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Abstract

Let R be a commutative ring with identity and M a unital R-
module. For any submodule N of M and non-empty subset T of R,
let SMT (N) = {m ∈M : rm ∈ N for some r ∈ R \ T}. In this article
we study conditions under which SMT (N) is a submodule of M and
investigate when it is a union of prime submodules.
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1. Introduction

Let R be a ring, M be an R-module and N be a submodule of M . The
saturation of N with respect to p ∈ Spec(R) is the contraction of Np in
M and designated by Sp(N). It is known that Sp(N) = {x ∈ M : sx ∈ N
for some s ∈ R \ p}. It is shown that Sp(N) is a p-prime submodule of
M if and only if (Sp(N) : M) = p [2, Theorem 2.3]. Moreover, if M
is a finitely generated R-module and N a proper submodule of M such
that p = (N : M), then Sp(N) is a prime submodule of M [2, Corollary
3.4]. In particular, if N = pM and p ⊇ Ann(M), then Sp(N) is a prime
submodule of M ([2, Corollary 3.8] or by combining [3, Theorem 2.1] and
[3, Proposition 3.8]). In this paper, we replace the ideal p by an arbitrary
subset T ofR and investigate the properties of SM

T (N) = {m ∈M : rm ∈ N
for some r ∈ R \ T}, in particular considering when it is a submodule of
M . We show that if M is a Noetherian module and N is a submodule of
M with (N : M) ⊆ T , then ST (N) is a union of prime submodules of the
form (N :M r) for some r ∈ R \ T .

2. Saturation of submodules

In this note all rings are commutative rings with identity and all modules
are unital. For a submodule N of M , by (N : M) we mean the ideal
{r ∈ R : rM ⊆ N} of R. Also, if there is no ambiguity we write ST (N)
instead of SM

T (N).

The first few results gather together some basic properties of saturation.

Proposition 2.1. Let R be a ring and, T1 and T2 be subsets of R. For an
R-module M and submodules N , K of M with N ⊆ K, we have;

(1) N ⊆ ST (N).

(2) (N :M) ⊆ ST (N :M) ⊆ (ST (N) :M).

(3) If ST (K) is a submodule of M , then ST (
K
N ) =

ST (K)
N .

(4) ST (N) ⊆ ST (K).

(5) ST1(ST2(N)) = ST2(ST1(N)). Moreover, if T1 ⊆ T2, then ST1(N) ⊇
ST2(N).
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Proof. Clear. 2 Let T = {0} and N = 0. Then ST (N) = {x ∈ M :
rx = 0 for some r ∈ R \ {0}} is the set of all torsion elements of M . If
R is an integral domain, ST (M) will be a submodule of M but this is not
true in general. For example, let R = M = Z6. Then 2̄, 3̄ ∈ S0(0) but
3̄− 2̄ /∈ S0(0) since 1̄ /∈ S0(0).

Lemma 2.2. Let R be a ring andM be an R-module. Let N be a submod-
ule of M and T be a subset of R such that (N :M)T . Then ST (N) =M .
However, the converse is not true in general.

Proof. Let r ∈ (N : M) \ T . Then rM ⊆ N with r ∈ R \ T and hence
M ⊆ ST (N). For the last part, it suffices to take M = Q, R = N = Z
and T = {0}. 2 If (N : M)T , then (R \ T ) ∩ (N : M) 6= ∅ and hence
ST (N) =M . So this will not give us any information. Therefore we always
assume that (N :M) ⊆ T .

Lemma 2.3. Let R be a ring, M be an R-module and N be a submodule
of M . Then ST (N) is a submodule of M if and only if it is closed under
addition.

Proof. Clear. 2

Proposition 2.4. Let R be a valuation ring andM be an R-module. Then
ST (N) is a submodule of M for any submodule N of M .

Proof. Let N be a submodule of M and m1, m2 ∈ ST (N). Then there
exist r1, r2 ∈ R \ T such that r1m1, r2m2 ∈ N . Since the ideals of R
are totally ordered by inclusion, we may assume that (r1) ⊆ (r2). Thus
r1 = rr2 for some r ∈ R and hence r1(m1 + m2) = rr2(m1 + m2) ∈ N ,
that is m1 + m2 ∈ ST (N). By Lemma 2.3, we have the result. 2 Let
M be an R-module. A proper submodule P of M is called a prime or
p-prime submodule of M , if for r ∈ R and m ∈ M , rm ∈ P implies that
r ∈ p = (P :M) or m ∈ P .

Proposition 2.5. Let N be a proper submodule of M and T = (N :M).
Suppose that ST (N) is a proper submodule of M . Then

(1) ST (N) is a prime submodule of M .

(2) T is a prime ideal of R if and only if ST (ST (N)) = ST (N).
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Proof. (1) Let rm ∈ ST (N) and m /∈ ST (N). Then there exists r
0 ∈

R \ T such that r0(rm) ∈ N . Since m /∈ ST (N), (r
0r)m ∈ N implies that

r0r ∈ T = (N :M). Thus r0(rM) ⊆ N and hence rM ⊆ ST (N). Therefore
r ∈ (ST (N) :M) and hence ST (N) is a prime submodule of M .

(2) (⇒) Let T be a prime ideal of R. By Proposition 2.1, ST (N) ⊆
ST (ST (N)). Let m ∈ ST (ST (N)). Then there exist r, r

0 ∈ R \ T such
that r0rm ∈ N . Since T is assumed to be prime, r0r /∈ T and hence
m ∈ ST (N). Thus we have ST (ST (N)) ⊆ ST (N). (⇐) Suppose that T is
not a prime ideal of R. Since (N :M) ⊆ (ST (N) :M) and ST (N), by (1),
is a prime submodule of M , we have (N : M) ⊂ (ST (N) : M). Thus we
have (ST (N) :M)T and hence by Lemma 2.2, ST (ST (N)) =M . Therefore
ST (ST (N)) 6= ST (N). 2

Proposition 2.6. Let P be a prime submodule of M and T be a subset
of R such that ST (P ) 6=M . Then ST (P ) = P .

Proof. Let m ∈ ST (P ). Then there exists r ∈ R \ T such that rm ∈ P .
Since ST (P ) 6= M , by Lemma 2.2, we have (N : M) ⊆ T and hence
r /∈ (N : M). But P is prime and therefore rm ∈ P implies that m ∈ P ,
that is ST (P ) ⊆ P . So we have the equality. 2

Proposition 2.7. Let R be a ring and M be an R-module.

(1) If N ⊆ K are submodules of M such that SM
T (N) is a submodule of

M , then SK
T (N) is a submodule of K.

(2) If M = i ∈ I⊕Mi and SM
T (i ∈ I⊕Ni) is a submodule of M , where

Ni is a submodule of Mi, then SMi
T (Ni) is a submodule of Mi and

SM
T (i ∈ I⊕Ni) = i ∈ I⊕SMi

T (Ni).

Proof. (1) Clearly SK
T (N) is the intersection of two submodules S

M
T (N)

and K of M and hence we have the result. (2) Let x, y ∈ S
Mj

T (Nj).
Then x, y ∈ SM

T (i ∈ I⊕Ni) and hence there exists r ∈ R \ T such that
r(x+y) ∈ i ∈ I⊕Ni, by hypothesis. Thus r(x+y) ∈ (i ∈ I⊕Ni)∩Mj = Nj

with r ∈ R \ T , that is x+ y ∈ S
Mj

T (Nj). 2

Example 2.8. Let R = M = Z4 ⊕ Z4, M1 = Z4 ⊕ 0, M2 = 0 ⊕ Z4,
N1 = 2Z4⊕0, N2 = 0⊕2Z4 and consider T to be {(0̄, 0̄), (0̄, 2̄), (2̄, 0̄), (2̄, 2̄)}.
Then SM1

T (N1) = M1 and SM2
T (N2) = M2 are submodules of M1 and M2

but SM
T (N1 ⊕ N2) = SM1⊕M2

T (N1 ⊕ N2) is not a submodule of M . Since
(3̄, 0̄), (0̄, 3̄) ∈ SM

T (N1 ⊕N2) but (3̄, 0̄) + (0̄, 3̄) = (3̄, 3̄) /∈ SM
T (N1 ⊕N2).
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Proposition 2.9. Let W be a multiplicatively closed subset of R, M be
an R-module and N be a submodule of R such that SM

T (N) is a submodule

of M . Then SMW
T (NW ) is an R-submodule of MW .

Proof. (SM
T (N))W is a submodule of MW and we will show that it is

equal to (SMW
T (NW )). Let

m
w ∈ (SM

T (N))W . Then there exists r ∈ R \ T
such that rm ∈ N and hence rm

w ∈ NW , that is,
m
w ∈ SMW

T (NW ). Now,

let m
w ∈ SMW

T (NW ) for some m ∈ M and w ∈ W . Then there exists
r ∈ R \ T such that rmw ∈ NW . So, rw

0m ∈ N for some w0 ∈ W and

hence rmw = rw
0m

w0w ∈ NW . This means that m
w ∈ (SM

T (N))W . Hence

(SM
T (N))W = (SMW

T (NW )). 2

Proposition 2.10. Let f : R → S be a ring homomorphism and M be
an S-module. Consider M as an R-module with the scalar multiplication
defined by r.m = f(r)m. For a S-submodule N of M the following hold:

(1) If f is injective, then SM
T (N) ⊆ SM

f(T )(N).

(2) If f is surjective, then SM
f(T )(N) ⊆ SM

T (N).

Proof. (1) Let f be injective and m ∈ SM
T (N). Then r.m ∈ N for some

r ∈ R \ T and since f is injective, f(r) /∈ f(T ). Hence m ∈ SM
f(T )(N).

(2) Let f be surjective and m ∈ SM
f(T )(N). Then sm ∈ N for some

s ∈ S \ f(T ) and since f is surjective, s = f(r) for some r ∈ R \ T . Hence
r.m = f(r)m = sm ∈ N . Therefore m ∈ SM

T (N). 2

Let R be a ring. An ideal I of R is said to be irreducible if it cannot be
written as the intersection of two ideals, both of which properly contain it.

Theorem 2.11. Let R be a ring.

(1) For every cyclic R-module M and arbitrary submodule N of M ,
ST (N) with T = (N :M), is a submodule of M if and only if ST (T )
is a (prime) ideal of R.

(2) Let T be an ideal of R. Then for every R-module M and for every
submodule N of M , ST (N) is a submodule of M if and only if every
ideal of R contained in T is an irreducible ideal of R.
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Proof. (1) (⇒) Consider the cyclic R-module R and let I be an arbitrary
ideal of R. Then T = (I : R) = I and ST (I) = ST (T ) is an ideal of R. If I
is a proper ideal of R, then ST (I) 6= R and hence, by Proposition 2.5, it is
a prime ideal of R . (⇐) Let N be a submodule of M and x1, x2 ∈ ST (N).
Then there exist r1, r2 ∈ R \ T , such that r1x1, r2x2 ∈ N . Since ST (T )
is a prime ideal of R, r1r2 /∈ T and hence r1r2(x1 + x2) ∈ N implies that
x1 + x2 ∈ ST (N). Now, by Lemma 2.3, we have the result.

(2) (⇐) LetM be an R-module, N be a submodule ofM . Assume that
every ideal contained in T is an irreducible ideal of R. Letm1,m2 ∈ ST (N).
Then there exist r1, r2 ∈ R\T such that r1m1, r2m2 ∈ N . If Rr1∩Rr2 ⊆ T ,
then Rr1 ⊆ Rr2 or Rr2 ⊆ Rr1. Let, for example, Rr1 ⊆ Rr2. Then
r1(m1 +m2) = r1m1 + r1m2 = r1m1 + r0r2m2 ∈ N and hence m1 +m2 ∈
ST (N). If Rr1∩Rr2T , choose r ∈ Rr1∩Rr2\T . Then there exist r01, r02 ∈ R
such that r(m1+m2) = r01r1m1+r

0
2r2m2 ∈ N and hencem1+m2 ∈ ST (N).

(⇒) Let I, J be incomparable ideals of R such that I ∩ J ⊆ T . We will
show that there exists an R-moduleM and a submodule N ofM such that
ST (N) is not a submodule of M . Let a ∈ I \J and b ∈ J \ I, M = R

(a) ⊕
R
(b)

and N = 0. Then a(1̄, 0̄) = (0̄, 0̄) = b(0̄, 1̄) and hence (1̄, 0̄), (0̄, 1̄) ∈ ST (0).
Now, it is clear that there is no element r ∈ R \T such that r(1̄, 1̄) = (0̄, 0̄)
and hence ST (0) is not a submodule of M . 2

Let R be a ring and M be an R-module. For a submodule N of M , let
sT (N) = {m ∈M : rm ∈ N for some r ∈ R \ T such that rs ∈ T for some
s ∈ R implies that s ∈ T}. It is clear that, sT (N) is an R-submodule of M
for every submodule N of M .

Theorem 2.12. Let R be a ring and T be a subset of R such that Z(R) ⊆
T .

(1) sT (N) = N for every R-module and for every submodule N of that
module if and only if R is a total quotient ring.

(2) ST (N) = N for every R-module and for every submodule N of that
module if and only if R is a field.

Proof. (1) (⇒) Let M be an R-module, N be a submodule of M and
m ∈ sT (N). Then there exists r ∈ R \ T such that rm ∈ N . Since R is
a total quotient ring and r /∈ Z(R), r is a unit and hence m ∈ N . (⇐)
Let r ∈ R be a regular element of R and consider the submodule Rr of the
R-module R. Since r.1 ∈ Rr, we have 1 ∈ sT (Rr) = Rr and hence Rr = R,
that is r is a unit.
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(2) (⇒) Let M be an R-module, N be a submodule of M and m ∈
ST (N). Then there exists r ∈ R\T such that rm ∈ N . Since R is a field, r
is a unit and hence m ∈ N . (⇐) Let r ∈ R be a non-zero element of R and
consider the submodule Rr of the R-module R. Since r.1 ∈ Rr, we have
1 ∈ ST (Rr) = Rr and hence Rr = R, that is r is a unit. 2

Theorem 2.13. Let R be a ring. The following conditions are equivalent:

(1) s(N :M)(N) = S(N :M)(N) for every R-module M and its submodule
N ;

(2) For every R-module M and its submodule N , either s(N :M)(N) =M
or s(N :M)(N) is a prime submodule of M .

Proof. (1) ⇒ (2) Suppose that s(N :M)(N) be a proper submodule of
M . Hence, by (1), S(N :M)(N) is a proper submodule of M . Therefore, by
Proposition 2.5, S(N :M)(N) and hence s(N :M)(N) is a prime submodule of
M .

(2)⇒ (1) Let M be an R-module and N be a proper submodule of M .
By (2), s(N :M)(N) is a prime ideal of R. Now, it is clear that s(N :M)(N) =
S(N :M)(N). 2

3. ST (N) as a union of prime submodules

In this section, we consider the question of when for an R-module M , the
set ST (M) is a union of prime submodules.

Let R be a ring and M be an R-module. It is known that if I is a
maximal of {(0 : m) : 0 6= m ∈ M}, then I is a prime ideal of R [1, p.4,
Theorem 6]. Also, if M is a finitely generated nonzero module, then Z(M)
is the union of a finite number of prime ideals each of which is (0 : m) for
some nonzero element m of M [1, p.55, Theorem 80]. In this section, we
will see that ST (N), for some submodule N ofM with ST (N) 6=M of some
finitely generated modules M over Noetherian rings has similar properties.

Theorem 3.1. Let M be an R-module and L be a submodule of M such
that ST (L) 6= M with T = (L : M). Let Σ = {N : NM such that
N ⊆ ∪(L :M rλ) for some {rλ} ⊆ R}. Then a maximal element of Σ is
prime.
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Proof. Let N = ∪(L :M rλ) be a maximal element of Σ and let rm ∈ N
but m /∈ N . Assume that rrλ /∈ T for every λ ∈ Λ. So, for every λ ∈ Λ,
(L :M rλ) ⊆ (L :M rrλ) and hence N1 = ∪(L :M rrλ) ⊇ ∪(L :M rλ) =
N . Also, it is clear that N1 is a submodule of M with N1 ⊆ ST (L) and
hence by maximality of N we have N1 = N . Now rm ∈ N implies that
rm ∈ (L :M rλ), for some λ ∈ Λ. Therefore m ∈ (L :M rrλ) ⊆ N1 = N , a
contradiction. This shows that there must exist a λ ∈ Λ such that rrλ ∈ T .
But then rM ⊆ (L :M rλ) ⊆ N , that is r ∈ (N :M) and hence N is prime.
2

Theorem 3.2. Let M be an R-module and L be a submodule of M such
that ST (L) 6= M with T = (L : M). Then ST (L) is a union of prime
submodules of M .

Proof. For m ∈ ST (L), set Σm = {N : NM,m ∈ N ⊆ ST (L) and
N = ∪(L : rλ) for some {rλ} ⊆ R}. Suppose that rm ∈ ST (L) for some
r ∈ R \ T . Then m ∈ (L :M r) ⊆ ST (L) and hence Σm 6=. Partially order
Σm by inclusion. By Zorn’s Lemma, Σm has a maximal elementNm which is
a prime submodule ofM , by Theorem 3.1 and hence ST (L) = ∪m∈ST (L)Nm,
that is ST (L) is a union of prime submodules of M . 2

Theorem 3.3. Let L ba submodule of M and ΦL = {(L :M r) ⊆M : r ∈
R \ T}. Then a maximal element of ΦL is a prime submodule of M .

Proof. Let P = (L :M r) be a maximal element of ΦL. Let r
0m ∈ P

and m /∈ P . Then rr0m ∈ L but rm /∈ L. Since P is maximal and P ⊆
(L :M rr0), either P = (L :M rr0) or (L :M rr0) = M . If P = (L :M rr0),
then m ∈ (L :M rr0) = P , a contradiction. Thus (L :M rr0) = M , that is
r(r0M) = rr0M ⊆ L. Therefore r0M ⊆ (L :M r) = P . Thus r0 ∈ (P : M)
and hence P is prime. 2

Theorem 3.4. Let M be a Noetherian R-module . For a submodule L of
M and any subset T of R with (L : M) ⊆ T , ST (L) = ∪{P : P is a prime
submodule of M , P = (L :M r) for some r ∈ R \ T}.

Proof. Let m ∈ ST (L) and so rm ∈ L for some r ∈ R \ T . Then
m ∈ (L :M r)M , since (L : M) ⊆ T . Let ΦL,r = {(L :M r0) : r0 ∈ R \
T, (L :M r) ⊆ (L :M r0)}. Then, by hypothesis, ΦL,r has a maximal element
(L :M s) which is a prime submodule of M by Theorem 3.3. Therefore,
m ∈ (L :M r0) ⊆ (L :M s) and hence ST (L) is a union of prime submodules
of the form (L :M s) for some s ∈ R \ T . 2
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