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1. Introduction

Throughout w will denote the space of all real valued sequences and any
subspace of w is called sequence space. £, c and cg will denote the spaces
of bounded, convergent and null sequences, respectively. These spaces are
Banach spaces normed by ||z||c = supy, |7k

The notion of difference sequence spaces was first determined by Kiz-
maz [1]. Later on, the notion was generalized by Et and Colak [2]. Also Et
and Esi [3] generalized the sequence spaces to the sequence spaces as given
below:

Let m be a non negative integer, then

ANX) ={zx = (zx) : A (x) € X}for X € {leo,c,00},

where A™(x) = (A" Y (z) — A" Y (241)), Ad(z) = (vpwp) and AT (zy,) =
m 1 (m
izo(=1)" (") Vrtihi-

These spaces are Banach spaces with norm defined by
m
lzlla =) lvizs| + Sup Ay ()]
i=1
Furthermore, generalized difference sequence space was studied by Et and
Basarir [4], Malkowsky and Parashar [5], Et and Tripathy [22], Colak [6],
and many others.

The notion of statistical convergence was independently introduced by
Fast [14] and Schoenberg [15]. The concept lies on the asymptotic density
of the subset E of natural number N. A subset £ of N is said to have
asymptotic density 6(E), if 6(E) = lim,,—,o0 % > p—1 XE(k) exists, where x g
is the characteristic function of F.

A sequence (z,) is said to be statistically convergent to L if for every
e >0,
lim {keN:|z,—L| >} =0,
n—oo

where |FE| denotes the cardinality of the set FE. In this case, we write
S —limz, = L or xj, — L(S).


rvidal
Cuadro de texto
486


On a new class of generalized difference sequence spaces of... 487

Let & = (k,) be the sequence of positive integers such that k. = 0,
0 < ky <kpy1 and hy =k, —kyr—1 — 0 as r — o0o. Then 0 is called lacunary
sequence. The intervals determined by 6 will be denoted by I, = (ky—1, ky]
and the ratio :1 will be denoted by ¢,. Freedman et. Al [34] introduced
the sequence space Ny given by

Ny = {(:Bk) Gw:h,?l Z |z, — L| — 0, for some L};
kel

and showed that the space Ny is a BK space with the norm defined by

lzlg = sup ( - Z kal)

A modulus is a function f : [0, 00) — [0, 00) such that
(i) f(z) =0 if and only if z = 0;
(ii) f(z+y) < f(z) + f(y);
)
v)

(iii) f is increasing;

(i

f is continuous from right at 0.

The notion of modulus function was introduced by Nakano [17] followed
by Ruckle [19], Maddox [18], Tripathy and Chandra [25] and many others,
to construct various sequence spaces. The following inequality (see [20])
will be used throughout in this article:

|ak + be[”* < C (Jag™* + [bel*) ;
where ay, br, € C, 0 < pr < suppr = H, C = max (1,2H*1) .
Proposition 1.1. [32] Let f be a modulus function and let 0 < ¢ < 1.
Then for each x > § we have f(z) < 2f(1)6 !

2. Fractional Difference Operator and Generalized Difference
Sequence Space of Fractional Order

Let I'(m) be the Gamma function of a real number m and m ¢ {0, -1, —2,...}.
By definition, it can be expressed as an improper integral

I'(m) :/0 e Trm dg.


rvidal
Cuadro de texto
487


488 Taja Yaying

Recently, Baliarsingh and Dutta [11, 12] have introduced the generalized
difference operator A%, for a positive fraction « as follows:
> - Da+1)

A%(xy) = Z(_l)ii'l“(a——ijtl)xkﬂ'
i=0 :

In particular, we have,
: L 1 1 1 5
(i) A2(zk) = Tk — 5The1 — §Tht2 — 16Th+3 — TogThid — - -
—1
. =1 1 3 5 35
(il) A= (zg) =z + 5Tk+1 T §Tk+2 + {6Tk+3 + 755 Tk+4 + - - -

2
(111) A3 (xk) =T — %xk+1 — %$k+2 — %$k+3 — TZg*kaA — ...
Baliarsingh [10] defined the spaces X (I', A%, u) for X € {{, ¢, co} using
the fractional difference operator A® and studied their topological proper-
ties and obtained their «, 5, and ~ duals.

The studies on generalized difference sequence spaces of fractional or-
der was extended by Baliarsingh and Dutta [12, 29], Kadak and Baliarsingh
[13], Serkan and Osman [30], Hasan Furkan [33], Kadak [21] and others.

Kadak in [21] determined a new classes of fractional difference sequence
spaces AY(X) as follows:

A(X) = {z = (zp) € w: AY(X) € X},

where A% (zy) = Zio(—l)i%'(}k_tri:nk_i_i and v = (vg) is a sequence
of positive real numbers. Using the fractional difference operator AY, he
defined strongly Cesaro and statistical difference sequence spaces of frac-
tional order involving lacunary sequence, 6 and arbitrary sequence p = (p;)

of positive real numbers.

Theorem 2.1. [10]

(a) For proper fraction, A* : w — w is a linear operator.
(b) For a, 3 > 0, A*(AP(xp)) = AP (x) and A*(A=Y(x1,)) = zg.

The main objective of this article is to introduce generalized paranormed
difference sequence spaces Ny (A, f,p) and Sy (AS, f, p) of fractional order
involving lacunary sequence, 6 and modulus function, f and to investigate
topological structures of these spaces and examine various inclusion rela-
tions.
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3. Main Results

By using the fractional difference operator AS, we introduce some new gen-
eralized difference sequence spaces Ny(AY, f,p), NJ(AY, f,p) and N§° (AL, f,p)
involving lacunary sequence, 6 and modulus function, f as follows:

No(AS, f,p) = {z = (z) Ew: Jim h Z f(|ASxy — L|)P* = 0, for some L} ;
kel

NG (AY, f,p) = {x = (z3) Ew: rlirroloh;l S F (1A% )P = O} :

kel

NP(AY, f,p) = = (z) Ew: Tlir&hfl Z f Az, )PF < 00 g ;
kel
where Af(xy) = go(_l)i%vk+il‘k+i and v = (vg) is a fixed se-
quence of positive real numbers.

Theorem 3.1. The sequence spaces No(AL, f,p), NJ(AS, f,p) and N§°(AS, f,p)
are linear spaces.

Proof.  We shall prove for NJ(A%, f,p). Let z,y € NJ(AZ, f,p) and o/

and (' be scalars. Then there exist positive numbers M, and Ng such

that |o/| < My and |3'| < Ng. Since f is subadditive and AY is linear,

Wt S ker, FUAY( @z + By )™ < it e, [f ([ 1AGzy]) + f (16" 1Ay )]
< C (Mo)" bt ey, £ (1A )P + C (Ng) " hit Sy, £ (1AGYR])P

— 0 as r — oo. This proves the linearity of NJ(AY, f,p). O

Theorem 3.2. Ng(AS, f,p) is a paranormed sequence space paranormed
by

L

9(x) = sup (hﬂ > f(lﬁﬁxkl)p’“) :

kel

Proof.  Clearly g(f) = 0 and g(z) = g(—=) for all z € NJ(AZ, f,p).
Using the linearity of A, definition of f and Minkowski’s inequality, it is
not difficult to show that g(z + y) < g(x) + g(y), for any two sequences
z,y € NJ(AY, f,p).
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It remains to show the continuity of the scalar multiplication. Let A be
any scalar. By definition of modulus f, we have

g(Ar) = sup (hil > f(lAﬁ‘A:rkl)p‘“) < Nf%g(fﬁ),

kel

where N is a positive number such that |A\| < N\ and H = sup pi. Now,
let A = 0 and x = (z1) be fixed with g(z) # 0, then for |A| < 1,

hot Z F(AS Az ] )P* < e, for i > ig.
kel

Also, for 1 < i < i, taking A small enough, continuity of f implies that

B Y A < e
kel

Thus, g(Ax) — 0 as A\ — 0. This completes the proof.
Theorem 3.3. Let f be a modulus function, then

NG(AZ, f,p) C Ng(AZ, f,p) C N§°(AL, f,p).

Proof. The first inclusion is obvious. We provide the proof of the second
inclusion.
Let z € Ny(AY, f,p). By definition of f, we have, hy 1S cp f (|AYzy|)P* =
B Yher, £ (1A% — L+ L)
< Chyt Yper, f(1AYzg — L™ + Chyt Ypey, f(ILDP

Now, there exist a positive integer Ky, such that |L| < K. Hence, we
have,

ht D0 F(AGa)™ < Oht Y7 F(1AYzy — L™ + C (KL f(1)".
kel kel

This proves the result.

Theorem 3.4. If f, fi, f2 be modulus functions and X € {Ny, N§, N§°},
then

(1) X(Ag,f,p) - X(Agaf ' flvp)a

(11) X(Ag‘,fhp) ﬂX(Ag‘,f%p) C X(Agv.fl + f2>p)‘
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Proof.

(i) We shall prove for NJ(A%, f,p). Let € > 0 and choose 0 < § < 1 such
that f(t) < e for 0 <t < 0. We write y = f1(|A%zxg|) and consider

ST F)™ =D flue)™ + > f )™
1 2

kel

where the first summation runs over y; < ¢ and the second summation
runs over yx > d. Since f is continuous, we have

(3.1) > Flye)* < hpe'
1
Also,
Yk Yk
=<1+ =.
Yo <5 =S

Hence, by using Proposition 1.1, we can write,

(32 A fyr)? < max(L, (2f (1))  we

2 kel
Using equations 3.1 and 3.2, we get NJ (A2, f,p) C NJ(AL, f - f1,p)
(ii) The proof of (ii) follows from the inequality

(f1 + f2) (1A )P < ChH(IAVzR)™ + Cfa(|AT k)P

The following result is an immediate consequence of Theorem 3.4 (i).

Corollary 3.5. Let f be a modulus function. Then X (A$,p) C X (A, f,p)
where X € {Ng, N, N} .

Theorem 3.6. Let 0 < p, < ¢ and (%Z) be bounded then X (AY, f,q) C
X(AL, f,p)-

Proof.  The proof of the theorem is easy and hence omitted.
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4. Lacunary statistical convergence of fractional order de-
fined by modulus function

In this section we introduce generalized lacunary statistical convergence of
fractional order defined by a modulus function as follows:

So(A3, f.p) = { = (wx) € w: Tim Ayt [{k € I [ (|AZz, — L™ > e} =0,
for some L} .
When p = (pi) = 1, we shall denote Sp(AY, f,p) by Sp(AY, f).

Note that when f(x) = x, p = (pr) = 1, then Sp(AY, f,p) reduces to
Sp(AY) as studied by Kadak [21]. When f(z) = z, p = (pr) = 1 and
a =m € N, then Sp(AS, f,p) reduces to Sp(Al") as studied by Et [28].
The class of lacunary convergence has been studied from different aspects
by Fridy and Orhan [31], Tripathy and Baruah [24], Tripathy and Mahanta
[23], Tripathy and Dutta [26], Tripathy et al. [27] and many others.

Theorem 4.1. Let 6 be a lacunary sequence. Then S(AS, f) C Sp(AY, f),
if liminf ¢, > 1.

Proof. Let liminf g, > 1, then there exist a § > 0 such that 14+ 9§ < ¢,

for sufficiently large r. Since h, = k, — k,_1, which implies that %f > %.

Let = € S(A?, f). Then for ¢ > 0,

ik <k f(IAS2e = L) > e} > -k € I : f(|AT2x — L)) > e}
> tishi Ik € I f (|A%mk — L) > €}

This esthablishes the result.

Theorem 4.2. Let 0 be a lacunary sequence. Then Sp(AS, f) C S(AY, f),
if lim sup ¢, < oo.

Proof. Let limsupq, < oo, then there is a K > 0 such that ¢, < K, for
all 7. Let € Sp(AS, f) and let 7, = {k € I, : f (JASxr — L|) > e}].

Now by definition, for € > 0 there is an integer r¢ such that

(4.1) holr. < e for all 7 > rg.
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Now let v = max {7, : 1 <r <o} and let n be any integer satisfying k,_1 <
n < ky; then we can write,

Lk <n: f(|AS2, — L) > e} < kil {k <ky: (A% — L|) > ¢}
= kil {47+ T+ Trg41 + o+ 70}
<gro+ e {hmﬂ%ﬁ +.. hr%:‘}
= ﬁ:ro + ﬁ: (SupT<T0 }7;_:> (h’l‘0+1 +...4+ h’T‘)
< k—,:%ﬂ) + 5% (using equation 4.1)
< E&m—i—&qr
< ﬁ:m—kd’(

This establishes the result.
Following result is the direct consequence of theorems 4.1 and 4.2.

Corollary 4.3. Let 0 be a lacunary sequence. Then S(AY, f) = So(AS, f),
if 1 < liminf ¢, < limsup ¢, < oc.

Theorem 4.4. Let f be a modulus function and H = suppx. Then
No(AY, f,p) C Sp(AY).

Proof. Let z € Ng(AY, f,p) and € > 0 be given. Then,

het Y f(IASes — LY =Rt Y0 f (1A zy, — L)
kel kel
|Afzy—L[>e

+ht Y p(1AYm — L™
kel
|A3Z‘k—L‘<8

>t Y (AT, — L)
kel
|[ASz,—L|>e

>Rty fe)

kel

> byt Y min ()™, f(e))

kel

> ht|{k € I | ASay, — L] > e} min (f(e)™7, f(e))
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Taking the limit as r — 0o, we have
lim bt [{k € I : |AYzy, — L] > €}
1

i -1 a k
< min (f(f)infpkyf(E)H) Tlirgohr keZITfOAULEk — L|)p =0.

This establishes the result.

Theorem 4.5. Let f be bounded and 0 < h = infpr < pp < suppr =
H < oco. Then Sp(AY) C No(AS, f,p).

Proof. Since f is bounded, there exists some K such that f(x) < K for
all z > 0. Now,

het Y f(ASes — L) =ht Y0 f (1A zy — L)
kel kel
|ASz,—L|>e
+het Y f(|AYa - L))
kel
|ASz—Ll<e
<ht Y max (Ky, Kp) + byt > fe)P
kel kel

< max (K, Kpz) byt [{k € I : |ASay — L] > e} | +max (f(e)", £()")

Hence = € Ng(AS, f,p). The following result is an immediate conse-
quence of the Theorem 4.4 and Theorem 4.5.

Corollary 4.6. Let f be bounded and 0 < h = infpg < pr < suppr =
H < co. Then Sp(AY) = No(AY, f,p).

5. Conclusion

Fractional order difference sequence space has been an active field of re-
search during the recent times. Many authors have introduced different
classes of difference sequence spaces of fractional order, obtained their o, 8
and v duals and matrix transformations. In this article we tend to general-
ize the findings of the previous authors using modulus function. We expect
that the introduced notions and the results might be a reference for further
studies in this field. For further studies one can investigate and generalize
this results using multiplier sequences, sequence of modulus functions, etc.
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