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1. Introduction

Nowhere-zero flows were firstly defined by W. T. Tutte in [16] where he
discussed some contribution to the theory of chromatic polynomials. The
definition of nowhere-zero flows on signed graphs comes naturally from
the deep study of embedding of graphs in non-orientable surfaces, where
nowhere-zero flows emerge as the dual notion to local tensions. There is a
close relationship between nowhere-zero flows of graphs and circuit covers
of graphs since every nowhere-zero flow on a graph G determines a covering
of G by circuits. This type of relation is also maintained by signed graphs,
although a signed version of the definition of circuit is required.

Let G be a directed graph. A nowhere-zero flow on G is an assignment
of non-zero integers to each edge of G such that for every vertex the the sum
of the values of incoming edges is equal to the sum of the values of outgoing
edges. A nowhere-zero k-flow is a nowhere-zero flow using edge labels with
maximum absolute value k − 1. Since for a directed graph that admitting
nowhere-zero flows is independent of the choice of the orientation of the
graph, therefore an undirected graph can be considered for the analogue
concept. A conjecture by Tutte in 1954 says that

Conjecture 1. (Nowhere-Zero Sum 5-Flow Conjecture, [16])
Every bridgeless graph has a nowhere-zero 5-flow.

There are some less stronger versions of this conjecture for example,
F. Jaeger in [9] showed that every bridgeless graph has a nowhere-zero
8-flow, and P. Seymour proved that every bridgeless graph has a nowhere-
zero-6-flow [13] in 1981. Nevertheless, the original Tuttes conjecture is still
remains open to be proved(or disprove).

As an analogous concept of a nowhere-zero flow for directed graphs, we
consider zero-sum flows for undirected graphs in this paper.

Definition 1. For an undirected graphG, a zero-sum flow is an assignment
of non-zero integers to the edges such that the sum of the values of all
edges incident with each vertex is zero. A zero-sum k-flow is a zero-sum
flow whose values are integers with absolute value less than k.

Note that from algebraic point of view finding such zero-sum flows is
the same as finding nowhere zero vectors in the null space of the incidence
matrix of the graph. For an undirected graph G, the incidence matrix
W (G) of G, is defined as follows:
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(W (G))ij =

(
1, if ej and vi are incident;
0, otherwise.

An element of the null space of W (G) is a function f : E(G)→ R such
that for all vertices v ∈ V (G) we have

P
u∈N(v) f(uv) = 0, where N(v)

denotes the set of adjacent vertices to vertex v. If f never takes the value
zero, then it is called a zero-sum flow on G. A zero-sum k-flow is a zero-
sum flow whose values are integers with absolute value less than or equal
to k − 1.

In literature there is a conjecture for zero-sum flows similar to the Tuttes
5-flow Conjecture for nowhere-zero flows. Let G be an undirected graph
with incidence matrixW . S. Akbari et al in [2] raised a conjecture for zero-
sum flows similar to the Tuttes 5-flow Conjecture for nowhere-zero flows as
follows:

Conjecture 2. (Zero− Sum6−FlowConjecture)
If G is a graph with a zero sum flow, then G admits a zero-sum 6-flow.

So in the linear algebra sense if the null space ofW contains a vector whose
entries are non-zero real numbers, then there exists a vector in that null
space ofW whose entries are non-zero integers with absolute value less than
6 also.

In 2010 it was proved, by Akbari et al. [1], that the above stated
conjecture is equivalent to the Bouchets 6-Flow Conjecture for bidirected
graphs. In literatures a more general concept flow number, which is defined
as the least integer k for which a graph may admit a k-flow, has been
studied for both directed graphs and bidirected graphs. T.M Wang and
S.W Hu extend the concept in 2011 to the undirected graphs and call it
zero-sum flow numbers, and also considered general constant-sum flows for
regular graphs [18]. A more general concept is considered in the study of
nowhere-zero sum, namely, the least number of k for which a graph may
admit a k-flow. In [18] T.M Wang and S.W Hu consider similar concepts
for zero-sum k-flows.

Definition 2. Let G be a undirected graph. The zero-sum flow number
F (G) is defined as the least number k for which G may admit a zero-sum
k-flow. F (G) =∞ if no such k exists.
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The grid graphs are very useful in all areas of applied sciences like of
computer science and electronic science. One of the main usage, for ex-
ample, is as the discrete approximation to a continuous domain or surface.
Numerous algorithms in computer graphics, numerical analysis, computa-
tional geometry, robotics and other fields are based on grid computations.
In [19] and [20] the authors calculated the zero-sum flow number of trian-
gular and Hexagonal grids.

In this paper, we calculate zero-sum flow number of Octagonal Grid
and Generalized Prism.

2. Zero-Sum Flow Number of Octagonal Grid

In [14], Kamran et. al consider this Octagonal grid and compute the ex-
act value of total edge irregularity strength for octagonal grid Om

n . For
n,m ≥ 2 we denote octagonal grid by Om

n , the planar map labeled as in
Figure 1 with m rows and n columns of octagons. The symbols V (Om

n ) and
E(Om

n ) will denote the vertex set and the edge set of O
m
n , respectively.

V (Om
n ) = {x

j
i ; 1 ≤ i ≤ 2n− 1, i odd and 1≤ j ≤ 3m+ 1}

∪{x3j−2i ; 1 ≤ i ≤ 2n; i even and 1 ≤ j ≤ m+ 1}

∪ {x3j−12n , x3j2n; 1 ≤ j ≤ m}
V (Om

n ) = {x
j
i ; 1 ≤ i ≤ 2n− 1, i odd and 1 ≤ j ≤ 3m+ 1}

∪{x3j−2i ; 1 ≤ i ≤ 2n; i even and 1 ≤ j ≤ m+ 1}
∪{x3j−12n , x3j2n; 1 ≤ j ≤ m}

E(Om
n ) = {x

j
ix

j+1
i ; 1 ≤ i ≤ 2n− 1; i odd and 1 ≤ j ≤ 3m}

∪{x3j−2i x3j−2i+1 ; 1 ≤ i ≤ 2n− 1; i odd and 1 ≤ j ≤ m+ 1}

∪{x3j−2i x3j−1i+1 ; 1 ≤ i ≤ 2n− 2; i even and 1 ≤ j ≤ m}

∪{x3ji x3j+1i−1 ; 3 ≤ i ≤ 2n− 1; i odd and 1 ≤ j ≤ m}

∪{xj2nx
j+1
2n ; 1 ≤ j ≤ 3m}

|V (Om
n )| = (4m+ 2)n+ 2m and |E(Om

n )| = (6m+ 1)n+m
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Theorem 1. The zero-sum flow number F (Om
n ) of O

m
n is 3 for all n,m ≥ 2.

Proof. Note that there are 4n + 4m vertices of degree 2 and 4mn −
2n − 2m vertices of degree 3 in Om

n , so a zero-sum flow edge assignment
from {−1, 1} is not possible. Therefore F (Om

n ) is at least 3. To prove
the converse inequality we will consider the following edge labeling ϕ :
E(Om

n )→ {1,−1, 2}.

ϕ(x3j−2i x3j−2i+1 ) =

(
1, j = 1, m+ 1, i is odd and 1 ≤ i ≤ 2n− 1
2, 2 ≤ j ≤ m, i is odd and 1 ≤ i ≤ 2n− 1

ϕ(x3j−1i x3ji ) =

(
1, i = 1, 2n, 1 ≤ j ≤ m

2, 1 ≤ j ≤ m, i is odd and 3 ≤ i ≤ 2n− 1
For i odd, 1 ≤ i ≤ 2n− 1 and 1 ≤ j ≤ m,

ϕ(x3ji x3j+1i ) = ϕ(x3j−2i x3j−1i ) = −1,
For i even, 1 ≤ i ≤ 2n and 1 ≤ j ≤ m,

Marisol Martínez
figu-1
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ϕ(x3j−2i x3j−1i+1 ) = −1,
For i odd, 3 ≤ i ≤ 2n and 1 ≤ j ≤ m,

ϕ(x3ji x3j+1i−1 ) = −1,

We can see that ϕ is an edge labeling from E(Om
n ) to {1,−1, 2}. Now

we will find the weight of each vertex and the weight of a vertex is the sum
of all labels of edges adjacent to it.

wt(x3j−2i ) = ϕ(x3j−2i x3j−2i+1 ) + ϕ(x3j−2i x3j−1i )

= 0, for1≤ i ≤ 2n− 1, and i odd, j = 1

wt(x3j−2i ) = ϕ(x3j−2i x3j−2i+1 ) + ϕ(x3j−2i x3j−1i+1 )

= 0, for 1 ≤ i ≤ 2n, and i even, j = 1

wt(x3j−1i ) = ϕ(x3j−1i x3ji ) + ϕ(x3j−2i x3j−1i+1 )

= 0, for i = 1, 2n, 1 ≤ j ≤ m

wt(x3ji ) = ϕ(x3j−1i x3ji ) + ϕ(x3ji x3j+1i )

= 0, for i = 1, 2n, 1 ≤ j ≤ m

wt(x3m+1i ) = ϕ(x3mi x3m+1i ) + ϕ(x3m+1i x3m+1i+1 )

= 0, for1≤ i ≤ 2n− 1, and i odd

.

wt(x3m+1i ) = ϕ(x3m+1i−1 x3m+1i ) + ϕ(x3m+1i x3mi+1)

= 0, for 1 ≤ i ≤ 2n, and i even

wt(x3j+1i ) = ϕ(x3j+1i−1 x3j+1i ) + ϕ(x3j+1i x3j+2i+1 ) + ϕ(x3j+1i x3ji+1)

= 0, for 1 ≤ i ≤ 2n, and i even, 1 ≤ j ≤ m− 1
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wt(x3j−12i+1 ) = ϕ(x3j−2i+1 x3j−1i+2 ) + ϕ(x3j−22i+1x
3j−1
2i+1 ) + ϕ(x3j−12i+1x

3j
2i+1)

= 0 , for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

wt(x3j2i+1) = ϕ(x3j−12i+1x
3j
2i+1) + ϕ(x3j+12i x3j2i+1) + ϕ(x3j2i+1x

3j+1
2i+1 )

= 0, for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

wt(x3j+12i−1 ) = ϕ(x3j+12i−1x
3j+2
2i−1 ) + ϕ(x3j+12i−1x

3j
2i−1) + ϕ(x3j+12i−1x

3j+1
2i )

= 0, for 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1

These computations shows that that ϕ is indeed a zero-sum 3-flow and
we get F (Om

n ) ≤ 3. This concludes the result. 2

3. Zero-Sum Flow Number of Generalized Prism

The cartesian product G×H of graphs G and H is a graph such that the
vertex set of G × H is the cartesian product V (G) × V (H) and any two
vertices (u, u0) and (v, v0) are adjacent in G×H if and only if either u = v
and u0 is adjacent with v0 in H , or u0 = v0 and u is adjacent with v in G .

The generalized prism Pm
n can be defined as the cartesian product Cn×

Pm of a cycle on n vertices with a path on m vertices. If we consider a
cycle Cn with V (Cn) = {xi : 1 ≤ i ≤ n}, E(Cn) = {xixi+1 : 1 ≤
i ≤ n − 1} ∪ {xnx1} and a path Pm with V (Pm) = {yj : 1 ≤ j ≤ m},
E(Pm) = {yjyj+1 : 1 ≤ j ≤ m − 1}, then V (Pm

n ) = V (Cn × Pm) =
{(xi, yj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is the vertex set of the graph Pm

n and

E(Pm
n ) = E(Cn × Pm) = {(xi, yj)(xi+1, yj) : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}

∪ {(xn, yj)(x1, yj) : 1 ≤ j ≤ m}
∪ {(xi, yj)(xi, yj+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}

is the edge set of Pm
n . So, |V (Pm

n )| = nm and |E(Pm
n )| = n(2m− 1).
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The generalized prism Pm
n has been studied extensively in recent years.

Kuo et al. [10] and Chiang et al.[4] studied distance-two labelings of Pm
n .

Deming et al.[6] gave complete characterization of the cartesian product of
cycles and paths for their incidence chromatic numbers. Gravier et al.[7]
showed the link between the existence of perfect Lee codes and minimum
dominating sets of Pm

n . Lai et al.[11] determined the edge addition number
for the cartesian product of a cycle with a path. Chang et al.[5] established
upper bounds and lower bounds for global defensive alliance number of Pm

n

and showed that the bounds are sharp for certain n,m. In [3], Baca et. al
compute the exact value of total edge irregularity strength for generalized
prism Pm

n .
In following theorem we determine the exact zero-sum flow number

F (Pm
n ) of P

m
n .

Theorem 2. The zero-sum flow number F (Pm
n ) of P

m
n is 3 for all n ≥ 3

and m ≥ 2.

Proof. Since there are mn− 2n vertices of degree 4 and 2n vertices of
degree 3 in Pm

n so {−1, 1} assignment for the edges is not possible for the
zero sum flow therefore F (Pm

n ) ≥ 3. Now we will show that F (Pm
n ) ≤ 3

Marisol Martínez
figu-2
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and for this purpose we shall consider the following labeling ϕ : E(Pm
n )→

{−1,−2, 2} on the edges of Pm
n graph.

ϕ((xi, yj)(xi+1, yj)) =

(
−1, 1 ≤ i ≤ n− 1, j = 1,m;
−2, 1 ≤ i ≤ n− 1, 2 ≤ j ≤ m− 1.

ϕ((xn, yj)(x1, yj)) =

(
−1, j = 1,m;
−2, 2 ≤ j ≤ m− 1.

ϕ((xi, yj)(xi, yj+1)) = 2, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1
Now, using this assignment we will prove that the sum of flow at each

vertex is zero. For this purpose we will find the weight of each vertex and
the weight of a vertex is the sum of all labels of edges adjacent to it. The
weight for each vertex is calculated below:

wt(xi, y1) = ϕ((xi, y1)(xi+1, y1)) + ϕ((xi, y1)(xi, y2))

+ϕ((xi−1, y1)(xi, y1))

= 0, for2≤ i ≤ n− 1

wt(x1, y1) = ϕ((x1, y1)(x2, y1)) + ϕ((xn, y1)(x1, y1))

+ϕ((x1, y1)(x1, y2))

= 0,

wt(xn, y1) = ϕ((xn, y1)(xn−1, y1)) + ϕ((x1, y1)(xn, y1))

+ϕ((xn, y1)(xn, y2))

= 0,

wt(xi, ym) = ϕ((xi, ym)(xi+1, ym)) + ϕ((xi, ym)(xi, ym−1))

+ϕ((xi−1, ym)(xi, ym))

= 0, for2≤ i ≤ n− 1

wt(x1, ym) = ϕ((x1, ym)(x2, ym)) + ϕ((xn, ym)(x1, ym))

+ϕ((x1, ym)(x1, ym−1))

= 0,

wt(xn, ym) = ϕ((xn, ym)(xn−1, ym)) + ϕ((xn, ym)(x1, ym))

+ϕ((xn, ym)(xn, ym−1))

= 0.

rvidal
Cuadro de texto
1035



https://doi.org/10.1007/s00373-010-0946-5
https://doi.org/10.1016/j.laa.2009.01.027


https://doi.org/10.1016/j.amc.2014.03.001
https://doi.org/10.1016/j.dam.2007.11.019
https://doi.org/10.1016/j.dam.2011.11.004
https://doi.org/10.1016/S0166-218X(97)00091-7
https://doi.org/10.1016/0095-8956(79)90057-1
https://doi.org/10.1016/j.disc.2003.11.009
https://doi.org/10.1016/j.endm.2005.06.062
https://doi.org/10.7151/dmgt.1257
https://doi.org/10.1016/0095-8956(81)90058-7
https://doi.org/10.1002/jgt.20117
https://doi.org/10.4153/CJM-1954-010-9
https://doi.org/10.4153/CJM-1954-010-9


https://doi.org/10.1007/978-3-642-29700-7_25
https://doi.org/10.1007/978-3-642-21204-8_20
https://doi.org/10.1007/978-3-319-08016-1_24.
https://doi.org/10.1007/978-3-642-38756-2_34

