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1. Introduction

The commutativity degree d(G) of a finite group G is the probability that
two randomly chosen elements of G commute (see [6]).
Therefore,

H(z,y) € G x G :ay = yx}|
G2 '

In the year 2001, Lescot [7] has computed d(D2,) and d(Qgn+1) where
Doy, is a dihedral group

presented by (a,b: a” = b> = 1,bab~! = a~') and Qyn+1 is a quaternion
group presented by (a,b: a®" = 1,b? = a2 bab~l = a~!). It was shown
that

d(G) =

1
d(DQn) — Z and d(Q2n+1) —

W =

as |Dap| — 0o and  |Qgn+1| — o0.

Then Lescot asked, “whether there are other natural families of groups
with the same property”.

Let G, be a family of finite non-abelian groups such that |G,| — oo
as n — 0o0. Then the limit of d(G,) as n — oo is called the asymptotic
commutativity degree of G,. In this regard, the problem posed by Lescot
can be restate in the following way:

Question 1: Is there any family of finite groups other than Ds, and Qqn+1
whose asymptotic commutativity degree is 711?

In the year 2008, Doostie and Maghasedi [2] have computed the com-
mutativity degree of the following classes of finite groups:

Gi(m,n) = (a,b,c:a®> =b" = =1,c taca = 1,c'bcb = 1) and

Go(m,n) = (a,b,c:a® =b*" =2 =1,¢ tac = b, ¢ tbe = a).

They have shown that

n+3 . .
, if misodd on 43
d(G1(m,n)) = n%lT—L6 and d(Ga(m,n)) =

. . n+2 °
p— if mis even 2
n

Therefore, as n tends to infinity we have

d(G1(m,n)) — % and d(Ga(m,n)) —

| =
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Thus the families G1(m,n) and Ga(m,n) give affirmative answer to Ques-
tion 1.

In the year 2010, Castelaz (see [1, Chapter 4]) computed the asymptotic
commutativity degree for several different classes of finite groups including
the dicyclic groups Qu., presented by (a,b : a®™ = 1,b> = a™, bab~! =
a~!') and the semidihedral groups SD,, presented by (a,b : " = b2 =
1,bab~! = a172"7*). (Castelaz showed that

A(Qum) — 7 and d(SDy) —

)

1=

as the orders of Q4,, and SD,, tend to infinity.

In 2013, the author has computed d(Cy9C2p), where 6 : Cap —
Aut(Cy,) is the homomorphism such that 6(b), for a generator b of Cap,
is the inversing automorphism of C), (see [9]). The author also have shown
that

1
d(Cy xngm)—>Z as n — oo.

Recently, Dutta [3] have shown that the asymptotic commutativity degree
of the group Moy, for n > 2 presented by (a,b : a" = b2 = 1,bab"! =
a™1)is 1.
It is worth mentioning that Erovenko and Sury [4] have computed d(A?
B) where A, B are two finite abelian group and ! stands for wreath product.
They showed that d(A! B) — n—12 as |A| — oo if B is fixed of order n > 1.
Doostie and Maghasedi [2] have also computed the commutativity de-

gree of the groups namely Gs(m,n) presented by
(a,b,c:a =M =10 = a2n72, b~ laba = ¢ taca = ¢ lbeh = 1).

They have shown that

on—1

23 +3
2n

as n tends to infinity. Motivated by these facts one may ask the following

question.

d(G3(m,n)) = and so d(Gs(m,n)) —

oo =

Question 2: Let £ > 1 be any positive integer. Is there any family of
finite groups whose asymptotic commutativity degree is %?

In this paper, we answer Question 2 affirmatively. Further we shall
show that the reciprocal of every positive integer can be realized as d(G)
for some finite group G. It is worth mentioning that the central problem
in the study of commutativity degree of finite groups is to find the rational
numbers in the interval (0, 1] that can be realized as d(G) for some finite
group G.


rvidal
Cuadro de texto
831


832 Rajat Kanti Nath

2. Main Results
We begin with the following three useful results.

Lemma 1. [5] For any two finite group H and K we have

d(H x K) = d(H)d(K).

Proposition 2. [10] If G is a finite p-group, where p is a prime, and G' C
Z(@G), then

1 p-1I6: K|
—— |1 AP lild |
C=@|'t L o

G'/K cyclic

where K* = {z € G : [G,2] C K} 4 G and & = [[(Cpri x Cpni) with
p<ph <pm=pk=|G: K|

A consequence of the above results is given below.

Corollary 3. Let G be a finite group and |G'| = p, a prime. If G' C Z(G),
then %~ = (C, x C,)*, for some s > 1, and

(@) —
1 p—1
1) = (1+257).
(@) ’ per

Proof. If G C Z(G) then G is nilpotent of class 2. Hence, G =
P X Py X --- X P, where P;’s are Sylow p;-subgroups of G corresponding
to the primes p; dividing |G|. Since G’ = P x Py x --- x P} and |G'| =p
we must have |P{| = p and |Py| = --- = |P}| = 1, assuming that P; is
a Sylow p-subgroup. Therefore, Ps,..., P, are abelian groups and hence
Z(G) =Z(P1) x Py x -+ x Pg. By [10, Proposition 2], it follows that

G P,

@1) 20 - 2P

for some s > 1. Again, by Lemma 1 and Proposition 2, we have

I

= (Cpx Gy’

(2.2) d(G) = f[d(Pi) =d(Py) = % (1 + (p];]:l)l)lzlj{{lr}fﬁ}»
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since K = {1} is the only proper subgroup of P| such that P//K is cyclic.
Hence, the result follows from (2.1) and (2.2) noting that {1}* = Z(P1).
O

We now state and prove the first main result of this section which give
affirmative answer to Question 2.

Theorem 4. There exists a family of finite groups having asymptotic com-
mutativity degree % for every integer k > 1.

Proof. Let k= plfl pgz -.-pkm be the prime factorization of k. Consider
the families ES(n;,p;) of extra-special p;-groups of order pf’““ for i =
1,2,...,m. By Lemma 1 and Corollary 3, we have

1 p—1 b
d((ES(n;, p; biy= | =+ 82—
(ES(ni, pi))™) (pz‘ p?niﬂ)

where (ES(n;,p;))* is the direct product of k; copies of ES(n;, p;).
Hence, the result follows from Lemma 1, considering the family

(ES(n1,p1))" x (ES(n2,p2))*2 x -+ x (ES(m, pm))Fm

obtained by extra-special p-groups noting that

d((ES(ni,pi))*) —

: as n; — 00.
7
p;

The following theorem shows that the reciprocal of every positive integer
can be realized as d(G) of some finite group G.

Theorem 5. There exists a finite group G such that d(G) = % for every
positive integer n.

Proof.  We shall prove the theorem by induction on n. For n = 1, we
may take G to be any abelian group. If n = 2, we may take, G = S3. So,
assume that n > 3 and that the theorem is true for all positive integers k
less than n.

Case 1. n =0or 2 (mod4). In this case, n = 2*.m, where o, m are
positive integers and m is odd. Clearly m < n. So, by induction hypothesis
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there exists a finite group G such that d(G) = % Hence, using the fact
that d(S3) = 1 and Lemma 1, we have

A(G x (89)7) = d(G).(d(S5)" = —o: = %

Case 2. n = 1 (mod4). In this case, %2 is a positive integer and
”TJF?’ < m. So, by induction hypothesis, there exists a finite group G such

that d(G) = ni?,' Hence,

n+3 4 1

Case 3. n = 3 (mod4). In this case, % is a positive integer and

”TH < m. So, by induction hypothesis, there exists a finite group G such

that d(G) = nil. Hence,

n+3 4 1

120 n+l n

d(D@n X G) =

This completes the proof.

We conclude this paper noting that the above two theorems are also ob-
tained by Castelaz considering different families of finite groups (see Corol-
lary 4.3.2 and Corollary 5.3.3 of [1]).
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