quasiopen sets, Ulsan Inst. Tech. Rep., Vol. 11, pp. 291–292, (1980).
- [13] S. N. Maheshwari, G.I. Chae and S. S. Thakur, Quasi semiopen sets, Univ. Ulsan Rep., Vol. 17, pp. 133–137, (1986).
- [14] T. Noiri and V. Popa, Separation axioms in quasi *m*-bitopological spaces, Fasc. Math., Vol. 38, pp. 75–85, (2007).
- [15] V. Popa, Quasi preopen sets and quasi almost continuity in bitopological spaces, Stud. Cerc. Bacau, pp. 180–184, (1984).
- [16] V. Popa, On some properties of quasi semi-separate spaces, Lucr. St. Mat. Fis. Inst. Petrol-Gaze, Ploiesti, pp. 71–76, (1990).

- [17] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Nederl. Akad. Wetensch. Proc. Ser. A 74, Indag. Math., Vol. 33, pp. 135-145, (1971).
- [18] S. S. Thakur and P. Paik, Quasi alpha-sets, J. Indian Acad. Math., Vol. 7, pp. 91–95, (1985).
- [19] S. S. Thakur and P. Paik, Quasi α-connectedness in bitopological spaces, J. Indian Acad. Math., Vol. 9, pp. 91–95, (1987).
- [20] S. S. Thakur and P. Verma, Quasi semi preopen sets, Vikram Math. J., Vol. 11, pp. 57–61, (1991).

Samer Al Ghour

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan e-mail : algore@just.edu.jo

and

Haneen Saleh

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan e-mail :