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1. Introduction

Throughout ω will denote the space of all real valued sequences and any
subspace of ω is called sequence space. c∞, c and c0 will denote the spaces
of bounded, convergent and null sequences, respectively. These spaces are
Banach spaces normed by ||x||∞ = supk |xk|.

The notion of difference sequence spaces was first determined by Kiz-
maz [1]. Later on, the notion was generalized by Et and Colak [2]. Also Et
and Esi [3] generalized the sequence spaces to the sequence spaces as given
below:

Let m be a non negative integer, then

∆m
v (X) = {x = (xk) : ∆m

v (x) ∈ X} for X ∈ {c∞, c, c0},

where ∆m
v (x) = (∆

m−1
v (xk)−∆m−1

v (xk+1)), ∆
0
v(x) = (vkxk) and ∆

m
v (xk) =Pm

i=0(−1)i (mi ) vk+ixk+i.

These spaces are Banach spaces with norm defined by

||x||∆ =
mX
i=1

|vixi|+ sup
k
|∆m

v (xk)|.

Furthermore, generalized difference sequence space was studied by Et and
Basarir [4], Malkowsky and Parashar [5], Et and Tripathy [22], Colak [6],
and many others.

The notion of statistical convergence was independently introduced by
Fast [14] and Schoenberg [15]. The concept lies on the asymptotic density
of the subset E of natural number N. A subset E of N is said to have
asymptotic density δ(E), if δ(E) = limn→∞

1
n

Pn
k=1 χE(k) exists, where χE

is the characteristic function of E.

A sequence (xn) is said to be statistically convergent to L if for every
ε > 0,

lim
n→∞

|{k ∈ N : |xk − L| ≥ ε}| = 0,

where |E| denotes the cardinality of the set E. In this case, we write
S − limxk = L or xk → L(S).
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On a new class of generalized difference sequence spaces of... 489

Let θ = (kr) be the sequence of positive integers such that kr = 0,
0 < kr < kr+1 and hr = kr−kr−1 → 0 as r→∞. Then θ is called lacunary
sequence. The intervals determined by θ will be denoted by Ir = (kr−1, kr]
and the ratio kr

kr−1
will be denoted by qr. Freedman et. Al [34] introduced

the sequence space Nθ given by

Nθ =

⎧⎨⎩(xk) ∈ ω : h−1r
X
k∈Ir

|xk − L|→ 0, for some L

⎫⎬⎭ ;
and showed that the space Nθ is a BK space with the norm defined by

kxkθ = sup
r

⎛⎝h−1r X
Ir

|xk|

⎞⎠ .

A modulus is a function f : [0,∞)→ [0,∞) such that

(i) f(x) = 0 if and only if x = 0;

(ii) f(x+ y) ≤ f(x) + f(y);

(iii) f is increasing;

(iv) f is continuous from right at 0.

The notion of modulus function was introduced by Nakano [17] followed
by Ruckle [19], Maddox [18], Tripathy and Chandra [25] and many others,
to construct various sequence spaces. The following inequality (see [20])
will be used throughout in this article:

|ak + bk|pk ≤ C (|ak|pk + |bk|pk) ;

where ak, bk ∈ C, 0 < pk ≤ sup pk = H, C = max
³
1, 2H−1

´
.

Proposition 1.1. [32] Let f be a modulus function and let 0 < δ < 1.
Then for each x ≥ δ we have f(x) ≤ 2f(1)δ−1x.

2. Fractional Difference Operator and Generalized Difference
Sequence Space of Fractional Order

Let Γ(m) be the Gamma function of a real numberm andm /∈ {0,−1,−2, . . .} .
By definition, it can be expressed as an improper integral

Γ(m) =

Z ∞
0

e−xxm−1dx.
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490 Taja Yaying

Recently, Baliarsingh and Dutta [11, 12] have introduced the generalized
difference operator ∆α, for a positive fraction α as follows:

∆α(xk) =
∞X
i=0

(−1)i Γ(α+ 1)

i!Γ(α− i+ 1)
xk+i.

In particular, we have,

(i) ∆
1
2 (xk) = xk − 1

2xk+1 −
1
8xk+2 −

1
16xk+3 −

5
128xk+4 − . . .

(ii) ∆
−1
2 (xk) = xk +

1
2xk+1 +

3
8xk+2 +

5
16xk+3 +

35
128xk+4 + . . .

(iii) ∆
2
3 (xk) = xk − 2

3xk+1 −
1
9xk+2 −

4
81xk+3 −

7
243xk+4 − . . .

Baliarsingh [10] defined the spacesX(Γ,∆α, u) forX ∈ {c∞, c, c0} using
the fractional difference operator ∆α and studied their topological proper-
ties and obtained their α, β, and γ duals.

The studies on generalized difference sequence spaces of fractional or-
der was extended by Baliarsingh and Dutta [12, 29], Kadak and Baliarsingh
[13], Serkan and Osman [30], Hasan Furkan [33], Kadak [21] and others.

Kadak in [21] determined a new classes of fractional difference sequence
spaces ∆α

v (X) as follows:

∆α
v (X) = {x = (xk) ∈ ω : ∆α

v (X) ∈ X} ,

where ∆α
v (xk) =

P∞
i=0(−1)i

Γ(α+1)
i!Γ(α−i+1)vk+ixk+i and v = (vk) is a sequence

of positive real numbers. Using the fractional difference operator ∆α
v , he

defined strongly Cesàro and statistical difference sequence spaces of frac-
tional order involving lacunary sequence, θ and arbitrary sequence p = (pr)
of positive real numbers.

Theorem 2.1. [10]

(a) For proper fraction, ∆α : ω → ω is a linear operator.

(b) For α, β > 0, ∆α(∆β(xk)) = ∆
α+β(xk) and ∆

α(∆−α(xk)) = xk.

The main objective of this article is to introduce generalized paranormed
difference sequence spaces Nθ (∆

α
v , f, p) and Sθ (∆

α
v , f, p) of fractional order

involving lacunary sequence, θ and modulus function, f and to investigate
topological structures of these spaces and examine various inclusion rela-
tions.
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On a new class of generalized difference sequence spaces of... 491

3. Main Results

By using the fractional difference operator ∆α
v , we introduce some new gen-

eralized difference sequence spacesNθ(∆
α
v , f, p), N

0
θ (∆

α
v , f, p) andN

∞
θ (∆

α
v , f, p)

involving lacunary sequence, θ and modulus function, f as follows:

Nθ(∆
α
v , f, p) =

⎧⎨⎩x = (xk) ∈ ω : lim
r→∞

h−1r
X
k∈Ir

f (|∆α
vxk − L|)pk = 0, for some L

⎫⎬⎭ ;
N0
θ (∆

α
v , f, p) =

⎧⎨⎩x = (xk) ∈ ω : lim
r→∞

h−1r
X
k∈Ir

f (|∆α
vxk|)pk = 0

⎫⎬⎭ ;
N∞
θ (∆

α
v , f, p) =

⎧⎨⎩x = (xk) ∈ ω : lim
r→∞

h−1r
X
k∈Ir

f (|∆α
vxk|)pk <∞

⎫⎬⎭ ;
where ∆α

v (xk) =
P∞

i=0(−1)i
Γ(α+1)

i!Γ(α−i+1)vk+ixk+i and v = (vk) is a fixed se-
quence of positive real numbers.

Theorem 3.1. The sequence spacesNθ(∆
α
v , f, p), N

0
θ (∆

α
v , f, p) andN

∞
θ (∆

α
v , f, p)

are linear spaces.

Proof. We shall prove for N0
θ (∆

α
v , f, p). Let x, y ∈ N0

θ (∆
α
v , f, p) and α0

and β0 be scalars. Then there exist positive numbers Mα0 and Nβ0 such
that |α0| ≤ Mα0 and |β0| ≤ Nβ0 . Since f is subadditive and ∆

α
v is linear,

h−1r
P

k∈Ir f (|∆α
v (α

0xk + β0yk|)pk ≤ h−1r
P

k∈Ir [f (|α0| |∆α
vxk|) + f (|β0| |∆α

v yk|)]
pk

≤ C (Mα0)
H h−1r

P
k∈Ir f (|∆α

vxk|)pk +C
¡
Nβ0

¢H
h−1r

P
k∈Ir f (|∆α

v yk|)pk
→ 0 as r →∞. This proves the linearity of N0

θ (∆
α
v , f, p). 2

Theorem 3.2. N0
θ (∆

α
v , f, p) is a paranormed sequence space paranormed

by

g(x) = sup
r

⎛⎝h−1r X
k∈Ir

f (|∆α
vxk|)pk

⎞⎠ 1
M

.

Proof. Clearly g(θ) = 0 and g(x) = g(−x) for all x ∈ N0
θ (∆

α
v , f, p).

Using the linearity of ∆α
v , definition of f and Minkowski’s inequality, it is

not difficult to show that g(x + y) ≤ g(x) + g(y), for any two sequences
x, y ∈ N0

θ (∆
α
v , f, p).
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It remains to show the continuity of the scalar multiplication. Let λ be
any scalar. By definition of modulus f, we have

g(λx) = sup
r

⎛⎝h−1r X
k∈Ir

f (|∆α
vλxk|)pk

⎞⎠ 1
M

≤ N
H
M
λ g(x),

where Nλ is a positive number such that |λ| ≤ Nλ and H = sup pk. Now,
let λ→ 0 and x = (xk) be fixed with g(x) 6= 0, then for |λ| < 1,

h−1r
X
k∈Ir

f (|∆α
vλxk|)pk < ε, for i > i0.

Also, for 1 < i < i0, taking λ small enough, continuity of f implies that

h−1r
X
k∈Ir

f (|∆α
vλxk|)pk < ε.

Thus, g(λx)→ 0 as λ→ 0. This completes the proof. 2

Theorem 3.3. Let f be a modulus function, then

N0
θ (∆

α
v , f, p) ⊂ Nθ(∆

α
v , f, p) ⊂ N∞

θ (∆
α
v , f, p).

Proof. The first inclusion is obvious. We provide the proof of the second
inclusion.
Let x ∈ Nθ(∆

α
v , f, p). By definition of f, we have, h

−1
r

P
k∈Ir f (|∆α

vxk|)pk =
h−1r

P
k∈Ir f (|∆α

vxk − L+ L|)pk
≤ Ch−1r

P
k∈Ir f (|∆α

vxk − L|)pk + Ch−1r
P

k∈Ir f (|L|)
pk .

Now, there exist a positive integer KL such that |L| ≤ KL. Hence, we
have,

h−1r
X
k∈Ir

f (|∆α
vxk|)pk ≤ Ch−1r

X
k∈Ir

f (|∆α
vxk − L|)pk + C (KLf(1))

H .

This proves the result. 2

Theorem 3.4. If f, f1, f2 be modulus functions and X ∈
©
Nθ, N

0
θ ,N

∞
θ

ª
,

then

(i) X(∆α
v , f, p) ⊂ X(∆α

v , f · f1, p),

(ii) X(∆α
v , f1, p) ∩X(∆α

v , f2, p) ⊂ X(∆α
v , f1 + f2, p).
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On a new class of generalized difference sequence spaces of... 493

Proof.

(i) We shall prove for N0
θ (∆

α
v , f, p). Let ε > 0 and choose 0 < δ < 1 such

that f(t) < ε for 0 ≤ t ≤ δ. We write yk = f1(|∆α
vxk|) and considerX

k∈Ir
f(yk)

pk =
X
1

f(yk)
pk +

X
2

f(yk)
pk

where the first summation runs over yk ≤ δ and the second summation
runs over yk > δ. Since f is continuous, we haveX

1

f(yk)
pk < hrε

H(3.1)

Also,

yk <
yk
δ
≤ 1 + yk

δ
.

Hence, by using Proposition 1.1, we can write,

h−1r
X
2

f(yk)
pk ≤ max(1, (2f(1)δ−1)H)h−1r

X
k∈Ir

yk(3.2)

Using equations 3.1 and 3.2, we get N0
θ (∆

α
v , f, p) ⊂ N0

θ (∆
α
v , f · f1, p)

(ii) The proof of (ii) follows from the inequality

(f1 + f2)(|∆α
vxk|)pk ≤ Cf1(|∆α

vxk|)pk + Cf2(|∆α
vxk|)pk

2

The following result is an immediate consequence of Theorem 3.4 (i).

Corollary 3.5. Let f be a modulus function. ThenX(∆α
v , p) ⊂ X(∆α

v , f, p)
where X ∈

©
Nθ, N

0
θ , N

∞
θ

ª
.

Theorem 3.6. Let 0 < pk < qk and
³
qk
pk

´
be bounded then X(∆α

v , f, q) ⊂
X(∆α

v , f, p).

Proof. The proof of the theorem is easy and hence omitted. 2
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4. Lacunary statistical convergence of fractional order de-
fined by modulus function

In this section we introduce generalized lacunary statistical convergence of
fractional order defined by a modulus function as follows:

Sθ(∆
α
v , f, p) =

n
x = (xk) ∈ ω : lim

r→∞
h−1r |{k ∈ Ir : f (|∆α

vxk − L|)pk ≥ ε}| = 0,

for some L} .

When p = (pk) = 1, we shall denote Sθ(∆
α
v , f, p) by Sθ(∆

α
v , f).

Note that when f(x) = x, p = (pk) = 1, then Sθ(∆
α
v , f, p) reduces to

Sθ(∆
α
v ) as studied by Kadak [21]. When f(x) = x, p = (pk) = 1 and

α = m ∈ N, then Sθ(∆
α
v , f, p) reduces to Sθ(∆

m
v ) as studied by Et [28].

The class of lacunary convergence has been studied from different aspects
by Fridy and Orhan [31], Tripathy and Baruah [24], Tripathy and Mahanta
[23], Tripathy and Dutta [26], Tripathy et al. [27] and many others.

Theorem 4.1. Let θ be a lacunary sequence. Then S(∆α
v , f) ⊂ Sθ(∆

α
v , f),

if lim inf qr > 1.

Proof. Let lim inf qr > 1, then there exist a δ > 0 such that 1 + δ ≤ qr,
for sufficiently large r. Since hr = kr − kr−1, which implies that

hr
kr
≥ δ

1+δ .

Let x ∈ S(∆α
v , f). Then for ε > 0,

1
kr
|{k ≤ kr : f (|∆α

vxk − L|) ≥ ε}| ≥ 1
kr
|{k ∈ Ir : f (|∆α

vxk − L|) ≥ ε}|
≥ δ

1+δh
−1
r |{k ∈ Ir : f (|∆α

vxk − L|) ≥ ε}| ;

This esthablishes the result. 2

Theorem 4.2. Let θ be a lacunary sequence. Then Sθ(∆
α
v , f) ⊂ S(∆α

v , f),
if lim sup qr <∞.

Proof. Let lim sup qr <∞, then there is a K > 0 such that qr < K, for
all r. Let x ∈ Sθ(∆

α
v , f) and let τr = |{k ∈ Ir : f (|∆α

vxk − L|) ≥ ε}| .

Now by definition, for ε > 0 there is an integer r0 such that

h−1r τr < ε for all r > r0.(4.1)
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Now let γ = max {τr : 1 ≤ r ≤ r0} and let n be any integer satisfying kr−1 <
n ≤ kr; then we can write,
1
n |{k ≤ n : f (|∆α

vxk − L|) ≥ ε}| ≤ 1
kr−1

|{k ≤ kr : f (|∆α
vxk − L|) ≥ ε}|

= 1
kr−1

{τ1 + τ2 + . . .+ τr0 + τr0+1 + . . .+ τr}
≤ γ

kr−1
r0 +

1
kr−1

n
hr0+1

τr0+1
hr0+1

+ . . .+ hr
τr
hr

o
≤ γ

kr−1
r0 +

1
kr−1

³
supr<r0

τr
hr

´
(hr0+1 + . . .+ hr)

≤ γ
kr−1

r0 + ε
kr−kr0
kr−1

(using equation 4.1)

≤ γ
kr−1

r0 + εqr
≤ γ

kr−1
r0 + εK.

This establishes the result. 2

Following result is the direct consequence of theorems 4.1 and 4.2.

Corollary 4.3. Let θ be a lacunary sequence. Then S(∆α
v , f) = Sθ(∆

α
v , f),

if 1 < lim inf qr ≤ lim sup qr <∞.

Theorem 4.4. Let f be a modulus function and H = supk pk. Then
Nθ(∆

α
v , f, p) ⊂ Sθ(∆

α
v ).

Proof. Let x ∈ Nθ(∆
α
v , f, p) and ε > 0 be given. Then,

h−1r
X
k∈Ir

f (|∆α
vxk − L|)pk = h−1r

X
k∈Ir

|∆α
v xk−L|≥ε

f (|∆α
vxk − L|)pk

+h−1r
X
k∈Ir

|∆α
v xk−L|<ε

f (|∆α
vxk − L|)pk

≥ h−1r
X
k∈Ir

|∆α
v xk−L|≥ε

f (|∆α
vxk − L|)pk

≥ h−1r
X
k∈Ir

f(ε)pk

≥ h−1r
X
k∈Ir

min
³
f(ε)inf pk , f(ε)H

´

≥ h−1r |{k ∈ Ir : |∆α
vxk − L| ≥ ε}|min

³
f(ε)inf pk , f(ε)H

´

rvidal
Cuadro de texto
493

Scielo
Rectángulo



496 Taja Yaying

Taking the limit as r →∞, we have

lim
r→∞

h−1r |{k ∈ Ir : |∆α
vxk − L| ≥ ε}|

≤ 1

min (f(ε)inf pk , f(ε)H)
lim
r→∞

h−1r
X
k∈Ir

f (|∆α
vxk − L|)pk = 0.

This establishes the result. 2

Theorem 4.5. Let f be bounded and 0 < h = inf pk ≤ pk ≤ sup pk =
H <∞. Then Sθ(∆

α
v ) ⊂ Nθ(∆

α
v , f, p).

Proof. Since f is bounded, there exists some K such that f(x) < K for
all x ≥ 0. Now,

h−1r
X
k∈Ir

f (|∆α
vxk − L|)pk = h−1r

X
k∈Ir

|∆α
v xk−L|≥ε

f (|∆α
vxk − L|)pk

+h−1r
X
k∈Ir

|∆α
v xk−L|<ε

f (|∆α
vxk − L|)pk

≤ h−1r
X
k∈Ir

max (Kh,KH) + h−1r
X
k∈Ir

f(ε)pk

≤ max (Kh,KH)h
−1
r |{k ∈ Ir : |∆α

vxk − L| ≥ ε}|+max
³
f(ε)h, f(ε)H

´
Hence x ∈ Nθ(∆

α
v , f, p). 2 The following result is an immediate conse-

quence of the Theorem 4.4 and Theorem 4.5.

Corollary 4.6. Let f be bounded and 0 < h = inf pk ≤ pk ≤ sup pk =
H <∞. Then Sθ(∆

α
v ) = Nθ(∆

α
v , f, p).

5. Conclusion

Fractional order difference sequence space has been an active field of re-
search during the recent times. Many authors have introduced different
classes of difference sequence spaces of fractional order, obtained their α, β
and γ duals and matrix transformations. In this article we tend to general-
ize the findings of the previous authors using modulus function. We expect
that the introduced notions and the results might be a reference for further
studies in this field. For further studies one can investigate and generalize
this results using multiplier sequences, sequence of modulus functions, etc.
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