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and

V. Vivanco-Orellana
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Abstract

In this work sufficient conditions are established to ensure that
all feasible points are (properly) efficient solutions in non trivial
situations, for a class of non-differentiable, non-convex multiobjective
minimization problems. Considering locally Lipschitz functions and
some results of non-differentiable analysis introduced by F. H. Clarke
[2].
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1. Introduction

Daily we come across situations that lead to making decisions. Most of often
have two or more objectives to be met simultaneously and that possibly
are in conflict with each other. In these cases, often several objectives
are fixed as goals by the decision maker. Typically, this type of problem
arises in areas such as Business Management, Administration Resources,
Planning Strategies, etc. The applicability of multiobjective problems is
very extended and hence our interest in studying it.

Formally, the multiobjective optimization problem admits the following
formulation:

min f(x) = (f1(x), · · · , fn(x))
s.t. : x ∈ X,

)
(P)

where fj : X → R and X is a non-empty subset of Rn.

The first results in the field of multiobjective optimization are attributed
to V. Pareto [5] and are related to the theory of Social Welfare. V. Pareto
introduced the concept of efficient solution to the problem (P). Informally,
we say that a point x∗ in X is an efficient solution of (P) if it is not pos-
sible to improve any objective fj without worsening some other objective.
Various modifications of this concept have arisen since that time. Another
concept of solution is the properly efficiency, introduced by A. Geoffrion in
[3]. Informally, a solution is properly efficient when the quotients, between
gain and loss of an object relative to other, are bounded.

Denote by P (X) the set of properly efficient solutions of (P). We are
interested in studying the cases when all points of the domain X are
(properly) efficient solutions. It is evident that this will take place if we
restrict the domain X to Y ⊆ X, such that Y = P (X). This is the trivial
case in which we obtain Y = P (Y ). We study some non-trivial situations
where it is achieved P (X) = X.

Siposová [7] establishes conditions to ensure that all points of domain
X are properly efficient solutions, for continuously differentiable convex
problems in nontrivial situations.

We extended the results obtained by Siposová in [7] for a class of non-
differentiable non-convex problems, considering locally Lipschitz functions
and some results of non-differentiable analysis introduced by F. H. Clarke
[2]. We consider the case where the functions defining the problem (P) are
invex and non-differentiable, such functions were introduced by Phuong,
Sach and Yen in [6].
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2. Preliminaries

The following convention for equalities and inequalities will be adopted. If
x = (x1, · · · , xm), y = (y1, · · · , ym) in Rm then

x < y ⇔ xi < yi,
xy ⇔ xi ≤ yi, ∀ i = 1, · · · ,m,
x ≤ y ⇔ x y,∃ r, xr < yr.

The solution of the problem depends on the notion of “equilibrium” used
to resolve conflicts that arise from simultaneous consideration of several
objectives. The notions that we will adopt in this work are the notions of
efficient and properly efficient solution [3].

Definition 1. A feasible point x∗ in X is said to be efficient solution of
(P) iff there not x in X such that f(x) ≤ f(x∗).

Definition 2. A feasible point x∗ in X is said to be properly efficient
solution (or Geoffrion-properly Efficient) of (P) if it is efficient and there
exists a constant d > 0 such that, for every i ∈ J

fi(x)− fi(x
∗)

fj(x∗)− fj(x)
≤ d,(2.1)

for some j ∈ J , j 6= r such that fj(x
∗) < fj(x) whenever x ∈ X and

fi(x
∗) > fi(x).

This last definition is equivalent to: x∗ ∈ X is properly efficient solution
of (P) if there exists a constant d > 0 such that, for each x ∈ X, x 6= x∗

and i ∈ J there exists j ∈ J , fj(x
∗) < fj(x) such that

fi(x) + dfj(x) ≥ fi(x
∗) + dfj(x

∗).

2.1. Non-differentiable Analysis

Our notation is standard: Euclidean n-space Rn is provided by the usual
inner product which we denote by h·, ·i and the norm associated with this
product will be denoted || · ||. Also we assume that this space is provided
with the topology induced by norm || · ||. Let us recall some notions of
non-differentiable analysis from [2].
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Let Ω be a non-empty open subset of Rn . The function φ : Ω → R is
said to be Lipschitz next to x in Ω if there exists δ > 0 and k = k(x, δ) > 0
such that

|φ(x1)− φ(x2)| ≤ k ||x1 − x2||, for all x1, x2 ∈ Ω ∩B(x, δ),

where B(x, δ) is the open ball of center x and ratio δ.
If φ is Lipschitz next to each x ∈ Ω, we say that φ is locally Lipschitz

in Ω.
Suppose that the function φ : Ω → R is locally Lipschitz on Ω. The

generalized directional derivative of φ at x in the direction v ∈ Rn denoted
φ◦(x; v) is defined

φ◦(x; v) := lim sup
y→x
λ ↓ 0

φ(y + λv)− φ(y)

λ
,

and the generalized gradient of φ in x is

∂φ(x) = {ξ ∈ Rn : φ0(x; v) ≥ hξ, vi,∀v ∈ Rn}.

The following proposition establishes some nice properties of the directional
derived and generalized gradient.

Proposition 3. Let φ : Ω→ R be a Lipschitz locally function on Ω with
constant k. Then:

1. The function v 7→ φ0(x; v) is finite, sublinear and satisfies |φ0(x; v)| ≤
k ||v||.

2. The subdifferential ∂φ(x) is nonempty compact convex set for every
x ∈ Ω, and ||ξ|| ≤ k, ∀ξ ∈ ∂φ(x).

3. For each v ∈ Rn, φ0(x; v) = max{hξ, vi : ξ ∈ ∂φ(x)}.

4. ξ ∈ ∂φ(x) if and only if φ0(x; v) ≥ hξ, vi, ∀v ∈ Rn.

To obtain optimality conditions in terms of these concepts, we will need
the notions of tangent and normal vectors.

Initially, we observe that if C is a nonempty subset of Rn, then the dis-
tance function dC : R

n → R, defined by dC(x) = infy∈C ||y−x|| is globally
Lipschitz, with Lipschitz constant equal to 1, but it is not differentiable.
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In terms of the directional derivative of distance function it is possible to
define the geometric notions tangent vector, without convexity assumption.

Let x ∈ C and v ∈ Rn be. We say that v is a tangent vector to C at x
if d0(x; v) = 0. The set of tangent vectors, denoted TC(x), is called tangent
cone to C at x (of Clarke).

By polarity is defined the normal cone (of Clarke),

NC(x) = {ξ ∈ Rn : hξ, vi ≤ 0,∀v ∈ TC(x)}.

When C is a convex set, these cones coincide with usual the tangent and
normal cone, of Convex Analysis. In addition, for every x ∈ C these cones
are closed and convex.

Finally, we recall a result that establishes necessary optimality condi-
tions in terms of a stationary condition.

Proposition 4. Let φ : Ω ⊆ Rn → R be a function defined on the open
set Ω and let C be a nonempty subset of Ω. If x∗ ∈ C is a minimum of φ,
then

0 ∈ ∂φ(x∗) +NC(x
∗).(2.2)

A point x∗ ∈ C that satisfies (2.2) is called stationary point of φ in C.

Remark 5. Let C be a non-empty subset of Ω.

i) If x∗ ∈ C is stationary point of φ then φ0(x∗; v) ≥ 0,∀v ∈ TC(x
∗).

ii) If C = Ω = Rn then TC(x
∗) = Rn and NC(x

∗) = {0} and if x∗ ∈ C
is stationary point of φ then 0 ∈ ∂φ(x∗).

iii) If φ is a continuously differentiable function in C, where C is an open
subset Rn, then ∂φ(x∗) = {∇φ(x∗)} and, if x∗ ∈ C is a stationary
point of φ then ∇φ(x∗) = 0.

2.2. Generalized Convexity

The optimality necessary conditions established by Proposition 4 are not
sufficient for optimality, without additional assumptions about the func-
tions that define the problem. If the functions involved in the problem
are convex, which determines a convex problem, the necessary optimality
conditions are also sufficient, but this assumption is very restrictive, since
a wide class of problems are not convex.
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In order to weaken the convexity assumption, emerged in the related
literature to the mathematical optimization the notion of invexity for dif-
ferentiable functions, introduced by Hanson (1981) in [4]. He showed that
a function is invex if and only if all stationary point is global minimizer.

Posteriorly Phuong, Sach and Yenin [6] consider the class formed by
all locally Lipschitz real-valued functions and they introduce the following
notion of invexity.

Definition 6. Let φ : Ω ⊆ Rn → R be a function defined on the open set
Ω and C ⊂ Ω non-empty. We say that φ is invex on C if for any x, y ∈ C
there exists a vector η(y, x) ∈ TC(x) such that

φ(y)− φ(x) ≥ φ0(x; η(y, x)).

In [6] are obtained similar results to those obtained by Hanson. It is
shown that a locally Lipschitz function φ : Ω ⊆ Rn → R is invex on C, if
and only if every stationary point of φ in C is a global minimizer.

This notion will be used to obtain the main results of this article.

3. Results

The next theorem establishes sufficient conditions to ensure that every fea-
sible point is a properly efficient point.

Theorem 1. Let X 6= ∅. Assume that the objective functions fj , j ∈ I
are locally Lipschitz in an open containing to X and invex with respect to
the same η, defined on X, with η(x, y) 6= 0,∀x 6= y. Assume that there
exist constants k1, k2, 0 < k1 < k2 such that for each x ∈ X

k1 ≤ ||ξj || ≤ k2,∀ξj ∈ ∂fj(x), j ∈ I

and that there exists ε > 0 such that ∀x ∈ X and ∀y ∈ TX(x), with
||y|| = 1, there exists j ∈ I such that

f0j (x; y) ≥ ε||ξj ||,(3.1)

with ξj ∈ ∂fj(x). Then every point x ∈ X is properly efficient solution of
(P).

Proof: Initially we will prove that for every i ∈ I, there exist d > 0
and j ∈ I such that
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f0i (x; y) + df0j (x, y) ≥ 0, ∀ x ∈ X, y ∈ B,(3.2)

where B := {y ∈ TX(x), ||y|| = 1}.
Indeed, let x ∈ X be fixed then for each y ∈ B there exists j ∈ I such

that f0j (x; y) ≥ ε||ξj ||, for some ξj ∈ ∂fj(x).

Let S =
S
x∈X S(x) be, where

S(x) =

(
−f

0
i (x; y)

f0j (x, y)
, i ∈ I(x, y)

)
, y ∈ B , j ∈ I,

where I(x, y) = {i ∈ I : f0i (x; y) ≤ 0}.
Let us note that S(x) 6= ∅ for every x ∈ X and consequently S 6= ∅.

Moreover, for arbitrary values z ∈ S(x) is fulfilled

0 ≤ z = −f
0
i (x; y)

f0j (x, y)
≤ −f

0
i (x; y)

ε||ξj ||
≤ 1

ε
[−f

0
i (x; y)

k1
].(3.3)

As for each ξi ∈ ∂fi(x), y ∈ B, hξi, yi ≤ f0i (x; y) then for i ∈ I(x, y)

0 ≤ −f0i (x; y) ≤ −hξi, yi ≤ |hξi, yi| ≤ ||ξi|| ≤ k2.(3.4)

From (3.3) and (3.4), we get 0 ≤ z ≤ k2
k1ε

, ∀z ∈ S, this implies that S
is bounded. Therefore there exists d = supS > 0 such that the condition
(3.2) is fulfilled.

It will now proved that all point x∗ ∈ X is properly efficient solution of
(P). Consider d = supS > 0, x∗ ∈ X and i ∈ I fixed. We want to prove
that for each x ∈ X,x 6= x∗ there exists j such that

fi(x) + dfj(x) ≥ fi(x
∗) + dfj(x

∗).(3.5)

Take x ∈ X,x 6= x∗ and defined y = η(x,x∗)
||η(x,x∗)|| ∈ TX(x

∗). From inequality

(3.2) and the fact f0j (x
∗; ·) is positively homogeneous, it follows

1

||η(x, x∗)|| [f
0
i (x

∗; η(x, x∗)) + df0j (x
∗; η(x, x∗))] ≥ 0,

and thereby

f0i (x
∗; η(x, x∗)) + df0j (x

∗; η(x, x∗)) ≥ 0.(3.6)

As fi, fj are invex functions with respect to η on X
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fi(x)− fi(x
∗) ≥ f0i (x

∗; η(x, x∗))

fj(x)− fj(x
∗) ≥ f0j (x

∗; η(x, x∗)).

If we multiply by d > 0 the second inequality and sum both inequalities
obtained

[fi(x)+dfj(x)]− [fi(x∗)+dfj(x
∗)] ≥ f0i (x

∗; η(x, x∗))+df0j (x
∗; η(x, x∗)) ≥ 0.

This last inequality implies the condition (3.5). Thus x∗ is properly
efficient solution (P).

The following result establishes under weaker hypothesis that all points
feasible are efficient solutions of (P).

Proposition 2. Let X be a non-empty subset of Rn. Assume that the
objective functions fj , j ∈ I are locally Lipschitz in an open set containing
to X, invex with respect to the same η on X, with η(x, y) 6= 0, for all x 6= y
and that for each x ∈ X and y ∈ TX(x)\{0} there exists j ∈ I such that
f0j (x; y) > 0. Then every point x ∈ X is efficient solution of (P).

Proof: Let x∗ ∈ X. Given x ∈ X , x 6= x∗ and y = η(x, x∗) ∈
TX(x

∗)\{0} there exists j ∈ I such that fj(x; η(x, x
∗)) > 0 and as all

fj , j ∈ I, are invex with respect to η, then

fj(x)− fj(x
∗) ≥ f0j (x

∗; η(x, x∗)) > 0.

Therefore there is no x ∈ X such that f(x∗) ≤ f(x) and according to
Definition 1, it follows that x∗ is efficient solution of (P).

4. Conclusions

We have established sufficient conditions to ensure that all points of domain
X are properly efficient solutions (efficient solutions), for multi-objective
optimization problems involving invex, locally Lipschitz functions. In fu-
ture works, multi-objective optimal control problems will be studied.



Properly efficient solutions to non-differentiable multiobjective ... 437

References

[1] V. Chankong, Y. Haimes: Multiobjective decision making: theory and
methodology. North-Holland, New York, (1983).

[2] F. H. Clarke,Optimization and nonsmooth analysis, SIAM, Philadel-
phia, (1990).

[3] A. M. Geoffrion, Proper efficiency and the theory of vector maximiza-
tion, J. Math. Anal. Appl., 22, pp. 618-630, (1968).

[4] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions. J. Math.
Anal. Appl. 80, pp. 545-550, (1981).
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