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Abstract

In this article, the notion of modular multiplicative inverse opera-
tor (MMIO):

I( : (Z/(Z)∗ −→ Z/(Z, I((a) = a−1,

where ( = b × d > 3 with b, d ∈ N, is introduced and studied. A
general method to decompose (MMIO) over group of units of the form
(Z/(Z)∗ is also discussed through a new algorithmic functional ver-
sion of Bezout’s theorem. As a result, interesting decomposition laws
for (MMIO)’s over (Z/(Z)∗ are obtained. Several numerical examples
confirming the theoretical results are also reported.
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1. Introduction

The modular arithmetic has become increasingly important not only in
mathematics itself but also in a variety of other disciplines. It has been
extremely rich in results and fertile in ideas in several areas, e.g., Num-
ber Theory, Computational Arithmetic, Public Key Cryptography, Graph
Theory, Room Acoustics, Galois Theory and Digital Communications, and
other areas as well.

It is useful to recall here that in modular arithmetic we encounter a
valuable concept, the so-called “modular multiplicative inverse” (symbol-
ized by MMI). In precise words, if Z/(Z denoted the residue system mod-
ulo (, the (MMI) of a ∈ Z/(Z, if it exists, is a−1 ∈ Z/(Z, such that
a×a−1 ≡ 1 mod (, where p ≡ q mod ( is the usual modular representation
of q ∈ Z/(Z. This very special concept is a central element in fields of
Public Key Cryptography, Cellular Automata, Computation Arithmetic,
Elliptic Curves Cryptosystems and Particle Physics, as well as, in various
branches of Electronic and Computer Engineering. A closer look at this
concept reveals the difficulty that has its calculation in cases where ( ∈ N
is a large number (prime or composite). In this way, the first question to be
answered is: How we obtain an efficient way for to compute the (MMI)?.
The seeking of an appropriate response to this question, have stimulated
today the creation of innovative iterative procedures intimately connected
to very efficient algorithms. For example, Wei in their original paper [33]
has introduced the so-called “algorithm of sequential modular multiplica-
tion”, based, inter alia, on residue signed-digit(SD). In the same context,
other algorithms were obtained notably by Verkhovsky’s [30], AL-Matari
et.al. [1], and Hars [15], who, have been studied a modular inverse al-
gorithm without multiplications for cryptographic applications. We also
want to cite [31], where new algorithms based on table look up technique
are very well structured. In addition, are also available those inspired by
a fundamental idea proposed by Kaliski [17], and referred to as the inverse
multiplicative modular of Kaliski-Montgomery in the early literature, we
refer the interested reader to the aforementioned references, e.g., [4], [20],
[22], [25] and to [26]. Finally, we also want to cite the interestig work of
Dumas [11], where a systematic study of Newton-Rapshon methods over
p-adic number, was specifically designed to provide a fast computation of
(MMI) modulo pm using quite different techniques.

It should be mentioned, however, that to explore the validity of other
strategies, in order to reduce computational times without sacrifice memory
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space via parallel computing, for example, it is highly desirable; but some
extra efforts may be needed. Nevertheless, this obliges among other things
to put a one-second question: It is possible to find a method that can
decompose the (MMI) over algebraic structures of the form Z/(Z.? As can
be expected, if we have an affirmative answer to this question, we could
recover the (MMI) focusing all our computational efforts in each of its parts.
However, and being clear that, we can we move in different directions to
attempt of responding this question, to the best to the author’s knowledge,
the recent literature on the subject not is the sufficiently robust to try
finding an appropriate response to this not obvious question.

In contrast to this scenanario, in this article we pretend, based on our
recent work on the topic, to demonstrate that it is possible to give a positive
response to this interesting question, when the (MMI) is considered as an
operator on the group of units (Z/(Z)∗ = {a ∈ Z/(Z : gcd(a, () = 1},
where we have assumed, without loss of generality, that ( = b×d ∈N with
( > 3.

To this end, we first introduce the notion of modular multiplicative
inverse operator (MMIO): I( : (Z/(Z)∗ −→ Z/(Z, such thatI((a) = a−1.
In this respect, one purpose of this paper is to provide a general method
for to decompose (MMIO)’s I( on (Z/(Z)∗, whom we call the “Inverse
Decomposition Theorem” (IDT). After this point, we have shown that,
under reasonable assumptions, the following identities, summarized in (see,
Theorem 3.12, Theorem 3.26 and Theorem 3.15 of current paper):

I((a) := Ib(a) + b× φd Id(d− a)× Ia(a− b)} ,(1.1)

I((a) := Ib(a)+b×φd
½
1

4
[Ib+a(a)− Ib−a(a)]× [Ia+d(d)− Ia−d(d)]

¾
(1.2)
and

I((a) := Ib(a) + b× φd {Id(a)× Ia(b)− 1}(1.3)

are valid. Here, the operator φd(·) is defined by φd : N∗ → Z/dZ, such that

φd(a) =

(
a, if 0 ≤ a ≤ d− 1,
r, if a ≥ d,

where a ≡ r mod d.
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In the same context, we shall also give several results relating which may
become of an independent interest in the beautiful arena of the Number
theory, Computer Arithmetic and related fields. In order to establish Eqs.
(1.1), (1.2) and (1.3), we needs to show the following decomposition law:

I((a) := Ib(a) + b× φd {Ld(a)×La(b)} ,(1.4)

where, the operators Lβ(·) have the following structure:
γ ∈ (Z/βZ)∗ → Lβ(γ) ∈ Z/βZ, with Lβ(γ) = φβ [(β − 1)× Iβ(γ)] .
This is the basic idea exploited in this paper.

An argument based on an algorithmic functional approach proposed by
the author in [5] and the elegant and versatile Bezouts theorem confirms
Eq. (1.4). Eqs. (1.1), (1.2) and (1.3) are extremely interesting and are nat-
urally associated to (MMI). Furthermore, we should emphasize that, from
a computational point of view, the formulae considered above offer oppor-
tunities of construct new architectures and schemes (problems that not is
addressed in this work) which can complement to the different innovative
algorithms mentioned in the references. It should, however, be noted that
despite these recent and valuable contributions, to the author’s knowledge,
there is nothing in prior literature resembling Eqs. (1.1), (1.2) and (1.3).

It should be stressed that the genesis of our approach appears in two
previous works [5, 6], where a new algorithmic functional technique for the
Euclidean algorithm it was derived. However, being this a key ingredient
in our analysis, in [5] are not study of (MMIO) has been considered.

Our work initially was motivated in part by applications of the modular
inversion in RNS (Residue Number System) [3], by Chinese remainder fast
algorithms for the purposes of calculating the discrete circular convolution
over finite Galois fields (Z/pZ)∗, where p is a prime number [27], by the
seminal paper of Dumas [11], where are given different variants of Newton-
Rapshon methods over p-adic numbers to compute the (MMI) a prime
power, as well as, some celebrated works related to Public Key Cryptosys-
tems (see, e.g., [21]) and the building of linear and nonlinear congruential
pseudorandom number generators [12]. Knuth [18] also has an extensive
and excellent discussion in these and other aspects of great interest.

Other different line of motivation of current paper this inserted in the
framework of some problems associated with certain inverse states defined
about finite Galois Fields (Z/pαZ)

∗, where pα is a large prime number, the
which are key in the computation of Higgs mass - the particle related to the
mechanism thought to be responsible for giving masses to all other particles
- via a p-adic metric. A general survey of this last fascinating subject may
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be found in [8], [9] and relevant references.
This paper is organized as follows. Section §2 deals with preliminaries

and notation. In §3, we introduce an algorithmic functional setting and
we present in detail the main results of this work. Section §4 we offer
some numerical experiments, the which displays and captures the richness
algorithmic functional of all our theoretical results.

2. Preliminaries

To state our main results we shall give a rapid survey of those parts of
the Number Theory that we shall need in what follows. Details can be
found for instance in [23]. First, however, we need some notation. Here,
and in the rest of the paper, N denote the set of the natural numbers,
a ∈ N∗ if a ∈ N ∪ {0}. To simplify the presentation we assume that
a ∈ N1 if a ∈ N\{1}. We let (Z,+,×) denote the ring of integers. The
operation × in Z is usually called the product. Let b be a fixed positive
integer. Two integers a and d are said to be congruent modulo b, written
a ≡ d mod b if b divides a − d. Let Z/bZ be the ring of residue classes
modulo b, a ∈ Z/bZ if a ∈ {0, 1, 2, . . . , b − 1}. Throughout this paper we
use the convention that (Z/bZ)∗ = {a ∈ Z/bZ : gcd(a, b) = 1} denotes
the group of unit of Z/bZ, the which under multiplication forms an abelian
group. Let us emphasize that, as already mentioned above, the modular
multiplicative inverse (MMI) of a ∈ Z/bZ, if it exists, is a−1 ∈ Z/bZ, such
that a×a−1 ≡ 1 mod b. The symbol gcd(b, d) denotes the greatest common
divisor between b and d (not both zero). In this notation, if gcd(a, b) = 1,
we say that a and b are relatively prime. The Bézout’s theorem, which
states that: if a and b are positive integers, then there exist integers s and
t such that gcd(a, b) = s× a+ t× b, is useful when a and b are relatively
primes, in this case we have gcd(a, b) = 1. Now following the arguments
in [5], we can derive for the operators φb : N

∗ → Z/bZ and Cb : N
∗→N∗,

defined by

φb(a) =

(
a, if 0 ≤ a ≤ b− 1,
r, if a ≥ b

and Cb(a) =
a−φb(a)

b ,

where a ≡ r mod b for any b ∈ N1, the following
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Theorem 2.1. Let b ∈ N1. Then, the following statements are true:

(φ1) φb(0) = 0,

(φ2) φb(d× b) = 0 for every d ∈N∗,

(φ3) φb(a) = φb(φb(a)) for every a ∈ N∗,

(φ4) φb(a + d) = φb(φb(a) + φb(d)) = φb(a + φb(d)) = φb(φb(a) + d) for
every a, d ∈ N∗,

(φ5) φb(a × d) = φb(φb(a) × φb(d)) = φb(a × φb(d)) = φb(φb(a) × d) for
every a, d ∈ N∗,

(φ6) φb(a+ b) = φb(a) for every a ∈ N∗ (“periodicity” of φb),

(c1) Cb(0) = 0,

(c2) Cb(b× a) = a for every a ∈ N∗. In particular Cb(b) = 1,

(c3) Cb(φb(a)) = 0 for every a ∈ N∗ (Cb is a “annihilator” of φb),

(c4) Cb(a+ d) = Cb(a) +Cb(d) + Cb(φb(a) + φb(d)) for every a, d ∈N∗,

(c5) Cb(a× d) = Cb(a)× d+ φb(a)× Cb(d) + Cb(φb(a)× φb(d)) for every
a, d ∈ N∗,

(c6) Cb(a+ b) = Cb(a) + 1 for every a ∈ N∗ (Cb is quasi-periodic),

(c7) Cb(a+ b× µ) = Cb(a) + µ for every a, µ ∈N∗,

(e1) a = φb(a) + b× Cb(a) for every a ∈ N∗,

(e2) a < b if and only if Cb(a) = 0 for every a ∈ N∗,

(e3) (Cb ◦ Cd)(a) = Cb×d(a) for every a ∈ N∗ and every d ∈ N1.

Remark 2.2. Let us remark that in the Theorem 2.1 the compositions
of the operators Cd with Cb; Cd with φb, φd with φb and φd with Cb, are
defined by one usual way, that is:

Cd ◦ Cb : N
∗→N∗,such that (Cd ◦ Cb) (a):=Cd(Cb(a)) for all a ∈ N∗,

Cd ◦ φb : N∗→N∗,such that (Cd ◦ φb) (a):=Cd(φb(a)) for all a ∈ N∗,
φd ◦ φb : N∗→ N∗,such that (φd ◦ φb) (a):=φd(φb(a)) for all a ∈ N∗,
φd ◦ Cb : N

∗→N∗,such that (φd ◦ Cb) (a):=φd(Cb(a)) for all a ∈ N∗.



A general method for to decompose modular multiplicative inverse...271

Another result coming out of Theorem 2.1, using the property (e3) is
the following decomposition law (Theorem 4 given in [5]):

Theorem 2.3. For any b, d ∈N1 and any a ∈ N∗, we have

φd×b(a) = φd(a) + d× φb(Cd(a)).(2.1)

3. Decomposition-type theorems for modular multiplicative
inverses operators in group of units: (MMIO) v/s (MMI)

In this section we shall be concerned with the construction of several laws
decomposition for the (MMI) on (Z/(Z)∗, where ( = b×d, and b, d ∈N1. In
order to investigate this, we following the approach of the previous section,
we introduce the notion of modular multiplicative inverse operator (MMIO)
in the following

Definition 3.1. If b ∈N1, then the modular multiplicative inverse opera-
tor (MMIO) denoted by Ib(·) is the mapping

Ib : (Z/bZ)∗ → Z/bZ, defined by Ib(a) = a−1, such that

φb(a× Ib(a)) = 1 for every a ∈ (Z/bZ)∗.(3.1)

Note that by the definition given, for any a ∈ (Z/bZ)∗ the (MMIO)
always exist, and has the following additional property when acting on the
natural numbers:

Ib(a) = Ib(φb(a)), a ∈N with gcd(a, b) = 1, and Ib(1) = 1.(3.2)

As examples, we have that I7(5) = 3 and I7(13) = 6, since

φ7(5× I7(5)) = φ7(5× 3) = φ7(15) = 1,

and similarly

φ7(13× I7(13)) = φ7(13× 6) = φ7(φ7(13)× 6) = φ7(6× 6) = φ7(36) = 1.

In this last expression, we used property (φ5) of Theorem 2.1 given above.
Further noting that Eq. (3.2) yields to I7(13) = I7(φ7(13)) = I7(6) = 6.

Another specific type of operator plays an important and particular role
in what follows is given in the following
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Definition 3.2. If b ∈ N1, the operator Lb given by:

a ∈ (Z/bZ)∗ → Lb(a) ∈ Z/bZ, with Lb(a) = φb [(b− 1)× Ib(a)](3.3)

is well defined. Lb(a) will be called the “predecessor operator modulo b”,
since

φb [a×Lb(a)] = b− 1 for any a ∈ (Z/bZ)∗.(3.4)

From this definition it becomes clear that the predecessor operator Lb(a)
also satisfies the following additionals properties:

Lb(1) = b− 1 and Lb(a) = Lb(φb(a)) if a ∈ N, with gcd(a, b) = 1.(3.5)

The next theorem provides the foundation of our development and con-
tains the fundamental identity on which the analysis of the results in this
section rests.

Theorem 3.3 (A algorithmic functional connection of the Bezout’s).
coefficients

Let be m,n ∈N1 such that gcd(m,n) = 1. Then

m× In(m) = n×Lm(n) + 1.(3.6)

Proof. Indeed, as gcd(m,n) = 1. The Bézout’s theorem, states that,
there exist integers x and y such that

1 = m× x+ n× y.(3.7)

To prove Eq. (3.6) we assume without loss of generality that x ≥ 0 and
y < 0. If now, we multiply Eq. (3.7) by In(m), we have

In(m) = m× In(m)× x+ n× In(m)× y.(3.8)

or equivalently,

In(m) + n× In(m)× (−y) = m× In(m)× x.
(3.9)
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Applying the operator φn(·) to this identity, togheter with the Eq. (3.1)
and properties (φ4) and (φ2) of the Theorem 2.1, we obtain

φn(x) = In(m).(3.10)

Now it is easy to check, using similar arguments, that:

φm(−y) = φm[(m− 1)× Im(n)] = Lm(n).(3.11)

From these equations and the property (e1) of the Theorem 2.1, we get

x = In(m) + n× Cn(x)(3.12)

and

− y = Lm(n) +m×Cm(−y).(3.13)

Hence, Eqs. (3.7), (3.12), (3.13) gives

1 = m×In(m)+m×n×Cn(x)−n×Lm(n)−n×m×Cm(−y),(3.14)

or equivalently,

n×m× Cm(−y) + (1 + n×Lm(n)) = m× In(m) +m× n×Cn(x).

(3.15)

Applying the operator φm×n to this identity, together with the properties
(φ4), (φ2) and the definition of φβ(·), with β = m× n, we obtain

φm×n[1 + n×Lm(n)] = m× In(m).(3.16)

Thus, in order to prove Eq. (3.6) it is sufficient to prove that 1+n×Lm(n) <
m×n. In fact, by the properties (c7), (c4) and (c2) of Theorem 2.1 we get:

Cn(1 + n×Lm(n)) = Cn(1) + Lm(n)
= Lm(n).

Now this last identity implies that
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Cm[Cn(1 + n×Lm(n))] = Cm(Lm(n)) = 0,

since Lm(n) < m. Thus by the property (e3) of the Theorem 2.1, we get

Cm×n(1 + n×Lm(n)) = 0.

From this identity and the property (e2) of the Theorem 2.1, we deduce
that

1 + n×Lm(n) < m× n.

Finally, these last expression, the definition of φβ(·), with β = m× n and
Eq. (3.16), lead to the desired result. This completes the proof of Theorem
3.3. 2

Now we begin to make use of these theorem. In addition we can collect
a number of important algebraic and functional properties, some of which,
we shall use frequently in the current paper.

Theorem 3.4 (Fundamental identities). If b, d ∈ N1, with gcd(b, d) =
1. Then for every a ∈ N, with gcd(a, b) = 1, we have

(L1) Lb(Ib(a)) = Ib(Lb(a)),

(L2) Lb(a× d) = φb(Lb(a)× Ib(d)),

(L3) For any m,n ∈ N such that gcd(m+ n, b) = 1, we have

Lb(m+ n) = Lb(φb(m) + φb(n)),

(L4) Lb(a+ b) = Lb(a), (“periodicity” of Lb),

(L5) Lb(Lb(a)) = φb(a),

(I1) Ib(a× d) = φb(Ib(a)× Ib(d)),

(I2) For any m,n ∈ N such that gcd(m+ n, b) = 1, we have

Ib(m+ n) = Ib(φb(m) + φb(n)),

(I3) Ib(a+ b) = Ib(a), (“periodicity” of Ib),

(I4) Ib(Ib(a)) = φb(a).
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Proof. The proof of Theorem 3.4 makes use of the properties of Theo-
rem 2.1, the identities (3.1), (3.2), (3.4), (3.5) and the Theorem 3.3. 2

Remark 3.5. Under the assumptions of Theorem 3.4, the compositions of
the operators Ld with Ib; φd with Lb; φd with Ib and Id with Lb are defined
by one usual way.

From Theorem 3.4 we can observe some potential properties of the
(MMIO). The most convincing example is the following

Corollary 3.6. Let b ∈N1, then

Ib(b− 1) = b− 1.(3.17)

Proof. In fact, using (L1), (3.2) and (3.5), we get

b− 1 = Lb(1) = Lb(Ib(1)) = Ib(Lb(1)) = Ib(b− 1),

which completes the proof. 2

Remark 3.7.

1. Other proof of this fact using (MMI) appears in [24].

2. Note that (L5) and (3.5) implies that

Lb(b− 1) = 1.

We continue our study by proving the following technical lemma.

Lemma 3.8. Ifm and n are natural numbers withm ∈ N1 and gcd(m,n) =
1, then

Im(n) + Lm(n) = m.(3.18)

Proof. In fact, using Eq. (3.3) together with the properties (φ2), (φ3),
(φ4) and (φ5) of Theorem 2.1 we may rewrite Im(n) + Lm(n) as
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Im(n) + Lm(n) = Im(n) + φm((m− 1)× Im(n))
= Im(n) + φm((m− 1)× Im(n) + φm(m× (Im(n) + 1))| {z }

0

)

= Im(n) + φm((m− 1)× Im(n) +m× (Im(n) + 1))
= Im(n) + φm((m− Im(n)) + 2×m× Im(n))
= Im(n) + φm((m− Im(n)) + φm(2×m× Im(n))| {z }

0

)

= Im(n) + φm(m− Im(n))
= Im(n) +m− Im(n) = m,

and the proof is complete. 2

Thanks to this lemma and applying the properties (L1) and (I1) of Theo-
rem 3.4 the following theorem can be proved.

Theorem 3.9. Let b be in N1, then for every a ∈ N with gcd(a, b) = 1
and a < b, we get

Ib(a) + Ib(b− a) = b.(3.19)

Now in this part of the work, we proved the formulas posed at the beginning,
in the introduction of the paper, to do this, and illustrate the main ideas
of this paper, we start with the following

Theorem 3.10 (The inverse decomposition theorem). Let b, d be in
N1. Then, for any a ∈ N1, with gcd(a, b) = 1 and gcd(a, d) = 1, we get

Ib×d(a) = Ib(a) + b× φd {Ld(a)×La(b)} .(3.20)

Proof. First of all, let us notice that gcd(a, b) = 1 and gcd(a, d) = 1,
implies that gcd(a, b× d) = 1. Thus the operator Ib×d(·) it is well defined
over (Z/(Z)∗. Now the Theorem 3.3 implies that a×Ib(a)− b×La(b) = 1.
Hence, by (3.1) and the property (e1) of Theorem 2.1, this last equation
may be written, as

b×La(b) = a× Ib(a)− φb(a× Ib(a))| {z }
1

= b× Cb(a× Ib(a)).
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Thus we obtain that,

Cb(a× Ib(a)) = La(b).(3.21)

Again using the Theorem 3.3, we get

a× Ib×d(a)− b× d×La(b× d) = 1.

So, if we multiply this expression by Ib(a), we have

a× Ib(a)× Ib×d(a) = Ib(a) + b× d× Ib(a)×La(b× d).

Applying the operator φb to this last identity, togheter with the Eq. (3.1)
and the properties (φ4), (φ2), (φ5) and (φ3) of Theorem 2.1, we deduce that

φb (Ib×d(a)) = φb (Ib(a)) = Ib(a).(3.22)

Hence Eq. (3.22) and the property (e1) of Theorem 2.1 gives

Ib×d(a) = Ib(a) + b× Cb(Ib×d(a)).(3.23)

Now using Eq. (3.1) and Eq. (3.23),

φb×d (a×Ib(a) + a× b× ξd) = 1,(3.24)

where ξd = Cb(Ib×d(a)). Furhermore, note that the properties (e3)-(e2) of
Theorem 2.1, implies that ξd < d. Also, the Theorem 2.3 (see, Eq. (2.1))
converts Eq. (3.24) on

φb (a×Ib(a) + a× b× ξd) + b× φd(Cb (a×Ib(a) + a× b× ξd)) = 1.
From there, and thanks to the properties (φ4), (φ3), (φ2) and (c7) of The-
orem 2.1, we see that

1= φb(a×Ib(a)) + b× φd(Cb(a×Ib(a)) + a× ξd). As φb(a×Ib(a)) = 1
this, togheter with the equation given above, we get

φd(Cb(a× Ib(a)) + a× ξd) = 0. Now adding (d− 1)× Cb(a× Ib(a)) to
this last equation, and later applying once again φd to obtain

φd(a× ξd) = φd ((d− 1)×Cb(a× Ib(a))) . Finally, multiplying this last
expression by Id(a), and later by applying once again φd, together with the
properties (φ3) and (φ5) of Theorem 2.1, and the fact that ξd < d, results
in

ξd = φd((d − 1) × Id(a) × Cb(a × Ib(a))). So, the property (φ5) of
Theorem 2.1, Eq. (3.21) and the definition of Ld(a), yields to

ξd = φd [Ld(a)×La(b)] .(3.25)
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Finally, Eqs. (3.23) and (3.25) yields to Eq. (3.20), we obtain the desired
result. 2

Remark 3.11. Note that once established the expression (3.20) of Theo-
rem 3.10, we could prove the validity of

Ib×d(a) = Id(a) + d× φb {Lb(a)×La(d)} .(3.26)

This has another very interesting consequence.

Theorem 3.12. Let b, d be in N1. Then, for every a ∈ (b, d) ∩N1, with
gcd(a, b) = 1 and gcd(a, d) = 1, we get

Ib×d(a) = Ib(a) + b× φd {Id(d− a)× Ia(a− b)} .(3.27)

Proof. First, let us notice that gcd(a, b) = 1 and gcd(a, d) = 1, implies
that gcd(a, b × d) = 1. Hence the operator Ib×d(·) it is well defined over
(Z/(Z)∗, where ( = b×d with b, d ∈ N1. Now by Lemma 3.8 we have that

Im(n) + Lm(n) = m,

for all positive integers m, n > 1 with gcd(m,n) = 1. From this last
expression, we derive for m = a and n = Ia(b) the identity:

Ia(Ia(b)) + La(Ia(b)) = a.(3.28)

Thus, by the property (I4) of Theorem 3.4, we obtain of (3.28) that

φa(b) + La(Ia(b)) = a.(3.29)

As a > b, by the definition of φa(b) we conclude of (3.29) that

La(Ia(b)) = a− b.(3.30)

Similarly, consider now that m = d and n = Id(a), then as d > a, one gets

Ld(Id(a)) = d− a.(3.31)

Remark 3.13. Note that gcd(a,Ia(b)) = 1 by Bzout’s theorem. Indeed,
there are x = −Lb(a) ∈ Z and y = b ∈ Z such that a× x+ Ia(b)× y = 1.
In exactly the same way, we can establish that gcd(d, Id(a)) = 1.
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Note now that the properties (L1), (L4), (I4) of Theorem 3.4 together with
Eqs. (3.5), (3.30) and (3.31) yields to

Ld(a)×La(b) = Ld(φd(a))×La(φa(b))
= Ld(Id(Id(a)))×La(Ia(Ia(b)))
= Id(Ld(Id(a)))× Ia(La(Ia(b)))
= Id(d− a)× Ia(a− b),

which together with the Theorem 3.10 leads to relation (3.27). This com-
pletes the proof of Theorem 3.12. 2

Remark 3.14. Another decomposition law for the (MMIO) Ib×d(·) may
be obtained with the aid of the so-called reciprocity formula, the which has
been exploted in the seminal papers of Arazi and Qi [2], Joye and Paillier
[16] and Ko [19]. Motived in parts by this papers and our algorithmical
functional technique we stablish the following theorem.

Theorem 3.15. Let b, d be inN1. Then, for any a ∈ N1, with gcd(a, b) =
1 and gcd(a, d) = 1, we have in terms of the (MMIO) that:

Ib×d(a) = Ib(a) + b× φd {Id(a)× Ia(b)− 1} .(3.32)

Proof. First let us notice that gcd(a, b) = 1 and gcd(a, d) = 1, implies
that gcd(a, b × d) = 1. Hence the operator Ib×d(·) it is well defined on
(Z/(Z)∗, where ( = b× d with b, d ∈N1. Recall that

Im(n) + Lm(n) = m,(3.33)

for all positive integers m, n > 1 with gcd(m,n) = 1. Also, by Theorem
3.3 we gets

a× Id(a) = 1 + d×La(d).

Now from this last identity and the Eq. (3.33) with m = a and n = d, we
have the reciprocity formula:

a× Id(a) = 1 + d× [a− Ia(d)].

Thus

d× a = a× Id(a) + d× Ia(d)− 1.(3.34)
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Now note that Ld(a)×La(b) by Eq. (3.33) can be also rewrite as

Ld(a)×La(b) = (d− Id(a))× (a− Ia(b))
= d× a− d× Ia(b)− a× Id(a) + Id(a)× Ia(b)

Therefore, the equality (3.34) implies that

Ld(a)×La(b) = d× (Ia(d)− Ia(b)) + Id(a)× Ia(b)− 1.

So,

φd {Ld(a)×La(b)} = φd {Id(a)× Ia(b)− 1} .

Using the Theorem 3.10, the proposition is shown. This completes the
proof of Theorem 3.15. 2

Remark 3.16. The decomposition law for the operators Ib×d(·) over group
of units (Z/(Z)∗ established in the Theorem 3.15 facilities the under-
standing of how these operators depends of the (MMIO)’s Ib(·), Id(·) and
Ia(·), respectively. Also, it is interesting to note that, in contrast with
the Theorem 3.12, in Theorem 3.15 we does not require the assumption
a ∈ (b, d) ∩N1.

Corollary 3.17. Let b, d be inN1. Then, for any a ∈ N1, with gcd(a, b) =
1, gcd(a, d) = 1 and φa(b) = 1, we get

Ib×d(a) =
1

a
× (1− b) + b× Id(a).(3.35)

Proof. First let us notice that gcd(a, b) = 1 and gcd(a, d) = 1, implies
that gcd(a, b × d) = 1. Hence the operator Ib×d(·) it is well defined about
(Z/(Z)∗, where ( = b × d with b, d ∈ N1. Now, as Ia(b) = Ia(φa(b)) =
Ia(1) = 1 (by the hyphoteses). Using first (3.32) and after (3.34) with
d = b, we can conclude directly the proof. 2 The following Theorem that
I called of “modulus change”, summarize one interesting property of Ib(·),
the which plays a role in this Section.

Theorem 3.18 (Modulus change). Let b be in N1. Then, for any a ∈
N1, with gcd(a, b) = 1 we get

Ib(a) = Ca {1 + φa(b)×La(b)}+ Ca(b)×La(b).(3.36)
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Proof. With the aid of the Theorem 3.3, we obtain

a× Ib(a) = 1 + b×La(b).

Note that using the properties (φ4), (φ5) and (e1) of Theorem 2.1 we get:

a× Ib(a) = 1 + b×La(b)− φa {1 + b× (a− 1)× Ia(b)}| {z }
0

= 1 + b×La(b)− φa {1 + φa(b)× φa((a− 1)× Ia(b))}
= 1 + b×La(b)− φa {1 + φa(b)×La(b)}
= 1 + b×La(b)− {1 + φa(b)×La(b)− a× Ca(1 + φa(b)×La(b))}
= (b− φa(b))×La(b) + a× Ca(1 + φa(b)×La(b))
= a×Ca(b)×La(b) + a× Ca(1 + φa(b)×La(b)).

This conclude the proof. 2 Theorem 3.18 have some consequences which
we now state.

Corollary 3.19. If µ ∈N and b ∈ N1, then for all a ∈ N1, with gcd(a, b) =
1 and b− µ× a > 1, we have

Ib−µ×a(a) = Ib(a)− µ×La(b).(3.37)

Proof. First let us notice that 1 = gcd(a, b) = gcd(a, b − µ× a) for all
µ ∈ N. So, the operator Ib−µ×a(a) is well defined. Now, the Theorem 3.18
implies that

Ib−µ×a(a) = Ca {1 + φa(b− µ× a)×La(b− µ× a)}(3.38)

+ Ca(b− µ× a)×La(b− µ× a).

Thus, in order to prove (3.37) it is sufficient to prove that

Ca(b) = Ca(b− µ× a) + µ,(3.39)

φa(b) = φa(b− µ× a)(3.40)

and

La(b) = La(b− µ× a).(3.41)
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In fact, by the properties (c5), (c4), (c2) and (φ2) of Theorem 2.1 we get:

Ca(b) = Ca(b− µ× a+ µ× a)

= Ca(b− µ× a) + Ca(µ× a) + Ca(φa(b− µ× a) + φa(µ× a))

= Ca(b− µ× a) + µ+ Ca(φa(b− µ× a))

= Ca(b− µ× a) + µ.

Note also that, by the properties (φ4), (φ2) and (φ3) of Theorem 2.1,
we get

φa(b) = φa(b− µ× a+ µ× a)

= φa(φ(b− µ× a) + φa(µ× a))

= φa(b− µ× a)

and hence,

La(b) = La(φa(b)) = La(φa(b− µ× a)) = La(b− µ× a).

So, combining (3.39), (3.40) and (3.41) togheter with (3.38) we finally
obtain (3.37). 2

Corollary 3.20. If b and µ are positive integers, then for all a ∈ N1, with
gcd(a, b) = 1, we have

Ib+µ×a(a) = Ib(a) + µ×La(b).(3.42)

Proof. First let us notice that 1 = gcd(a, b) = gcd(a, b + µ × a) for all
µ ∈ N. So, the operator Ib+µ×a(a) is well defined. From Theorem 3.18
and the propeties (φ4), (c7) of Theorem 2.1 togheter with (3.5) we obtain
(3.42). 2

Remark 3.21. Formulae (3.37) and (3.42) are similar to those obtained
in ([19], Corollary 4.2), via the reciprocity formula for (MMI). However, in
this respect our approach is methodologically of a different kind.

Corollary 3.22. If b and q are positive integers such that b > 2 and q ≥ 1,
then

Ib×q−1(b) = q.(3.43)
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Proof. By Corollary 3.20, we get

Ib×q−1(b) = I(b−1)+(q−1)×b(b)
= I(b−1)(b) + (q − 1)×Lb(b− 1)
= I(b−1)[φb−1(b)] + (q − 1)× 1
= I(b−1)(1) + (q − 1)
= 1 + (q − 1) = q.

We conclude that the corollary is valid. 2

Corollary 3.23. If b ∈ N1, then for all a ∈ N1, with gcd(a, b) = 1 and
b− a > 1, we have

Ib(a) = Ib−a(a) + La(b).(3.44)

Proof. First let us notice that the operator Ib−a(a) is well defined, from
Corollary 3.19 with µ = 1 follow the statment. 2

Corollary 3.24. If b ∈ N1, then for all a ∈ N1, with gcd(a, b) = 1, we
have

Ib+a(a) = Ib(a) + La(b).(3.45)

Proof. One can observe that in this case the operator Ib+a(a) is well
defined. From Corollary 3.20 with µ = 1 follow the statment. 2

Now, as a consequence of the Corollary 3.23, Corollary 3.24 and Corol-
lary 3.20, one easily gets

Corollary 3.25. If b ∈ N1, then for all a ∈ N1, with gcd(a, b) = 1 and
b− a > 1, we have

Ib+a(a) = 2× Ib(a)− Ib−a(a)(3.46)

and

Ib+a(a) = 2×La(b) + Ib−a(a)(3.47)

are valid.
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We can now conbine the Theorem 3.10 with the identity (3.47) of Corol-
lary 3.25 to conclude:

Theorem 3.26. If b, d ∈ N1 are such that b > d + 3, then for every
a ∈ ( d+ 1, b− 1 ) ∩N1, with gcd(a, b) = 1 and gcd(a, d) = 1, we have

Ib×d(a) = Ib(a) + b× φd

½
1

4
× [Ib+a(a)− Ib−a(a)]× [Ia+d(d)− Ia−d(d)]

¾
.

(3.48)

We can now also conbine the Theorem 3.10 with the identity (3.44) of
Corollary 3.23 to conclude:

Theorem 3.27. If b, d ∈ N1 are such that b > d + 3, then for every
a ∈ ( d+ 1, b− 1 ) ∩N1, with gcd(a, b) = 1 and gcd(a, d) = 1, we have

Ib×d(a) = Ib(a) + b× φd {[Ib(a)− Ib−a(a)]× [Ia(d)− Ia−d(d)]} .

(3.49)

Now it is important to observe that the Corollary 3.19 and Corol-
lary 3.20 can be formulated in the following equivalent way.

Corollary 3.28. If µ ∈ N and b ∈ N1, then for all a ∈ (Z/bZ)∗, with
b− µ× a > 1, we have

Ib−µ×a(a) = (1− µ)× Ib(a) + µ× Ib−a(a),(3.50)

Corollary 3.29. If µ ∈N and b ∈N1, then for all a ∈ (Z/bZ)∗, we have

Ib+µ×a(a) = (1− µ)× Ib(a) + µ× Ib+a(a)(3.51)

and

Corollary 3.30. If µ ∈ N and b ∈ N1, then for all a ∈ (Z/bZ)∗, with
b− µ× a > 1, we have

Ib+µ×a(a) = (1 + µ)× Ib(a)− µ× Ib−a(a).(3.52)



A general method for to decompose modular multiplicative inverse...285

Proof. The three Corollaries given above, are a consequence direct
of the Corollary 3.19, Corollary 3.20, Corollary 3.23 and Corollary 3.24,
respectively. 2

On the other hand, Corollaries (3.29) and (3.30) both combined, yields
to

Corollary 3.31. If µ ∈ N and b ∈ N1, then for all a ∈ (Z/bZ)∗, with
b− a > 1, we have

Ib+µ×a(a) = Ib(a) +
µ

2
× (Ib+a(a)− Ib−a(a)) .(3.53)

Finally, if we now conbine the Theorem 3.10 with the identity (3.45) of
Corollary 3.24 we have the following statment:

Theorem 3.32. If b, d ∈ N1, then for every a ∈ N1, with gcd(a, b) = 1
and gcd(a, d) = 1, we have

Ib×d(a) = Ib(a) + b× φd {[Ib+a(a)− Ib(a)]× [Id+a(d)− Ia(d)]} .(3.54)

Remark 3.33. Note that, once established the expression (3.54), we could
prove under the hypotheses of Theorem 3.32 the validity of

Ib×d(a) = Id(a)+d×φb {[Id+a(a)− Id(a)]× [Ib+a(b)− Ia(b)]} .
(3.55)

Remark 3.34. All our results, with suitable assumptions, can be general-
ized to group of units, like

(Z/(Z)∗, with ( =
nY
l=1

dl; dl ∈ N1.

Theorem 3.15 is complemented by a nice identity for the (MMIO) Ipm(·).
This is summarized in the following theorem.

Theorem 3.35. Let a ∈ (Z/pZ)∗, with p > 1 a prime number. Then for
all m ∈N, we have

Ipm(a) = a0+a1×p+a2×p2+a3×p3+ . . .+am−1×pm−1,(3.56)



286 Luis A. Cortés Vega

where

a0 = Ip(a),
a1 = φp {Ip(a)× Ia(p)− 1} ,
a2 = φp

n
Ip(a)× φa

³
Ia2(p)

´
− 1

o
,

a3 = φp
n
Ip(a)× φa

³
Ia3(p)

´
− 1

o
,

...
...

am−1 = φp
n
Ip(a)× φa

³
Iam−1(p)

´
− 1

o
.

Here,
Ian(p) = Ia(p)× Ia(p)× · · · × Ia(p)| {z }

n−times

.

Proof. This result can be shown using the Theorem 3.15 with b = d = p
and by using the property (I1) of Theorem 3.4. 2

Remark 3.36. In addition, we see that if p = 2 and a ∈ N1 is an odd
number. Then for all m ∈N, we have

I2m(a) = a0 + a1 × 2 + a2 × 22 + a3 × 23 + . . .+ am−1 × 2m−1,(3.57)

where, now

a0 = 1,

a1 = φ2 {Ia(2)− 1} ,
a2 = φ2

n
φa
³
Ia2(2)

´
− 1

o
,

a3 = φ2
n
φa
³
Ia3(2)

´
− 1

o
,

...
...

am−1 = φ2
n
φa
³
Iam−1(2)

´
− 1

o
.

Here,
Ian(2) = Ia(2)× Ia(2)× · · · × Ia(2)| {z }

n−times

.

Notice also that

Ia(2) =
1 + a

2
.
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4. Numerical experiments

The Chinese Remainder Theorem (CRT), is actually one of the main the-
orems of number theory [10]. Over the year, has been playing a prominent
role due to its applicability in other fields of science, engineering and en-
gineering genetic; see, for example [28] for Photo Radar, [10, 29] for Cryp-
tography and Theory of Code, [32] for Circuits on Systems, [14] for Matrix
Theory, [5, 7] for Acoustic Diffusers and [13] for DNA Sequencing. For
illustrative purposes, here we given some numerical examples. The discus-
sion is limited only to Chinese remainder theorem in the spirit of [5]. For
the sake of completeness we outline it, emphasizing some specific facts.

Theorem 4.1 (Algorithmic Functional-CRT). Let b1 and b2 relatively
prime in N, with b1, b2 ≥ 2 and ( = b1 × b2. Let γ and β be two arbitaries
numbers such that γ ∈ Z/b1Z and β ∈ Z/b2Z, respectively. Then we can
find in the set Z/(Z one unique element a that sastifies the system:⎧⎪⎨⎪⎩

φb1(a) = γ,

φb2(a) = β.
(4.1)

An explicit version of the solution of (4.1), in the case b2 > b1 have the
form (for more detaild, see [5]):

a = β + b2 × φb1 {Ib1 (φb1(b2))× [γ + β × (b1 − 1)]} .(4.2)

To ilustrate some of our results, we analyze the numerical form of the
solution of following system: ⎧⎪⎨⎪⎩

φ45(a) = 31,

φ52(a) = 47.
(4.3)

For tested it, we first recall that all the conditions of Theorem 4.1, can
be verified. Now, min {45, 52} = 45. As we have already mentioned, the
expression (4.2) yeld to:

a = 47 + 52× φ45 {I45 (φ45(52))× [31 + 47× (45− 1)]} .

As, φ45(52) = 7, we get a = 47 + 52 × φ45 {I45(7)× [31 + 47× 44]} . In
order to recover the solution a of (4.3) and to facilitate the computation of
the (MMIO) I45(7), one may works as follows:
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First, computation of I45(7) using, for instance, the formula (3.48). In
fact, if b× d = 45, selecting, e.g., b = 9 and d = 5, therefore b > d+ 3. So
one finds that a = 7 ∈ (d + 1, b − 1) ∩N = (6, 8) ∩N, with gcd(7, 9) = 1
and gcd(7, 5) = 1. So, the Theorem 3.26 is applicable. Hence one has that

I45(7) = I9(7) + 9× φ5

½
1

4
[I16(7)− I2(7)]× [I12(5)− I2(5)]

¾
= I9(7) + 9× φ5

½
1

4
[I16(7)− I2(1)]× [I12(5)− I2(1)]

¾
= I9(7) + 9× φ5

½
1

4
[I16(7)− 1]× [I12(5)− 1]

¾
.

For the computing of I9(7), we use, for instance, the Corollary 3.24,
identity (3.45). In fact:

I9(7) = I2+7(7) = I2(7) + L7(2) = 1 + φ7[6× I7(2)] = 1 + φ7[6× 4] = 4.

Now, for the computing of I16(7) and I12(5), we use, for instance, the
Corollary 3.20, identity (3.42). In fact:

I16(7) = I2+2×7(7) = I2(7) + 2×L7(2) = 1 + 2× 3 = 7

and

I12(5) = I2+2×5(5) = I2(5) + 2×L5(2)
= 1 + 2× φ5[4× I5(2)] = 1 + 2× φ5[4× 3] = 5,

I45(7) = I9(7) + 9× φ5

½
1

4
[I16(7)− 1]× [I12(5)− 1]

¾
= 4 + 9× φ5

½
1

4
[7− 1]× [5− 1]

¾
= 4 + 9× φ5

½
1

4
× 6× 4

¾
= 4 + 9× φ5(6) = 4 + 9× 1 = 13.

Consequently, the solution of (4.3) reduces to:

a = 47 + 52× φ45 {13× [31 + 47× 44]} .(4.4)

Now by the properties (φ5), (φ4) and (φ2) of Theorem 2.1, we get
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φ45 {13× [31 + 47× 44]} = φ45 {13× [31 + 2× 44]}
= φ45 {13× 74} = φ45 {13× 29} .(4.5)

Now, Theorem 2.3, the properties (φ5) and (c4) of Theorem 2.1 yields
to

φ45 {13× 29} = φ5(13× 29) + 5× φ9(C5(13× 29))
= φ5(φ5(13)× φ5(29)) + 5× φ9(C5(13× 29)) = φ5(3× 4)
+ 5× φ9 [C5(13)× 29 + φ5(13)×C5(29) + C5(φ5(13)× φ5(29))]

= φ5(12) + 5× φ9 [2× 29 + 3× 5 +C5(3× 4)]
= 2 + 5× φ9 [2× 2 + 3× 5 + 2] = 17.

It then follows from (4.5) and (4.4) that a = 931 and a < 2340, like we
should expect.

Remark 4.2. Alternatively, if we apply Eq. (3.32) of Theorem 3.15 twice,
we obtain the same value for the (MMIO) I45(7). In fact,

I45(7) = I9×5(7) = I9(7) + 9× φ5 {I5(7)× I7(9)− 1}
= I9(7) + 9× φ5 {I5(2)× I7(2)− 1}
= I9(7) + 9× φ5 {3× 4− 1}
= I3(7) + 3× φ3 {I3(7)× I7(3)− 1}+ 9× φ5 {11}
= I3(1) + 3× φ3 {I3(1)× I7(3)− 1}+ 9× φ5 {1}
= 1 + 3× φ3 {1× 5− 1}+ 9× 1 = 13.

Also, as φ7(15) = 1, we could use the Corollary 3.17, formula (3.35). In
fact,

I45(7) = I15×3(7) =
1

7
× (1− 15) + 15× I3(7)

= −1
7
× 14 + 15× I3(1) = 13.
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