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Abstract

In this paper we study the relation between finite topologies and
digraphs. We associate a digraph to a topology by means of the “spe-
cialization” relation between points in the topology. Reciprocally, we
associate a topology to each digraph, taking the sets of vertices adja-
cent (in the digraph) to v, for all vertex v, as a subbasis of closed sets
for the topology.

We use these associations to examine the relation between a simple
digraph and its homologous topology. We also extend this relation to
the functions preserving the structure between these classes of objects.
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1. Introduction

The one to one correspondence between finite preorder relations and finite
topologies with the same underlying set of points, and also between finite
posets and finite T0 topologies is well known. Then, the one to one cor-
respondence between finite digraphs and topologies is easily deducible. In
fact, Evans, Harary and Lynn [3] prove that “There is a 1-1 correspondence
between the labeled topologies with n points and the labeled transitive di-
graphs with n points”. They associate a transitive digraph D(T ) to a
topology T with the same set of points as follows: “For two distinct points
u and v of T , u will be adjacent to v in D(T ) provided u is in every neigh-
borhood of v”. Reciprocally, “to each labeled transitive digraph D with
n points, there corresponds a unique labeled topology T (D), in which the
basic open sets are the sets of points adjacent to v, for all points v”.

In this paper, we study the relations between finite topologies and di-
graphs in a different way. We associate a digraph to a topology by means
of the “specialization” relation between points in a topological space: x is a
specialization of y if and only if x is in the closure of {y}. This relation was
introduced in a pioneering work by Alexandroff [1] and it has been used by
Grothendieck and Dieudonné [5] to characterize the generic points of the
irreducible components of a topological space as the maximal points of this
binary relation. Reciprocally, we associate a topology T to each digraph D
(not necessarily transitive) taking the sets of vertices adjacent to v in D,
for all vertices v, as a subbasis of closed sets for the topology T .

In section 2 we use these two associations to make a more profound
study of the relations between simple digraphs and their homologous topolo-
gies. We also extend the relation between these structures to the functions
preserving the structure between these classes of objects.

In section 3 we restrict the study to the particular bijective relation
between finite acyclic transitive digraphs and T0 topologies. In this context
we consider dual concepts to those used in the preceding section to obtain
a minimum basis of open sets for the topology T and to prove that the set
of the closures of the points in T is the minimum basis of open sets in the
dual situation.

This work corresponds to the unpublished first chapter of the author’s
Ph.D. [6].
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1.1. Finite digraphs

By a digraph we mean a couple (X,G) where X is a finite nonempty set
and G ⊂ X ×X − {(x, x) : x ∈ X}, (so our digraph has no loops). The
elements in X and G are called points and arcs respectively. For an arc
(x, y) we will say that x is adjacent to y. In the following we will denote
by xy an arc (x, y).

A sequence x1x2 . . . xqxq+1, q ≥ 2, of distinct points, except xq+1 = x1,
is a cycle if xixi+1 ∈ G for i = 1, 2, . . . , q. A digraph is acyclic if it has
no cycle. A digraph (X,G) is said to be totally disconnected if G = ∅.

The non existence of loops in a digraph requires the following correction
in the standard concepts of transitivity and antisymmetry.

Definition 1. A digraph (X,G) is said to be transitive if xy, yz ∈ G,
with x 6= z, then xz ∈ G. A digraph (X,G) is said to be antisymmetric
if xy ∈ G, then yx /∈ G.

We denote the set of digraphs with a set of points X by GX , the subset
of transitive digraphs by GTX and the antisymmetric transitive digraphs by
GTAX .

Proposition 2. Let (X,G) be a transitive digraph. Then (X,G) is
acyclic if and only if it is antisymmetric.

Proof: An acyclic digraph is antisymmetric because, if there are arcs xy
and yx, then it must be the cycle xyx. Reciprocally, if x1 . . . xqxq+1 is a
cycle then, by transitivity, x1xq and xqx1 are arcs, in contradiction with
the antisymmetric property.

1.2. Finite topological spaces

Let X be a nonempty set whose elements we will call points. Then, a
topology T on X is a set of subsets of X, including ∅ and X, that is closed
under union and finite intersection and the couple (X,T ) is a topological
space on X. The elements in T are called open sets and their comple-
ments closed sets. The largest topology on X, T = P(X), is called the
discrete topology. If (X,T ) is a topological space and A ⊂ X, the clo-
sure of A is the minimum closed set that contains A, and we denote it by
ĀT , or simply by Ā if there is no possible confusion. We also use some
other standard topological concepts such as basis and subbasis of open or
closed sets, neighborhood, connection,. . . as can be see in [8].
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In the following definition we describe some “separation properties” by
means of conditions easily related to each other. In this context, we use Ed

to denote the derived set of E ⊂ X.

Definition 3. Let (X,T ) be a topological space. Then we will say that
(X,T ) is T0 if ∀x ∈ X, {x}d is a union of closed sets or, equivalently, if
∀x, y ∈ X, with x 6= y, then {x} 6= {y} (Kolmogoroff, 1935). (X,T ) is
TD if ∀x ∈ X, {x}d is a closed set (Aull-Taron, 1963). (X,T ) is T1 if
∀x ∈ X, {x}d = ∅ or, equivalently, if ∀x ∈ X, {x} = {x} (Frechet, 1906).

It is well known that, in general, T1 =⇒ TD =⇒ T0, and that the
reciprocal is not true.

A topological space (X,T ) is finite if the set X is finite. In this case,
the following result can be deduced from the above definitions.

Lemma 4. Let (X,T ) be a finite topological space. Then

1. TD ⇐⇒ T0.

2. T1 ⇐⇒ T is the discrete topology.

Other separation properties, of a general topological space, more re-
strictive than T1 (such as T2, T2a, T3, T3a, T4, . . . ) are equivalent, in a finite
topological space, to T1. In this way, T0 is the only relevant separation
property in a finite nondiscrete topological space.

2. Relations between topological spaces and digraphs

The “specialization” relation between points in a topological space was
introduced by Alexandroff [1].

Definition 5. Let (X,T ) be a topological space. For each pair of points
x, y ∈ X we will say that x is a specialization of y if and only if x ∈ {y}.

The specialization relation is a preorder on X: it is obviously reflexive,
and is transitive because

x ∈ {y} =⇒ {x} ⊂ {y} and y ∈ {z} =⇒ {y} ⊂ {z}

and so x ∈ {x} ⊂ {z}. But, in general, it is not antisymmetric, because
in a topology, distinct points can have the same closure, in which case the
points are related in both ways.
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This relation permits us to associate a digraph over X to each topolog-
ical space on the set of points X. We denote the set of topological spaces
over a same finite set of points X by TX , and the set of T0 topological
spaces over X by T 0X .

Proposition 6. Let f : TX −→ GX be the function given by f(X,T ) =
(X,G) where G is the set of arcs

G = {xy : x ∈ {y}, x 6= y}

Then a) f is injective.

b) f(X,T ) = (X,G) is a transitive digraph.

c) f is not suprajective.

Proof: a) If T and T 0 are distinct topologies over X, then there exists at
least a point x with distinct respective closures, that is to say, {x}T 6=
{x}T 0 . Then, there exists a point y with y ∈ {x}T and y /∈ {x}T 0 (or
vice versa) and so yx ∈ G and yx /∈ G0 (or vice versa), then f(X,T ) 6=
f(X,T 0).

b) It is a consequence of the transitivity of the specialization relation.

c) f is not suprajective because the nontransitive digraphs do not procced
from any topology.

It is also possible to associate a topological space overX to each digraph
with set of points X by means of the following procedure.

Definition 7. Let g : GX −→ TX be the function given by g(X,G) =
(X,T ) where T is the topology over X generated by the subbasis of closed
sets

G ↓= {x ↓: x ∈ X}, where x ↓= {y : yx ∈ G} ∪ {x}

We also use the notation g(G) = T.

Proposition 8. With the notations as above we have

a) g is suprajective.

b) g ◦ f is the identity function on TX .

c) g is not injective.
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d) g does not preserve the inclusion relation between digraphs.

e) f ◦ g : GX −→ GX is not the identity and nor does it preserve the
inclusion.

Proof: a) For any topological space (X,T ) ∈ TX we consider the digraph
(X,G) = f(X,T ) and we will prove that g(X,G) = (X,T ). We have
G = {xy : x ∈ {y}, x 6= y} and g(X,G) is the topological space (X,T 0)
whose subbasis of closed sets is G ↓= {x ↓: x ∈ X} where

x ↓ = {y : yx ∈ G,x 6= y} ∪ {x}
= {y : y ∈ {x}, x 6= y} ∪ {x}
= {x}

so G ↓= {{x} : x ∈ X} and, as this is the subbasis of closed sets of the
topology T , we have T = T 0.

b) gof = ITX is a consequence of the construction in a).

Next we give counterexamples proving c), d) and e).

Example 9. For each of the digraphs (X,G) on Figure 1 we construct:

a) the family G ↓ of unipoint adjacencies x ↓ (that we will take as a
subbasis of closed sets for the topology T = g(G)),

b) the topology T given by its closed sets,

c) the family T = {{x}, x ∈ X} of unipoint closures of T and

d) the digraphs f(X,T ), that we denote by G0, given in Figure 2. In
this way we have f ◦ g(G) = G0 according to the scheme

G −→ G ↓−→ T −→ T −→ G0
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Figure 1

G1 ↓= {x1 ↓= {x1, x2}, x2 ↓= {x2, x3}, x3 ↓= X}, T1 = {{x2}, {x1, x2},
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{x2, x3},X, ∅} and T 1 = {{x1} = {x1, x2}, {x2} = {x2}, {x3} = {x2, x3}}.

G2 ↓= {x1 ↓= {x1, x2}, x2 ↓= {x1, x2}, x3 ↓= {x2, x3}}, T2 = T1 and
T 2 = T 1.

G3 ↓= {x1 ↓= {x1, x2}, x2 ↓= {x2}, x3 ↓= X}, T3 = {{x2}, {x1, x2},X, ∅}
and T 3 = {{x1} = {x1, x2}, {x2} = {x2}, {x3} = X}.

G4 ↓= {x1 ↓= {x1, x2}, x2 ↓= {x2, x3}, x3 ↓= {x1, x3}}, T4 is the
discrete topology and T 4 = {{x1} = {x1}, {x2} = {x2}, {x3} = {x3}}.
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Figure 2

Note that G1 and G2 are non comparable by the inclusion relation but
they have the same image by g and by f ◦ g, proving c) of Proposition 8.

G1 and G3 verify G3 ⊂ G1 but f ◦ g(G3) ⊃ f ◦ g(G1), proving e) of
Proposition 8.

G1 and G4 verify G4 ⊂ G1 and T4 ⊃ T1 and, consequently, g(G4) ⊃
g(G1) and f ◦ g(G4) ⊃ f ◦ g(G1), proving d) of Proposition 8.

G3 and G4 are digraphs with “regular behaviour” under f and g as we
shall see now.

The non-transitivity is the cause of these anomalies. In the example,
only G3 is transitive and for this one we have f ◦ g(G3) = G3.

Proposition 10. Let (X,G) be the digraph that is a cycle. Then

a) The topology of g(X,G) associated to the cycle (X,G) is the discrete
topology.

b) The digraph f ◦ g(X,G) associated to the discrete topology g(X,G)
is totally disconnected.

Proof: a) Let X = {x1, . . . xn} and let x1x2 . . . xnxn+1 be, with xn+1 = x1,
the cycle. As xixi+1 ∈ G for 1 ≤ i ≤ n, we have x1 ↓= {xn, x1} and
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xi ↓= {xi−1, xi}, for i = 2, . . . , n. Then xi ↓ ∩xi+1 ↓= {xi} is a closed
set for i = 1, . . . , n and g(X,G) is thus the discrete topological space on
X.
b) In the discrete topology we have {x} = {x} for all points x, and thus,
for f ◦ g(X,G) = (X,G0) we have G0 = {xy : x ∈ {y}, x 6= y} = ∅, i.e., the
digraph (X,G0) is totally disconnected.

If we restrict the function g to the set of transitive digraphs, the relation
between f and g is finally shown to be clear.

Theorem 11. Let (X,G) be a transitive digraph and let g(X,G) =
(X,T ) be its associated topological space.

Then
x ↓= {x} for each x ∈ X

Proof: Because G ↓= {x ↓: x ∈ X} is a subbasis of closed sets for the
topology T , the closed sets of T are obtained as intersections of unions of
sets x ↓ and also as unions of intersections of sets x ↓ (De Morgan’s laws).
So the minimal closed sets (by inclusion) are obtained as an intersection of
sets x ↓. Then, for each point y ∈ X, we consider the intersection of the
closed sets that include y:

Cy =
\
y∈x↓

x ↓

As Cy is the minimum closed set including y, we also have Cy = {y}.
So, it is sufficient to prove that Cy = y ↓.\

y∈x↓
x ↓⊂ y ↓ because y ↓ is one of the sets in the intersection.

If z ∈ y ↓ and y ∈ x ↓ (for each x such that y ∈ x ↓), then, by
transitivity, z ∈ x ↓ for each x such that y ∈ x ↓, then y ↓⊂

\
y∈x↓

x ↓.

Corollary 12. With the notations as above, the function f : TX −→ GTX
is bijective and f−1 = g.

Proof: It is sufficient to prove that f ◦ g = IGTX
. The construction process

of f ◦ g(X,G) from the transitive digraph (X,G) is

G −→ G ↓−→ T −→ T −→ f ◦ g(X,G)

To prove that f ◦ g(X,G) = G, it is sufficient to see that G ↓= T and
this was proved in the previous theorem.
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Remark 13. Let (X,G) be a transitive digraph and (X,T ) its associated
topological space. Then

a) y ↓=
\
y∈x↓

x ↓= {y} that we denote simply by y.

b) Both the digraph and the topology are known by the family G ↓=
T = {x : x ∈ X}. In the digraph, x is the set {y : yx ∈ G} ∪ {x}. In the
topology, x is the minimum closed set that contains x.

In general, x ↓ ⊂ y ↓ implies xy ∈ G. The reciprocal is not true and
characterizes the transitive digraphs.

Proposition 14. Let (X,G) be a digraph. Then (X,G) is transitive if
and only if

xy ∈ G⇐⇒ x ↓ ⊂ y ↓

Proof: =⇒) If (X,G) is transitive, xy ∈ G and if z ∈ x ↓, then zy ∈ G
and z ∈ y ↓. Obviously x ∈ x ↓ ⊂ y ↓ implies xy ∈ G.
⇐=) xy, yz ∈ G with x 6= z ⇐⇒ x ↓ ⊂ y ↓ ⊂ z ↓ with x 6= z ⇐⇒
xz ∈ G.

In the digraph (X,G) with G = {xy, yx, zx, zy} we have x = y = X y
z = {z}. Thus, in a transitive digraph, it can happen that distinct points,
x 6= y, have the same closure x = y and so, in general, Card(G ↓) ≤
Card(X).

Corollary 15. Let (X,G) be a transitive digraph and x, y two distinct
points in the digraph. Then

x = y ⇐⇒ xy, yx ∈ G

The property of a topological space that has distinct closures of all its
points characterizes the separation property T0 (Definition 3). The bijec-
tions f and g for transitive digraphs make the properties T0 and antisym-
metric equivalent. Thus we have the following result:

Theorem 16. Let (X,G) be a transitive digraph and (X,T ) its associ-
ated topological space. Then, the following conditions are equivalent:

a) (X,G) is antisymmetric.

b) x 6= y, for all x 6= y.
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c) Card(G ↓) = Card(X).

d) (X,T ) is T0.

e) (X,G) is acyclic (Proposition 2).

Corollary 17. a) There is a bijective correspondence between transitive
digraphs and finite topological spaces.

b) There is a bijective correspondence between acyclic transitive di-
graphs and finite T0 topological spaces.

The relation between acyclic transitive digraphs and finite T0 topolog-
ical spaces can be extended to the applications preserving the structure
between these classes of objects.

Definition 18. Let (X,G) and (X 0,G0) be two digraphs. By a digraph
morphism ϕ : (X,G) −→ (X 0, G0) we understand a function ϕ : X −→
X 0 such that

xy ∈ G =⇒ ϕ(x) = ϕ(y) or ϕ(x)ϕ(y) ∈ G0

The digraph morphism ϕ is an isomorphism if ϕ is bijective and ϕ−1

is also a digraph morphism.

Definition 19. Let (X,T ) and (X 0, T 0) be two topological spaces. By a
continuous function ϕ : (X,T ) −→ (X 0, T 0) we understand a function
ϕ : X −→ X 0 such that

ϕ(E) ⊂ ϕ(E) for all E ⊂ X

The continuous function ϕ is a homeomorphism if ϕ is bijective and

ϕ(E) = ϕ(E) for all E ⊂ X

Lemma 20. Let (X,T ) and (X 0, T 0) be two finite topological spaces.
Then

a) ϕ : (X,T ) −→ (X 0, T 0) is continuous if and only if ϕ(x) ⊂ ϕ(x) for
all x ∈ X.

b) ϕ : (X,T ) −→ (X 0, T 0) is a homeomorphism if and only if ϕ is
bijective and ϕ(x) = ϕ(x) for all x ∈ X.

Proof: It is a consequence of the properties ϕ(A ∪B) = ϕ(A) ∪ ϕ(B) and
A ∪B = A ∪B applied to the expression E =

[
x∈E

x.
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Theorem 21. Let (X,T ) and (X 0, T 0) be two finite T0 topological spaces
and (X,G) and (X 0, G0) their respective associated acyclic transitive di-
graphs. Let ϕ : X −→ X 0 be a function between their underlying sets of
points. Then

a) ϕ is a continuous function between the topological spaces if and only
if ϕ is a digraph morphism between the respective digraphs.

b) ϕ is a homeomorphism between the topological spaces if and only if
ϕ is an isomorphism between the respective digraphs.

Proof: If ϕ is a continuous function and xy ∈ G, then

x ∈ y =⇒ ϕ(x) ∈ ϕ(y) ⊂ ϕ(y)

and so either ϕ(x) = ϕ(y) or ϕ(x)ϕ(y) ∈ G0.

Reciprocally, if ϕ is a digraph morphism, then, for all z ∈ x with z 6= x,
we have zx ∈ G and so, either ϕ(z) = ϕ(x) or ϕ(z)ϕ(y) ∈ G0. In both
cases we have ϕ(z) ∈ ϕ(x).

Corollary 22. With notations as above and denoting by ≈ both the equiv-
alence relations of homeomorphism and isomorphism, we have that the
quotient function

f/≈ : T 0/≈ −→ GTA/≈

is bijective.

In [3] it was pointed out that the enumeration of transitive digraphs is
a particularly intractable problem. These authors give the number of finite
topologies as a function of the number of finite T0 topologies by means of
the number of partitions of an n-set into m parts, also known as Stirling
numbers of the second kind. These numbers are currently unknown.

For a history of the enumeration of finite order relations and topologies,
and for references about it, see the work of Erné and Stege [4]. These au-
thors describe an algorithm to compute the connected and non connected,
T0 and non T0, topologies on n points for n ≤ 14. These numbers can also
be found in the on-line encyclopedia of integer sequences of Sloane [7].

More recently, Benoumhani [2] has obtained formulas for the number
of labeled topologies on n points having k open sets for k ≤ 12 and for the
number of unlabeled T0 topologies with k open sets for n+ 4 ≤ k ≤ n+ 6.
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3. Dual digraph

A finite T0 topological space (X,T ) and its homologous acyclic transitive
digraph (X,G) are both described by the family T = G ↓= {x : x ∈ X}
as a subbasis of closed sets (Remark 13).

The topological duality between the concepts of open and closed sets
allows us to describe the topology and the digraph over X by the family
{Cx : x ∈ X} as a subbasis of open sets (CA denotes the complementary
set of A ⊂ X). However, these open sets do not form the best subbasis
for a simple description of the topological space (X,T ), and neither is
its homologous digraph concept of interest for a good description of the
digraph (X,G).

On the other hand, it is natural to consider a dual concept in the digraph
for the x (changing the direction of the arrows) and to interpret its meaning
in the topology.

Definition 23. Let (X,G) ∈ GTAX be an acyclic transitive digraph. For
each x ∈ X we will denote

x ↑= {y, xy ∈ G} ∪ {x} and x∗ = {y, x ∈ y}

It can be deduced from the definition that x ∈ y ⇐⇒ y ∈ x∗ and x∗ =
x ↑.

Lemma 24. With the hypothesis and the notations as above, we have

Cx =
[
x/∈y∗

y∗, for all x ∈ X

Proof: We have
z ∈ Cx⇐⇒ z /∈ x⇐⇒ x /∈ z∗

so z∗ is among those that unite and, as z ∈ z∗, we have z ∈
[
x/∈y∗

y∗.

Reciprocally, if z ∈
[
x/∈y∗

y∗, then there exists y ∈ X such that z ∈ y∗, with

x /∈ y∗ and so x /∈ z∗.

Lemma 25. With the hypothesis and the notations as above, we have

x ∈ Cy ⇐⇒ x∗ ⊂ Cy, for all x ∈ X

Proof: If x ∈ Cy and z ∈ x∗, we have xy /∈ G and xz ∈ G. Therefore,
by transitivity, we have zy /∈ G and z ∈ Cy. The reciprocal is clear.
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Lemma 26. With the hypothesis and the notations as above, we have

x∗ =
\

x∗⊂Cy
Cy, for all x ∈ X(3.1)

Proof: One inclusion is clear by the nature of the intersections. To prove
the other we suppose that there exists z ∈ X such that z ∈ Cy whenever
x∗ ⊂ Cy but that z /∈ x∗. Then, we would have x ∈ Cz and, by Lemma
25, x∗ ⊂ Cz. Therefore, we would have z ∈ Cz, which is absurd.

Note that the formula is preserved when the family of opens Cy in the
intersection is empty, since, if there is no y such that x∗ ⊂ Cy, then the
digraph is connected and x is the unique minimal point; in consequence,
x∗ = X is the intersection of the empty family.

Remark 27. 1) The formula (3.1) is the translation in terms of digraphs
of the topological statement “An open is the intersection of all the opens
that contain it”. Note that this lemma proves that the sets x∗ are opens
in the homologous topology to the digraph (X,G).

2) Then, Lemma 25 says that x∗ is the minimum open that contains x,
because the formula (3.1) admits the versions:

x∗ =
\

x∈Cy
Cy, x∗ =

\
x/∈y

Cy

in which the second members are read as “intersection of the opens that
contains x”.

Proposition 28. Let (X,G) ∈ GTAX be an acyclic transitive digraph and
(X,T ) ∈ T 0X its homologous T0 topological space. Then the family T ∗ =
{x∗ : x ∈ X} is a subbasis of open sets for (X,T ).

Proof: {Cx, x ∈ X} is a subbasis of open sets and each Cx is a union of
sets y∗ (Lemma 24), so T ∗ is also a subbasis.

To consider T ∗ as a subbasis of open sets for (X,T ), as opposed to the
family {Cx, x ∈ X}, facilitates a digraph interpretation dual to that of T
as a subbasis of closed sets. We shall now see other topological properties
of T ∗ that justify its choice.

Lemma 29. With the notations as above, we have that T ∗ is a basis for
(X,T ).
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Proof: It is sufficient to prove that any intersection of elements of T ∗ can
be written as a union of elements of T ∗. More precisely, let J be any set of
indexes, then

if
\
J

x∗j = {xj1 , . . . , xjr} then
\
J

x∗j =
r[

k=1

x∗jk

The right hand inclusion is clear, since xjk ∈ x∗jk . For the other, let

x ∈
r[

k=1

x∗jk . Then there exists k such that x ∈ x∗jk (or xjk ∈ x) and, by

Proposition 14, we have xjk ⊂ x. On the other hand, xjk ∈
\
J

x∗j , then

xj ∈ xjk , for all j ∈ J. In consequence, xj ∈ x, for all j ∈ J, and therefore

x ∈
\
J

x∗j .

Although each x∗ is the minimum open set that contains x, this does
not necessarily mean that the intersection of elements of T ∗ is an element
of T ∗.

The formula
\
J

x∗j =
r[

k=1

x∗jk , even though it has been used to prove

Lemma 29, has little practical interest since the union of the right hand
side, in general, is not disjoint. Even, some of the open sets that make it
up can be redundant. In the next example these observations are made
clear.

Theorem 30. With the notations as above, we have that T ∗ is the mini-
mum basis for (X,T ).

Proof: We know that T ∗ is a basis and that, for all x ∈ X, we have that x∗

is the minimum open set including x. If B is another arbitrary basis, then
the opens of B that contains x are a fundamental system of neighborhoods
of x and, so, keeping in mind that x∗ is a neighborhood of x, there exists
an open V ∈ B such that x ∈ V ⊂ x∗. As x∗ is minimum we have that
V = x∗ and so x∗ ∈ B, for all x ∈ X.

Corollary 31. Let B be a basis of (X,T ). Then Card(B) ≥ Card(X)
and

B = T ∗ ⇐⇒ Card(B) = Card(X)

This is a consequence of the previous theorem.
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Remark 32. In general, T ∗ is not a minimum subbasis. For the digraph
over X = {x, y, z} with a set of arcs G = {xz, yz}, we have that T ∗ =
{x∗ = {x, z}, y∗ = {y, z}, z∗ = {z}} is the minimum basis, but it is not
the minimum subbasis, since {x∗, y∗} is also a subbasis. Nor is T the
minimum subbasis of closed sets.

Example 33. For the acyclic transitive digraph over X = {x1, . . . , x7}
whose Hasse’s diagram (without transitive arcs) is drawed in Figure 3, the
subbasis T consists of the closed sets

xi = {xi} for i = 1, 2, 3, 4 and x5 = {x1, x2, x5},

x6 = {x1, x2, x6}, x7 = {x1, x2, x3, x5, x7}

The complementary sets of these make up a subbasis of open sets

Cxi = X − {xi} for i = 1, 2, 3, 4 and Cx5 = {x3, x4, x6, x7},

Cx6 = {x3, x4, x5, x7}, Cx7 = {x4, x6}

and the basis T ∗ consists of the opens

x∗1 = {x1, x5, x6, x7}, x∗2 = {x2, x5, x6, x7}, x∗3 = {x3, x7},

x∗4 = {x4}, x∗5 = {x5, x7}, x∗6 = {x6}, x∗7 = {x7}

These families of sets exemplify the use of the formulas

x∗ =
\

x∗⊂Cy
Cy, (Lemma 24) and Cx =

[
x/∈y∗

y∗, for all x ∈ X (Lemma 26)

For the formula
\
J

x∗j =
r[

k=1

x∗jk and the comments in Lemma 29, note

that x∗1 ∩ x∗2 = {x5, x6, x7} 6= x∗ for all x ∈ X and

{x5, x6, x7} = x∗5 ∪ x∗6 ∪ x∗7 = {x5, x7} ∪ {x6} ∪ {x7}

which proves that not all the opens x∗jk are necessary in the union; x
∗
jk

being redundant.

Finally, note that T ∗ and T are, respectively, a subbasis of closed sets
and the minimum basis of open sets for the dual digraph in Figure 4.
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Definition 34. We call dual digraph of the digraph (X,G), and we
denote by (X,Gd) the digraph overX with set of arcs Gd = {xy : yx ∈ G}.

It is clear that the transitive and acyclic properties are preserved in the
dual digraph. The following conclusions are also clear.

Proposition 35. Let (X,G) be an acyclic transitive digraph and (X,Gd)
its dual digraph. Let (X,T ) and (X,T d) be their respective associated T0
topological spaces. Then

a) T is the minimum basis of open sets for (X,Gd).

b) T ∗ is a subbasis of closed sets (non minimum) for (X,Gd).

c) That is to say, T = T d∗ and T ∗ = T d.

The continuous functions can also be characterized by the preservation
of the open sets x∗.

Proposition 36. Let (X,T ) and (X 0, T 0) be two finite T0 topological
spaces and let ϕ : X −→ X 0 be a function. Then ϕ is continuous if and
only if ϕ(x∗) ⊂ ϕ(x)∗, for all x ∈ X.

Proof: ϕ is continuous if and only if it is a morphism between its homolo-
gous digraphs (Theorem 21). This digraph morphism is preserved between
the corresponding dual digraphs. Then, keeping in mind that x∗ is the
closure of x in the dual digraph, the result follows easily.
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