DOI: 10.22199/S07160917.1999.0003.00006

5

Quantum Flows

Ve develop a rather general framework for constructing quantum Markov pro-
cesses through Markov operator cocycles (see Chapter 2, Section 3) that satisfy
a quantum stochastic differential equation.

In order to achieve this goal we first recall the basic facts of Boson Fock
quantum stochastic calculus and then give the fundamental results in the theory
of quantum stochastic differential equations concerning existence, uniqueness,
time reversal, isometricity and coisometricity of solutions. Next we construct
the quantum flow associated with a Markov operator cocycle, and give a con-
dition that guarantees that the restriction to & commutative subalgebra is a
commutative flow,

As an application we show that every classical multidimensional diffusion
process (with covariance and drift as in Chapter 4, Section 2) can be realised
as a restriction to a commutative subalgebra of B(R) of a quantum fow.

Our processes are, in particular, Evans-Hudson flows [3G].

5.1 Quantum stochastic calculus

In this section we give a short outline of the quantum stochastic calewlus of
Hudson and Parthasarathy [38] in & Boson Fock space which is the main tool
for the construction of Markov operator cocycles. We refer to the monographs
[68] and [74] for a complete exposition with proofs.

A quantum stochastic calculus can be developed in several frameworks:
Fermion Fock space, Full Fock space, finite difference Fock space ...: we refer to
/4] for a unified approach.

There exists several approaches also to quantum stochastic calculus in Boson-
Fock space (see [13], [14], {58], [65], [66], [84] ...): we shall use here a notation
introduced by Belavkin [16! as described by Parthasarathy (sce, for example,
(691, Sect. 2).

Let &,k be two complex separable Hilbert spaces and let {ee| 28} be
an orthonormal basis in & (S is to be thought of as a subset of IV ). Let Mg
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96 5. QUANTUM FLOWS

denote the dense linear submanifold of L?([Ry) ® k of elements f satisfying
{ee, f(t)), = O for all £ > 0 for all but a finite number of indices ¢ and let A%
be the submanifold of continuous functions in Mg. Let § = S U {—o0,+0o0}
and consider the Hilbert spaces

E=Ce_oo Dk 0Ty, (5.1)
H=heD (L} (R)®k), H=hokal (L (Ry) k)

where I'(K} denotes the Boson Fock space over a Hilbert space K.

The uniform operator norm in B(H) will be denoted by II'llo- The expo-
nential vector in the Boson Fock space I'(XC) with test function f € K will be
denoted by e(f) where

&
e(f) = Zﬁ

n>0 )
For all ¢ > 0, we have the tensor product decomposition
H=h@T(L%0,t) ® k) ® [(L3(t,00) & k).

Let e(0y) and e(0};) denote respectively the Fock vacuum in the Boson Fock
spaces I'(L2(0,t) ® k) and T(L%(¢, c0) @ k). Both h @ I'(L%(0,t) % k) and k&
D(L2(t, 00) ® k) can be identified with two subspaces of H

AR T(L(0,t) @ k) ® e{0,), h®e(0y) ® T{L*(t, 00) ® k), (5.2)
via the unitary isomorphisms
u®e(flioy) — ue(flioy)®e(Oy),
v®e(fligey) — u@e(fliey) ®e(0y)

Let us consider the *-algebra B = B(*H) of all hounded operators on H. Let
o be the state on the *-algebra of all bounded operators on I'(L*(IR.) & k)
associated with the vacuum vector e(0)

vo: B(D(LA(AY) @K) =€, wo(B) = (e(0), Be(0)) .
For any state p on B(h) the map
w:B—-0C, w = p&eo

is a state on B. The pair (B,¢) is a quantum probability space.
Because of the embeddings (5.2}, if we set

Boy=B(h), By =B {h®T(L*(0,t) © k)

for all ¢t > (), then we obtain filtration of B.
For all £ > 0 we can define a conditional expectation

Ey:B— By
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as follows. Let B be an clement of Z. The sesquilinear form on hxT(L?(0, ) k)
(v,u) = {(v o0 e(0y)), Blu 2 e(0)))

(v.u e hxoD(L2(0,4) % k) is bounded. The conditional expectation of B with

respect to By, denoted JEy [B]. is the element of By representing this sesquilinear

form. Denoting by II;) the orthogonal projection of H onto the closed subspace

h 5T (L2(0,t) 50 k)) & e(0) we have

Z;)_{J ]1 B 2 by
hBICL2 O ak) T (be)Ek)

The properties of conditional expectations (see Chapter 1, Seetion 4) are easily
checked. Clearly, the family (]Efi).'M) is also projective.
For caci ¢t 2 0 let ; be the right shift on the interval [(),¢] defined on

LR, ) =<k by
e ety i >t

Let T'(m;) be the operators in T (L2(IR.) < k) defined by second quantization
of ay,

C{ode(f) = e(nf) (5.3)
for all f € L?(IR,) % k. The operators g, and ['(0;) are isometries for every
t > 0. Notice that, for all s, > 0 we have

I“(ﬂs)*r(ﬁ(_’_s) = F((Tl). F((’T;)F((f() = F(Cr_§-+g).

For each s > 0 and cach bounded operator .« € B(H) the operator I'(o.)xl(7,)"
maps h o0 T{L2%(s,00) ® &) into itself. Indeed we have the diagram
Tles)r  x T(os)
hos T(L2(s,00) 6 k) — H — H — hoo D(L (s, 00) & k)
The canonical extension of I'(og)eT(a,)* to 'H via ampliation will be denoted

by 3.(r). Clearly (fs)s:0 is a family of covariant shitts on 5(H). Morcover, for
all € B(h) and all s > 0, we have

8.(xr) =1
This makes an important and relevant difference with the usual shift of classical
Markov processes (see (2], [67]).

It is easy to see that # is a covariant shift with respect to the family (£)))i>0
of conditional expectations.

We now introduce the operator cocycles that we shall construct by means of
quantuin stochastic caleulus.

Definition 5.1 A family (X(*)};-0 of bounded operators in 'H is called o left
cocycle {resp. right cocyele) if for crery t.~ 2 0 we have

Xt +s8) = X{s30,(N (), (resp. X7 —a) =4 X)X (s)) (5.4
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Let F be the unique unitary operator in & defined by
Fep=e, if £S5, P =8l gs FE e = Eyssy

and let E_.,, E, E.o be the orthogonal projections of k onto Ce_o, k, e
respectively. We denote by B the Belavkin algebra associated with (h k)

B= {L €Bhook) | Lue_oo = L uesno =0 for all u € h}

The map L — L* where L* = FL*F is an involution of IB.
Let us introduce the quantumn noises in H, {Af, | £,m € S} defined by

ARy = A*(lpg ®lem))s if mes, f=+oc
A = AlLin,ey ® lem) (eg]). if m.tes

Al = Al ® (eel), i £es m=—x

Afgg(ﬂ = t1 if (=+0cc, m=—-x
Afn (t) = 0 otherwise

where AT, A, A denote respectively the creation, annihilation and gauge opera-
tors in T{L2(IR,) w0 k) defined, for each w € I and each expoucntial vector e{ f)
by

d
AT (o) © lew)ue(f) = Eue(f +€lig,y0m) _
Al s _ 7.i iz z‘e].-‘[,‘,_,lf{.“le,”)(EHf
(L(0,ty @ lem) (el Jue( f) i—-uele )N.zo
Al ® {eeue(f) = (el f)uel(f)

where e, ) {ey| denotes the operator on &
[em)(edie = {eg. ) em.

Notice that quantumn noises A% with either ( € § or m € § arc martingales

with respect to the family of conditional expectations (JEy}i>o-

Let D be a dense lincar submanifold of h and let Dg, Ds and 235 be the
dense linear submanifolds of h % &, H and H gencrated by {uee [u € D, f € S},
{ue(f) |ue D, fe Mg}, {ueee(f) |ue D,teS, feMs } respectively.

Definition 5.2 A family (L(¢)}i>0 of operators in H is called (Dg, Mg)-adapted
if it satisfies the following conditions:

1. the domain of L(t) contains Dg forallt >0,

2. for each £ € Dg, f € Mg, t =2 0 we have the tensor product foctorisation

Lt)ee(f) = {L(t)Ee(Lio, )} S0 (Lt 00y f)-
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A (Dg, Mg)-adapted fomily of operators L is called (Dg, Mg)-regular if the
map

t = L(t)e(f)

is continuous for all £ € Dg, f € Ms.

In a similar way one can define (D, M%) and (D, Mg)-adapted regular fam-
ilies of operators.

A (D, Mg)-adapted family of operators X = (X ()}, in H is called uni-
tary, isometric, coisometric, contractive if, for all £ > 0, the operators X (t) are
uiitary, isometric, coisometric, contractive.

Let Z(Dg, Mg) be the vector space of regular (Dg, Mg)-adapted families of
aperators L in 'H satisfying

{veooelg), L(t)ueee(f)y =0, L{tyue_ge(f) =0

for all w,e € D, f,g &€ Mg, € € 5’._ With every L € T(Dg, Mg} it is possible
to associate the set { Lf | ¢, m € §} of (D. Mg)-adapted regular families of

me

operators in H defined by

(ve(g), Lin(thue(f)) = (veee(g), L{tyueme(f)) .

In the new notation one can write the stochastic integral

1
Aty = [ 37 LhdaT()

¢, meS

on the domain Dg as a regular (D, Mg)-adapted family of operators. This
is very convenient in the computations with the Ito formula; indeed, consider
qguantum stochastic integra’

X(t)=Xo+ /U (Ly(s F La(s)dA(s) + La(s)dA(s) + La(s)ds)
Y(it)=Y, + /t (M1(s)dAT(s) + Ma(s)dA(s) + M3(s)dA(s) + M (s)ds)
0

where L;, M, are (hg, Mg)-adapted familics of bounded processes for j =
1,...,4 and take k& = @ so that h % k = Te_oo 1Teg hT'ey . The Hilbert
space h %k is unitarily isomorphic to h ke h. The operators L,M correspond-
ing to the above stochastic integrals and the operator I can be represented by
the 3 x 3 matrices

0 L3 L4 0 }1;[3 J'If,q 0 0 1
L={0 Ly Ly}, M=|(0 M My |].F=]0 1 0]. (5.5)
0 o 0 0 0 0 1 00

We can then write

X(t)=Xo+An(t), Y =Yao+Amlt), Y=Y+ A
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In the new notation the Ito formula can be written in the form
dY ™ (£)dX () = dAppe (1)dAL(E) = dApynp (2).

This reduces the computation of a product of two stochastic differentials to the
computation of a product of two matrices.

The following are fundamental formulae of Boson Fock space quantum stochas-
tic calculus; the proof can be found in [68], and in [74].

Proposition 5.3 Let L M € T(Dg. Mg) and let Xy, Yy be operators on h with
domain containing D. Consider the fumilies ( ‘((t))f;,g, (} (t))izo of operators

X () = Xo + AL(t), Y (t) = Yo+ An(r).
For each v,u € D, f, g € Mg the following formulae hold:
(ve(g), X (tJue(f)) = (velg), Xoue(f)) (5.6)
+f0t (vle—co + g(s))e(g). L{s)u( f(8) + exoc)e(f)) ds

(Y(t)ve(g), X(t)ue(f)) = (Yove(g). Xoue(f))
+ [ {((Y<s) + PU(s)F)o(e-ec + g(s))e(0).
(X (s) + L{s))u(f(s) + eqoole(f)) (5.
—(Y(s)v(e_oo + g(s))e(g), X (s)u(f(s) + eyoo)e(f)) }«is

(11
=]
—

The above formulae can be written also in coordinate notation. The first,
for example, becomes

{ve(g), X (t)ue(f)) = (ve(g), Xoue(f))
+ Z / <U(’(J) Lm ue(f)) qt( )fm( )

€,mmes "

+ <?'€’ Jue( >g(;

;/

£, <vc 0). L (s)ue(f)) fn(s)ds

mesS

+/0 (ve(g). LT3 (s)ue(f)) ds (5.8)

Coherent vectors in the above formulae are used as test vectors. Using the
n-chaos vectors instead the above formula can be written as follows

(vg®", X (t)uf®m) = (ve(g), Xoue(f))
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+ Z f 1'9"3(”"1) L (s)uf®- 1>gg(s)fm(s)ds

£,meSs
S o
es
£ f (vg® L )uf®*V) fa(s)ds
mesS
t
+ [ (w0 L3z ds (59)

for every pair n,n’ of non-negative integers with the conventions g®n = fen =
if n < 0and g®° = 90 = ¢(0).

The fundamental formulae of quantum stochastic calculus can be used to
prove the following useful estimate of quantum stochastic integrals.

Corollary 5.4 Under the assumptions of Proposition 5.3 we have

160 - X < 2o ([ (14 110D )
- / L (rYuleron + F(r))e()II2 dr

for each t,s €]0, +oc] with 0 < s < t.

We finish this preliminary section by recalling the basic results on guan-
tuin stochastic differential equations. Since the solution cannot commute with
the coefficient L € B we shall distinguish between left (resp. right) quantum
stochastic differential equations

dX(t) = X(1)dAL(t),  (resp. dY(t) = dAL()Y(t) )

where the solution acts by left (resp. right) multiplication on the stochastic
differential. The above equations have to be interpreted as

t t
X(t) = Xo + fo X()dAs(s)  Gesp YO =Yo+ [ dAs(@Y ()

where Xy, ¥ arc bounded operators on A (acting on H by standard ampliation)
and (Y(t))i>0, (X (¢))i>0 are (h, Mg)-regular adapted families of operators.
We refer to [68], and [74] for the proof of the following result

Proposition 5.5 For each M, L € B and Uy, Vy € B(h) there exists (h, Ms)-
reqular adapted families of operators (U(t))i>0, (V(t))t»0 satisfying the quantum
stochastic differential equations

dU(t) = dAx (U (),  U(0) = Uy, (5.10)
dV(t) =V(t)dAL(t),  V(0) =Vo. (5.11)

Moreover:
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1. (U(t))eso ts the unique (h, Mg)-regular adapted family of operators satis-
fying (5.10),

2. (V(t))i»o 1s the unique (h, Mg)-regular adapted family of operators such
that
sup sup [|[V(s)ue(f)|| < o0
0Ss<t jlul|<1

for each t > 0 and each f € k satisfying (5.11).

Existence can be shown by the Picard’s iteration method. Uniqueness for
(U(2))s>0 follows immediately from Corollary 5.4 and Gronwall's lemma. Unique-
ness for (V()):>0 can be proved as in [74] (Prop. 26.1). The additional property
needed will be called initial space boundedness.

The following proposition (see, for example, [40] Prop. 3.1 p.150) gives a
necessary and sufficient condition for (U (t))e>0 to be a contractive right cocycle.

Proposition 5.6 Let M be an element of IB and let (U(L))i>0 be the unigne
(h, Mg)-regular adapted family of operators satisfying the right quantwm sto-
chastic differential equation

dU(t) = dhp (1)U(2), U)=1 (5.12)
The operators U(t) (t = Q) are contractions if and only if
F(M + M"+ M°M) < 0. (5.13)
In this case (U(t))e>0 i a right cocycle.

Proof. Assume that (5.13) holds. Consider vectors ¢ in 7{ of the form 33" | ;e
“(f;) with (uz)7L; in h and functions (f;)/L, in My continuous at the point 0.
Applying the Itd formula (5.7) we have

V@R = €I + /) U Y (oo + £()elf;),

J
F(M + M+ M°MU( Zu (600 + f5(r))e(f;)) dr

Then the inequality (3.13) implies that the operators U(t) are contractions for
all £ > 0.

Conversely, if the operators U(t) are contractions, for all (f;)L; such that
(0 is a continuity point for every function f;, we have

< S usemce + £(O))elfy) F(M + M+ MPM) S ujlemoo + (0))e(fj)>

] i

= tim = (Ul - ) <o
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This proves that the inequality (5.13) holds.

In this case the right cocycle identity follows by a uniqueness argument as
in the paper [58]. Indeed, if the operators U(t) (¢ > 0) are contractions then for
every fixed s > 0 the (h, Mg)-regular adapted family of operators

X(@)=Ut+s), Y(#)=0,UM)U(s)

both satisfy the quantum stochastic differential equation (5.10) with the same
initial condition, and therefore they coincide. 0O

Taking the adjoint of the operators U(f) we immediately prove the following
fact.

Corollary 5.7 Let L be an element of B and let (V (t)) >0 be the unique (h, Mg)
reqular adapted initial space bounded farnily of operators sctisfying the left quan-
tum stochastic differential equation

dV (t) = V(t)dAL(t), V(0)=1. (5.14)
Then the operators V(t) (t > 0) are contractions if and only if
F(L+Lt+LL% <o0. (5.15)
In this case (V(1))i>o0 is a left cocycle.

Proof. If the operators V (¢) are contractions then the adjoint operators U(t) =
V(t)* are also contractions and satisfy the right quantum stochastic differential
equation dU(t) = dAp.(¢t)U(t). Therefore, by Proposition 5.6, the inequality
(5.15) holds.

Conversely, if (3.153) holds, then the unique (h, Mg)-regular adapted ini-
tial space bounded family of operators satisfying the right quantum stochastic
differential equation dU(t) = dA,(t)U(t) with U(0) = 1 is contractive. The
adjoint family (U(t)*);>o0 is also (h, Mg)-regular adapted, contractive and sat-
isfies (5.15). Since the (h, Mg)-regular adapted family of operators solving this
equation is unique, it follows that the operators V'(t) are also contractions.

Clearly (V(t)):>0 is a left cocycle because it is the adjoint of a right cocycle.
a

5.2 Time reversal and dual cocycles

In this section we define a time reversal on Fock space that transforms a right
(resp. left) cocycle into right (resp. left) cocycle. Moreover we give the relation
between the quantum stochastic differential equations satisfied by a cocycle and
its time reversed counterpart.

Time reversal plays a fundamental role in the study of quantum stochastic
differential equations with an unbounded operator L when it is too hard to
make sense of a right differential equation and one needs to write a differential
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equation for the adjoint of a left cocycle. In fact, if a left cocycle V satisfies
(5.15), then the time reversed of the adjoint right cocycle is again a left cocycle
which can be shown to satisfy the left equation (5.13) - roughly speaking - with
L replaced by Lb.

Let p; be the unitary time reversal on the interval [0, ] defined on L2([Ry )k

by
[ flt-s) ifs<t
(Ptf)(s)_{ f(s)  ifs>t

Let I'(p;) be the operator on T'(L?(IR, ) % k) defined by second guantization of

Pt
L(pe)e(f) = e(pef).

The operators are self-adjoint and satisfy
peor =1, (pe)T(p) = 1.
Let R; be the operator on B defined by
Ri: B — B, Re(x) =T(pe)xl{p)”.

The following lemma gives a useful relationship between time reversal and
shift. Recall that a bounded operator z is called t-adapted if it is factorised as
in condition 2 of Definition 5.2.

Lemma 5.8 For every t,s > 0 and every t-adapted bounded operator V(£) n
H we have
Rets (Re(V (1)) = 05(V (). (5.16)

Proof. For every v,u € h and g, f € L?(IR.) % k we have
(ve(g), Rews (Ru(V(8)) ue(f)) = {ve(pepersg). V(t)ue(pipess f)) - (5.17)

A simple computation yields

fls+m) if r < t,
(pelpraesfN(r) =4 flt+s—7) it <r<t+s,

f(r) ifr>t+s.

Therefore we have the identity

pelpevsf) = (U—sf)llo,i[ + (pt+sf)1]l..f+s[ + 1t s,00(-

By the tensor product factorization of Fock space and 7-adaptedness of V' (¢) we
write the right-hand side of (5.17) as

(ve((7-s9)1j0,20), V(B)ue((o_s FLjo,e)) - {(91)er5,000)s € Ljts,o0)) )
. <€((Pt+39)1]t,t+s[)» e((P£+sf)1It,t+s{)> :
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Computing the second and third scalar product we write the right-hand side of
(5.17) in the form

<Ue(91]3,t+s[)) F(”S)V(t)r(gfs)“e(.fl]s,t-rs[)>
e ([ @nears +
= {ve(g),0:(V{t)ue(f)).

This proves the lemma. 0O

@iy )

t+s

We recall now the notion of dual cocycle due to Journé (sce [60] p. 294 and
also [68] p. 174).

Proposition 5.9 Let (V(t))i>0 be a left (resp. right) cocycle. The family of
opcrators (V{(t))1=0 defined by
V(t) = R (V(t)") (5.18)
is a left (resp. right) cocycle.
Proof. By virtue of the cocycle property, for every ¢,{ > 0 we have
Vitt+s) = Reps(V(t+5)7)
= Rups (0 (V(E))V(8)™)
= Reys (0 (V(E))) Reas (V(s)7).
Applying R, to both sides of (5.1G) we have
Re(V(2)7) = Rips (6 (V(1)"))
The same identity yields also
Ress (V(8)") = Rigs (Ra (Rs (V(5)%))) = 0 (R (V()7)) -
This proves the lemma. O
Definition 5.10 The cocycle (V(t))i>q defined by (5.18) is called dual cocycle
of the cocycle (V(t))i>a.
We now study the relationship between a cocycle satisfying a left quantum
stochastic differential equation and its dual.

Lemma 5.11 Let t,s be two non-negative real numbers and let X (s) (resp.
Y{(t)) be an s-adapted {resp. t-adapted) bounded operator. For every u,v € h
and cvery f,g € Mg we have

(Y(t)ve(g), 8:(Rs(X (s)))ue(f)) = (Y(f)l'f'(Pt,H-sg)‘Hi(X(S))ue(Pf,i-q—sf(» )
5.19)

where pyys 18 the time reversal operator on the interval [t,t + 5| defined by

v f@RE+s=r) dft<r<its,
(Pressf)r) = {f(q‘) otherwise.
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Proof. Since the homomorphisms #; and R, are normal it suffices to prove the
lemma for the factorised operators

X(s) = Xo® Xs, Yt)=Yoxm Y

where X, ¥; are bounded operators in the initial space and X, (resp. Y}) is
a bounded operator in the factor ['(L2(0, s) & k) (resp. T'(L?(0,¢) ® k)) of the
Fock space T(L*(R.) ® k).

In this case the left-hand side of (5.19) can be written as the product of the
factors {Yov, Xou), (Yie(glio,g), e(flo,y)) and

<e(.(]1!£,oo[): Do) (ps) XsU(ps)T{o—y )e(fl[t.ao[)>
= {e(ps-t(glpt,00)) Xse(pso_i(fLi,00)))

A simple computation shows that
Psftt(gl[t,oo[) =0 iflt,t459: P.s-f’hr(fl[t,m{) =0 ypravst
Therefore we have

<e(,03(7—f-(g1[t,oo[)): ‘Xse(psg—f-(flii.ao[))\)
= {e(T_sprr4s9)). Xse(a_spriisf)}
= <e((.0t.t+sg)1[-l,oo[)- Qf(XS)(’((VI,L—s—f)l[l.m[» .

The product of this with (Yie(glig.n).e(flj,y)) is equal to
(ylﬁﬁe(,or.,zjus!j'% ﬁz(Xs)?Le{/Jt,f+sf)> .
Multiplication by the initial space factor (Yyv, Xgu) then yields (5.19). O

Proposition 5.12 Let L be an clement of B satisfying the inequalily (5.15)
and let (V(t))i>0 be the unique (h, Mg)-regular adapted contractive left cocycle

(V(t))ezo salisfying (5.14). Then the dual cocycle (‘;’{i‘.))tz(; satisfies the left
quantum stochastic differential equation

dV(t) = V(t)dA.(t),  V(0)=1.
Proof. By virtue of Proposition 5.9, for every ¢, s > () we have

Vit+s)— V() = V() (ff(s) = 11) .

Therefore, applying (5.19), we obtain

ve(g), (17(7: +5)— 17(1:)) ue(f)>
V(1) ve(g), 0 (R, (V ()" — 1)) ue())

V(t)ve(peivsg), 0 (V(s)* — 1) uc(pf‘fﬂf)>

I
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The action of 8, on a stochastic integral can be compurted explicitly as follows

6, (V(s)" -1} = 6 (/ (my.(r)V(r}*)
0
l+5
= [ dA o (r)0, (V(r = 8)7).
JE

Therefore, by the first fundamental formula of quantun stochastic caleulus (5.6),
we have

(velg), (V(t+ ) = Vi0)) uelf))
[

<‘ (@) ve(p i s9), / fif\uv(?‘)f?r(V(T—f)*}uc'(#’f..t+sf)>
S

"
/ t) v{e_oo + g(2t + 5 — 1))e(prr.0),
i

L2, (V(r — )" ) u(f(2t + 5 — 7) + {‘+m}e(pt,,,+sf)>dr

Dividing hy s and letting s tend to 0, for every t which is a continuity point for
both g and f we have

d

= (velg). V(tyue( 1)) = (o + g(t))e(0) VIOL () + c400)el))

This completes the proof. O

5.3 Quantum stochastic differential equations

In this section we recall the main results on left quantwn stochastic differential
cquations of the form (5.14) with a possibly unbounded operator L giviug in
particular necessary and suflicient conditions in order the operators V{t) to be
isometries, coisometries or unitarics. These extend the results of [37] {30], [32]
for special classes of operators 1.

Several results show that “good” operator cocycles satisfy a quantum stochas-
tic diffierential equation (sce, for example [71. [40], [57]). A {full characterization
{a quantum analogue of the classical Stone's theorem on strongly continuous
unitary groups), however, is not available.

As a first step we complete the study of the case when L is boundaed.

Proposition 5.13 Lef L € IB ond let (V(1))iz0 be the unigue (I Mg )-regular
adapted mmitial spece bounded process solving the quanturm stochastic differentia
equation

dV{t) = V{LdAL(),  V(0) =1 (5.2

/

Then:
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1. the operators (V(t));>0 are contractions if and only if one of the following
equivalent inequalities hold

(L+LP+LL) F <0, F(L+L°+L°L) <0, (5.21)

2. the operators (V(t))i>o are isometries if and only if

E: B2 IPE =0, (5.22)

3. the operators (V(t))i>0 are coisometries if and only if

L+ L +LLb =0, (5.23)

4. the operators (V(1))i>0 are unitary if and only if

L+ L+ L =0, L+Ib+LL*=0. (5.24)

Proof. Clearly the operators V(t) (¢t > 0) are contractions if and ouly if the
first inequality (5.21) holds by Corollary 5.7.

The equivalence of the second inequality (5.21) and contractivity of the op-
erators V(t) can be shown in the same way considering the dual cocycle V. In
fact contractivity of Vis equivalent to that of V' and the dual cocycle satisfies a
left quantum stochastic differential equation with L” instead of L by Proposition
5.12.

We prove then 2. For every v,u € h and every f.g € Mg formula (5.6)
yvields

(V) ve(g), V(1) ue(f)) = (velg), ue(f))

.f — -
+ A (V(8) v(e—co + g(s))e(g), F(L + L¥ + L°L)V (s)*u(e— o + f(s))e(f))ds

Since I?(f)* = R¢(V(t)) this shows that the operators (V(t));>p arc isometrics
if and only if (5.22) holds.

The third statement can be proved in the same way cousidering the right
cocycle (V(¢)* )0

The fourth statement follows immediately from 2 and 3. O

Remark. When L is the operator (5.5) we have

0 Ls+L}+LiLy Lu+L;+L}L
EA B4 IPL= 0 Lo+ Li+ Lils Li+L5+LtL
0 0 0

In this case, condition (5.22), (resp. (5.23)) is equivalent to the well-known
condition for the solution of a quantum stochastic differential equation to be
isometric (resp. coisometric) found in the seminal paper [38] by R.L. Hudson
and K.R. Parthasarathy.
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Note that, if the operators (Ly)}_, are bounded (for simplicity), the identity
L4+ L} + L7 Ly = 0 implies that

1
Li+5LiLy

has the form i H where H is bounded self-adjoint operator. Therefore, the choice
L s L == Lgmsl), L= gil,

yields a group of unitary operators (V(t));>0 satisfying the Schroedinger equa-
tion
dV{t) = iHV{t)dt.
e sense (5.20) is a generalization of the Schroedinger equation.

The following propositions motivate partially the assumptions under which
we shall stidy the quantum stochastic differential ecquation (5.20) with an un-
bounded operator L.

Let us recall first the following (see, for example, (60] or [68] Ch. VI, Sect.
123.

Proposition 5.14 Let (V{(t));>0 be a contractive left cocycle in H. Then the
family (P(t)):>o of operators on h defined by

P(t) = Eq[V(1)] A

is a confraction semigroup in h. If the cocycle is strongly continuous then the
semigroup (P(t))e>0 is also.

Proof. Since (6;)¢>0 is a covariant shift and V is a cocycle for cvery ¢, s > 0 we
have

Pit+s) = Ey[V(i+s)]
= [EgV(s)8:(V(t))]

= [Ey[V(s)8:(Eq V(@)
Notice that 8,(P(t)) = P(t) because the shift (6,),>0 leaves invariant operators
on the initial space. Hence we have
P(t + s) = [Eq [V (s)|P(t) = P(s)P(t).
Therefore {P(t))tzo is a semigroup. Moreover, for every u € h, we have

[(P(t+s)—Pt)ull =  suwp o, (P(t+ s} — P(t))u)

véh, Hulj=1

sup  |(ve(0), (V(t +5) - V(t))ue(0))

vEh, ||v||=1

< [V + ) = VI(E)ue(0)].
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Strong continuity of V implies then the strong continuity of (P(t));>0. A similar
argument shows that the semigroup is also contractive. O

;From now on we shall always suppose that (F({));>o is strongly continuous.
The infinitesimal generator G of P is defined as the set of u € & such that the
limit

lim 7! (P(t)u — u)

t—0+
exists in the strong (or equivalently weak) topology of h.

The following natural hypothesis on the operator L that will be in force
throughout the rest of this chapter.

Hypothesis L

1. There exists an operator G which is the infinitesimal generator of a strongly
continuous contraction semigroup in h and a core D for GG such that the
domain of the operator L contains the domain Dg ¢

Dse={we_oo+uf+rven|wehuveD fek},

2. for all u,v € D, w € h, we have

Lwe_ . =0, E_ Llves, +uf)=0
(w, Gv) = (we_so. Lve o) {(5.26)

3. for all € Dg ¢ we have

(Fx,Lz) + (Lz,Fx) + (FLz,Lz) <0. (5.27)

Remark. The above hypothesis implies that the operators G and L' satisfy
the hypothesis A introduced in Chapter 3. Indced, for every v € D, taking
T = Ui, (5.27) reads as

{Gu,u) + Z <Limu, Li%u‘) + (u, Gu) <0.

=1

Since D is a core for G, the operators LY . can be extended to D(G) so that
the above in equality holds also for u € D(().

Remark. Since the coeflicient L is unbounded but the solutions we shall con-
struct are contractive the left quantum stochastic differential equation will be
interpreted through quantum stochastic integrals defined on vectors of the form
ue(f) with v € D. We shall stress this fact by speaking of quantum stochastic
differential equations in Dg.

Under the hypothesis L an operator L in h & k can be approximated by a
sequence of bounded operators (L, ),>1 which are the “infinitesimal generators”
of contractive cocycles.
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For every integer n > 1, let R(n:G) be the bounded operator (nl - &)~ .
Note that the adjoint operator G* is the infinitesimal generator of the dual
contraction semigroup and we have R(n;G*) = R(n; ()", Morcover the well-
known propertics of resolvent operators relations for all w € h, v € D{G) vield

lim nR{n; G)w = w, lim nGR(n;G)v = Gu.
n—oc n—oo

Proposition 5.15 Let L be an operator in h & 1;1 satisfying the hypothesis L.
For each n > 1 let I,,, L, be the operators in h > k with domain Ds defincd by

I, = nR(1;G)E—so + E 4+ nR(n; G)E; oo. L, =1I*LI,. (5.28)

Then the operator Ly, has a bounded extension which s an element of B satis-
Julng ihe inequalities (5.21) and its uniform norm can estimated by

ILnll <2 (n+3vn+1).
Moreover, for all £ € Dg, we have

lim L,¢& = L& (5.29)
nN—00
Proof. The operator L, satisfies the inequality (5.27). Indeed it suffices ro
write (3.27) for vectors of the form I,,x with © € Dg¢; (the vector [,x belongs
to the domain of L by the well-known properties of the operators 2(n; (') and
the remark after the hypothesis L) and use the commutation of the operator I
with the operators I, and I},
Moreover, beeause of (5.26), in order to prove that L, is bounded, it suffices
to estimate the norm of L, ¢ for vectors € in haok of the forn Z;zl 1 ([ + eqoo)
with u; € D, f;j € Mg for all j. In this case we have

1Lo€ll < NELWEEl| + | B oo LuE€] + IEL, By oclll + I E—o L Evocéll (5.30)

The norm of F_ L, E . can be estimated using the third identity (5.26). We
have in fact, for each v, u € D,

(\1‘6*-00- E_oLln E+wue+00> =it (R(”: G)'i’: GR(”; Gu)

Then, using the identity GR{n; G) = nR(n;G) — 1 and the contractivity of
nR(n; G), we can estimate the norm of GR(n; ) by 2. Thercfore we obtain the
incquality

‘(ve—ooa E—-ooLnErFmU(‘--HwH <2Zn H’“L . HUM
which implies
B L Ei |l < 2n. (3.31)

Taking a vector @ € Dg in the range of £ from the inequality (5.27) for /.,
we obtain immediately the estimates

E-+EL,E| <1, |EL, E| < 2. Ghy
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Consider now a vector © = uey ., with u € D. The inequality (5.27) for L,
yields
2n2Re (R(n; G)u, GR(n; GYu) + || ELn £ sotieqonl” <0

Hence, using again the equality GR(n; G} = nR(n; G) — 1, and the contractivity
of nR(n; G) we get the inequality

| ELnEpoctsool? < 4n [[ue-oo |’

which implies
|ELyErooll < 2v/7. (5.33)

To estimate the norm of E_..L,E we apply inequality (5.27) for L, with
vectors x of the form zg + Avey o with zg finite linear combination of vectors
in Dg in the range of £, v € D and A € IR It turns out that the number

(x(], LIO) + (Lﬂ.‘o,l‘o) =+ {L.’L‘U, EL:?J0>
+ 2% ((ve_coy Lnvesoo) + (Lnleioo, Vo) + (Lnveqoo, FLyve100))
+2MRe (Lxg, FLave o) + 23We ({Lag, ve_ o) + (Laveioo, o))

= 2Re (zo, Lao) + || Laol/* + A2 (2?]?13 {(v€_oe, Lnte o) + HEL,L-ue.H,;Hz)
+2ARe ({Lxg, FLayve os) + {Lag, ve—se) + (L0010, 70})

is real negative for every A € IR. Let
a = =20 (ve_co, Lnveyos) — [|ELy Epooveqos|”

= —2Re(zo, Lxo) — | ELxo| = = |(E + EL)oll* + [leo?
= e [(veios; EceclnBin) + (B +ELyE)$o; ELyBssoteres)}

Therefore we have the inequality
GA 2~ 2D T

Applying (5.27) for L,, with z = ve, ., and = = x¢ separately we find that a
and ¢ are nonnegative. Moreover the estimates (5.31}) and (5.32) yield

a < 4nljv|?, e < Jlzoll®. (5.34)
Therefore |b] < y/ac and we obtain the estimate
[Re (ve_oo, E—oonExo)| € 2v/ac+ |{(E + EL,E)xo, ELy Bt ooV 400

Multiplying v by a complex number of modulus 1 such that the scalar product
in the right-hand side becomes real, from (5.32), (5.33), {5.34) we obtain the
inequality

l{ve - co, E—cocLnExo)l < 4v/nllv]] - |zqll

for all v € D which implies

B—ooLnE]l £ 4v/n
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Using (5.32), (5.33), (5.34) and the above inequality from (5.30) we obtain the
claimed estimate for the norm of L,. Clearly L,, € IB because of {5.26).

Now (5.29) can be proved by decomposing L€ as we did to obtain (5.30)
and using the propertics of resolvent operators (R{n; G*))n>1. In fact, for every
w & Dand f €k, we have

HE-sLnEyoe = E-oLEyo)ubrol’ = ||n*R(n: G*)GR(m: G) — G)ul”
WEL Eyoc — EL£1+'><‘,;’“B$X~'§? = | EL(nR(n:Gu - -u)(e‘*.,c@}g
< =2Me (nR{n; Gu — w, GnR{n; Glu — u))
(E_ L. .F—F LEWwf = FE_.(mRn:G)L—-Luf
(FL,E— ELFEyuf = 1.

Uhis completes the proof. O

Proposition 5.16 Let L be an opcerator on oo b salisfying hypothesis L and
let (Ly)az1 be a sequence of elements of IB satisfying (5.27) such that, for all
£ & Dy, we have

lim L,{ = L.

M=%

For all integer n let V,, be the unique (h, Mg -adapted reqular conlractive solu-

L%

tion of the gquuntwm stochastic differentiol cyuation in h
dV,,(8) = V,{t)dAp, (F), V.(0) =1
There erist a subsequence (i, 1 and operators V(t) defined by

V({t)=w—= lim V, (t) (5.35)

TR =G,
satisfying the quantwmn stochastic differentiol cquation in Dy
dV (1) = V(dArit). Vi =1 (5.36)

Proof. TFor cach n > 1 and each v € D. [ € Mg by the Ito formula (5.7).
Corollary 5.4 and contractivity of V, {t) we have

-f

(Vi (8) — Vil el N < 2exp(1 + 21 £ / ELau(f(r) +eq o) Zdr,
‘ (5.37)
Let N{f) be the number of nonzero f; with j € 5 and let ¢/(u, f) be the constant

" 02 . 2 2
max max {"I‘,;!tfij } iLnuesooll™ s flull”, 1 ¢
neN | je{keSifiF0} L . )

A straightforward computation yields

[ Ln(fir) —ey ) <0+ NN ) A+ -
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Therefore, for each y € H, v € D, [ € Mg, the sequence of functions on

[0, +00f
L (y, Val(t)ue(f))

is equicontinuous and equibounded. Hence. by the Ascoli-Arzela theorem, there
exists a subsequence uniformly convergent on every bounded interval of [0, +o00].
The diagonalisation argument and the separability of H allow to find a subse-
quence (Vi,,, Jimn>1 weakly convergent to an (i, Mg )-adapted contractive process
V.

Lower semicontinuity of the norm with respect to the weak convergence and
(5.37) imply that V' is strongly continuous. Moreover, for all N, by (5.6) we
have

{ve(g), Vi, (Due(f)y = (ve(g).ue(f)
t
i / (1{e—oo + grN)elg). Vi, () v el S + 043 e (L)) atr
0

Letting m tend to infinity, contractions V), (s) converge weakly to Vis) and
vectors L, u(f(r) +e.) converge strongly to Lu(f{r) +e_~ ). Therefore 1l
desired conclusion follows. O

The above propositions allow us to prove immediatelv the for wing

Theorem 5.17 Let L be an operator on h =k salisfying hypothesis L. Then
there exists a (D, Mg)-adapted regular confractive solution of the quantum stockas-
tic differential equation (5.56).

Arguing by induction on the number n of the n-tl chaos of the Fock space

as in [39] can prove the following uniguencess result due ro A, Mohari (169"

Theorem 5.18 Lei L be an operator on h <k satisfying hypotiess L Then

the (h, Mg)-adapted regular contraciioe soluiion of the quantum fochasioo di-

Jerential equation (5.36) is unique,

Proof. Let (X(t))iza be the differcice of vwo (40 Mg)-adapied - coular con-
tractive solution of (5.36). Applying the lirst [indamental torisaia (3.9) we
have

t
(({,’"”’" Xt )uf‘”” = / ;‘/z'_q"' ' V(s ((ff’”\
Jo o0

t
/ o’ Wy
g P o] ] i T "‘,,IN—J\\. el
| 5: [\,g; X)L g P Vi (s)ds

£4mes /0

/ rg™ h.ﬁ'(.rllix_ixl."“‘-.: “}_{}g(s)dx
0

/ vy X (s f,_”"u “_”> fnls)ds

meSs
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for every u,v € D and every pair n,n’ of integer numbers with the convention
g% = f®" =0ifn < 0and g% = f®0 = e(0).

We prove that the left-hand side vanishes by induction on n + n’.

For every A > Q the bilinear form on h

(v,u) — /000 exp(—At) {ve(0), X (t)ue(0)) dt

is bounded because || X (s}|| € 2 and

/ exp(—At) (ve(0), X (t)ue(0)) dt| < 227 o]l - [lul.
0
Henee there exists a bounded operator Ky in A such that

(v, Ryu) = /Om exp(—At) {ve(0), X (t)ue(0)} df.

The first fundamental formula (5.9) for n =n' =0, u,v € D, yields

Ao, Rau) = Afoo exp(—At)dt /Gt {ve(0), X (s)Gue(0)) ds

)\f {ve(0), X (s)Gue(0}) ds /OO exp(—At)dt
= U R,\G'u)

We have then
Ry(AMl—-Glu=20

for every v € D. Since D is a core for G, the linear manifold (A1 — G)(D) is
dense in h. Thus Ry vanishes. Therefore (ve{(0), X (¢)ue(0)) also vanishes for
every t > 0.

This establishes our claim for n + n»’ = 0. Suppose it has been established
for every n,n' such that n +n’ < m. Then, for every n,n’ with n+n' =m+1,
the induction hypothesis allows us to write formula (5.9) as

(vg®™ , X (t)uf®™) /(z L G‘uf®”>ds

The same argument we used in the case when n = n’ = 0 shows then that
(vg®™, X (t)uf®™) vanishes for every t > 0.
This completes the induction argument and the proof. O

Uniqueness allows us to deduce the cocycle property as in the paper [38].
Corollary 5.19 Let L be an operator on h&lk satisfying hypothesis L. Then the

unique (h, Mg)-adapted regular contractive solution of the guantum stochastic
differential equation (5.36) is a left cocycle.
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Proof. In fact, since the operators V'(t) (t > 0) are contractions then for every
fixed s > 0 the (h, Mg)-regular adapted family of operators

X(t)=V(t+s), Y()=V(s)8:(V(t))

satisfy both the quantum stochastic differential equation (5.36) with the same
initial condition. Therefore they coincide. O

5.4 Unitary solutions

In this section we will study conditions on the operator L (satisfying the hy-
pothesis L) for the solution (V(£)),>0 of (5.36) to be a family of isometries (resp.
coisometries, unitaries).

Proposition 5.13 suggests necessary condition: the left-hand side of (5.27)
vanishes for x € Dg. This condition, as AA for quantum dynamical semigroups,
unfortunately is not sufficient. However we will show that, under the hypothesis
L, the operators (V'(t)).>o are isometries if and only if an associated quantumn
dynamical semigroup is identity preserving.

This reduces our problem to the problem studied in Chapter 3, Sections 3
and 6.

With a given contractive cocycle V', by Theorem 2.24, we can assoclate
quanium dynamical semigroup T = (T;) ., on B(h) defined by

(v, T(z)u) = (V(H)ve(0), 2V (H)ue(0)) (5.38)
= <f;'(t)*ve(0),ﬂ:v‘(t)ue.((])>
for all t > 0, @ € B(h), v,u € D. Here the second identity follows from the
properties of time reversal operators R, and the fact that Rye(0) = (0).

In this section the following hypothesis on the operator L will be in force

Hypothesis LL

The operator L in h & k satisfies the hypothesis L and, for all » € Dg ¢ we
have

(Fz,Lz) + (Lz, Fx) + (FLz, Lz) = 0. (5.39)

Lemma 5.20 Let L be an operator in h & k salisfying the hypothesis LL. For
every n € [0, 1] consider the operators in h % k

1M =9E  + B4+ 1B, LW =17L17 4 (1 - 9?)E_ooLE 0o (5.40)
The operator LUV satisfies the hypothesis L.

Proof. The operators 1 and F commute and D s,¢ Is invariant under 10,
Therefore L") obviously satisfies 1 and 2 of hypothesis L.
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Moreover, for every x € Dg o, we have

<F$, L(”):L‘> + <L(’7)J:J F;1:> + <FL(”):C, L('7):c>
<Fll(’”m, L]l(”)m> + <Ln{”)r, F]l('”:c> + <FL]1(”)I.‘L]1(")$>

4+ (L—=92){(Ez, B_ssLBisst) +{B.ss LE est, Fi))
e (1 - ?]2) ((FE_‘_:C.’IT, LE_‘_QO:U) 5 (‘LE_i.gcr, FE+OO$>)
= —(1= 9 WLE oor, ELE4ocr) < 0.

This completes the proof. 0O

The above lemma allows us to state the following

P ooposition 5.21 Let L be an operator fn h oo k satisfying the hypothesis LL.
foor every € [0,1] let VD be the wnique reqular (h, Mg )-edupted contractive
process selisfying the quantum stochastic differential equation

dV () = VO (1)dA o (8), vy =1

in hoand let TUL be the associoted quantum dynamical semigroup. The following
Jucts hold:

1. for every t 20
w— lim V' (t) = V()

n—1 -

where (V(¢))z0 s the unique solution of (5.36),

2. for everyt > 0 and every positive operator x € B(h) the operators (’1;(”)(1)
)ne[o,1] are increasing in 7.

Proof. Asin the proof of Proposition 5.16, applying Corollary 5.4 we can find
the estimate

|(v@@) - vO@)uetn| < ewn [ 1+ W) ar

for each v € D and f € M where c(u, f) is a constant independent of 7. The
equicontinuity and diagonalization argument in the proof of Proposition 5.16
can be used also here to show that for every sequence (n,)n>0 converging to 1
there exists a subsequence (9n,, }m>o such that the limit

w— lim V0Omel(t)
TIN— OO0
exists for every ¢ > 0.
Moreover, it can be shown as in the proof of the same proposition, that the
limit satisfies (3.36). Therefore it coincides with the unique solution of (5.36)
by Theorem 5.18.
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Swnming up: every sequence (V{7)), 5o admits a subsequence which con-
verges weakly to the unique solution of (5.36). This proves the claim 1.

Let T(" be the quantuin dynamical semigroup associated with V' via
(5.38) and let (P(t));»0 be the strongly continuous contraction semigroup on h
generated by G. A straightforward computation yields

dis <V(’?>(5)P(t — 8)ue(0). 2V (s)P(t — s)u,e(0)>

= Y. < V(8)LE oo P(t — 8)ue(0), 2V (s)LE  P(t — .q)m.:(()))
£eS
for every u € D and z € B(h). Therefore, integrating on [0, t], we have (dropping
the index +oo of LY )

<u,ﬁ("’(x)u> = (P(t)u, 2P(t)u) (5.41)

+ 7 Zf L"Pt—s)u T (2)LEP(t - 5)u>d5

€es

For every 72 < 11 < 1 and every positive operator @ € B(h) we have then
<u (T(”‘)(:c) - T(””)(a:)) 'u>
= 731 -2 Z/ LgP(t — &)u, T\ (2)LEP(t — s u>ds

tes
+ Z] Le P(t — s)u, ('];(m () TJ"”(:E)) L¢P(t - s)u> ds
ees
> Z/ LEP t— sy, (ﬁ(’rl) 7'5(172)(1,)) LeP(t — s)u >ds

es

Estimating the norm of T(”' (z) — 7;( (2) by 2||z|| and computing the integral

u, T;(T")(a:)—T(m)(x) w)y > =23 ||L£ t—a)u” ds
(1= 7)s) = b [

= 2l (Il ~ 1P()

> =2/l lfull?

Tterating the estimate and computing the integral we obtain

<u, (T(n‘)(x) = T(??z)(l.)) u>

> g3 ] (L8P~ s)u, (T (@) = (@) 1Pt — s)u) ds
eS
> —2||$||n22f I|L£ t—s u“ ds
£eS
> —2nsllell - flull®.
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Therefore, iterating » times, we have

(u (T - T @) ) 2 ~203" ] full®

The statement 2 follows then letting n tend to infinity. O

Theorem 5.22 Let L be an operator in h vk satisfying the hypothesis LL
and let (V(t))i>0 be the unique solution of (5.36). The quantum dynamical
semigroup associated with the cocycle V' coincides with the minimal quentum
dynamical seniigroup T associated with the operators G, L ...

Proof. We use the notation of the proof of Proposition 5.21. Let x be a positive
operator B{h), v a vector in h and ¢ > 0. Letting 5 tend to 1 it turns out that the
Hmit quantun dynamical semigroup satisfies the equations (3.16) and (3.15).
reover, for o & 10, 1], £ > 0. by the same argument of the proof of Proposition
3.21, we have

T (@) & ™ (a).

Therefore the limit quantum dynamical semigroup coincides with the minimal
quantum dynamical semigroup 7™ associated with the operators G, L, by
the minimality of 7" (see Theorem 3.22).

Let 7 be the quantum dynamical semigroup associated with the cocycle V.
The second fiundamental formula of quantuin stochastic calculus (5.7) shows
immediately that 7 satisfies the equations (3.16) and (3.13). Therefore, by
virtue of Theoremn 3.22, we have

ﬂ(lﬁ Z f]-rtmin“(l‘}l

On the other haiid the lower semicontinuity of the norm with respect to weak
convergence yields

» 2
A Hrl"zlf[t)iu-:(())H
! ey 2
< liminfi|:r1"1-"”)(t)ue(0)H
n—1- |l
= liminf { .TL(”)(I)u>
n—1- -

= <u.7l.(mm)(3.‘)u> .

This completes the proof. O

We can now give necessary and sufficient conditions for the operators V (¢)
to be isometries.

Theorem 5.23 Let L be an operator in b b satisfying the hypothesis LL and
let {V'(t))i>0 be the unique contractive coca/c.k satisfying (5.36). The following
conditions are equivalent:
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1. tl.e operators V(t) are isometries for every t >,
2. for each v,u € D and each t > 0 we have
(V(t)ve(0), V(t)ue(0)) = (v, u),
3. the quantum dynamical semigroup associated wnth the cocyele Vois conser-
vative.

Proof. Clearly the first condition implies the second one.

By virtue of Theorem 5.22, the quantum dyuamical semnigroup associated
with the cocycle V' coincides with the minimal quantum dynamical seimigroup
T(min) associated with the operators G and LY ... Therefore we have

{(V(t)ve(0), zV () ue(0)) = <'e-.’T,(mi")(:r)u>

for everv v.u € D, & & B(h) and £ > 0. Taking r = 1 it is clear that 2 and 3
are equivalent.

To complete the proof it suffice then to show that 2 implies 1. We will prove
by induction that for ecach m > 0, n,n’ € IN with » +n' = m, v,u € D,
q. f € Mg we have

<‘/’({»),{,gf’m'. ‘,—(f)“f‘_.;n> - (\”,_” ‘o ”‘::‘ {_f]- f‘:” . (31_))

This claim is clearly true for m = 0 because of condition 2. Suppose it has been
established for all n, »” with n+ n’ = m and take n.»/ such that n +n' == m -+ 1.

Writing the Ito formula (5.7) of Boson Fock space quantum stochastic calcu-
lus using n-chaos vectors and taking into the account the induction hypothesis,
we obtain the equation

<V(t)vgz”’,V(t)uf"‘?‘”> =& v ) {g. )"
t
+ V(s i‘g@“’,V s G’nf:;” - {V(s)Gvyg @n’ Vs ufE
| {ve ()Gur ) + (V(s)Gug® V(shus®")
+ <V(.S)ELU€_._,\_9'"(‘:”" : L"(.H)E]Jue_i,m_f'g”> } ds

Let A > 0 fixed and {as in the proof of Theorem 5.18) deline a bounded operator
Ry in e by

-
(v, Rauy) = / oxp(—At) <\"(f)1'_q*” .\"(l‘)ul/':’;"”> dt.
0
A simple computation (again as in the proof of Theorem 5.18) yields
A, Ratw) = 6 (v, 0) (g, £Y + {1 (R )
i.e., since £(1) = 0 (in the form sense)

£(Ry — 1) = N(Ry — cl)
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where ¢ = X716,y , (v, u) (g, )"
Condition 2 (or the equivalent condition 3) and Proposition 3.31 imply then

R)\ = Ailéﬂ,’,n (Qa f)n 1.

Hence (5.42) follows for n +n’ = m + 1. This completes the proof. O

Theorem 5.23 together with the results of Chapter 3 allow us to construct a
large class of isomerric cocycles. Proposition 3.12 suggests a simple way to de-
termine whether a cocycle is coisometric. In fact this question could be answered
applying Theoren: 3.23 to the dual cocycle.

The following proposition gives a natural condition on the operator L al-
lowing to find the quantum stochastic differential equation satisfied by the dual
cocyele

Hypothesis LLD We say that the operator L satisfies the hypothesis LLD
if it satisfi~~ the hypothesis LL and:

1. thers exists a core D for G such that Dg ¢+ is contained in the domain
of FL*F,

2. the restriction L of FL*F to f:)c,c satisfies the hypothesis L with D and
G* replacing D and G,

3. therc exists a sequence (Ln)ngi of elements of IB such that

s— lim L,&=L¢, for every £ € Dg -,
n—o0

s— lim L0 =1¢,  for every € € Dgg-.
n=—oc

Proposition 5.24 Suppose that the operator L in h &k satisfies the hypothesis
LLD. Let V and Z be the wnique cocycles satisfying the quanturn stochastic
differential equations

dV(t) = V(t)dAL(t), V(0)=1  inDs
dZ(t) = Z(t)dAs(t),  Z(0)=1 in Dg

Then Z coincides with the dual cocycle Voof V.

Proof. Let (Ln),>1 be the sequence of bounded approximations of L. For every
n > 1let V;, be the unique cocycle satisfying the quantum stochastic differential
cquation

dV.(t) = Vi, ()dAy, (), Va(0)=1

By virtue of Proposition 5.12 the dual cocycle V. satisfies the quantum stochas-
tic differential equation

V(1) = Va(t)dAgy (), Vu(0) = L.
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By the hypothesis LL.D we can apply Proposition 5.16 and find subsequences
(that we denote as the given sequence for simplicity) such that

w— lim V() =V (), w— lim V,(t)=V(#)

N—0 n—0oo

Then it can be shown as in the proof of Proposition 5.12 that the cocycle
V satisfies the same quantum stochastic differential equation satisfied by the
cocycle Z.

Therefore, by Theorem 5.18, the two cocycles coincide. O

The following Lemma shows that the sequence (L, )n>1 considered in Propo-
sition 5.15 can often be used to check the hypothesis LLD.

Lemma 5.25 Let L be an operator in hk satisfying the hypothesis L. Suppose
that there exists a domain D which s a core for G* such that:

1. the domain of the operator L* contains 55.
2. we have L C (F°L*F),

3. for allu e D and all n > 1, R(n; G)u belongs to the domain of G* and
the sequence {G* R(n; G')u) 1 conuverges.

Then the operator L satisfies the hypothesis LLD.

Proof. Let (L,)n>1 be the Sequence (5.28).
We show that, under 1, 2 and 3 the sequence (L%)

L on 155. In fact, for all £ € Dg we have

2w COnverges strongly to

LY¢ = ELLEE+ B_oLLEE + ELLE o€ + E_ LY Eioof
(ELE)*E + nR(n' G")FE+OO "B + (B—oolnEY FE
Lb E+90

Clearly the first two terms converge strongly when n tends to infinity. The
vector Eioo& can be written in the form ue ;o with w € D; for all n,m € IV,
hence we have

B oL By cer— Bl BB Y| = MG P a—4G,:) u]
Since (Gn)*u = n?R(n; G*)G* R(n; G)u and D is contained in D(G*), the limit
as n tends to infinity of the fourth term exists. The third term can be written
in the form

ELE. o = (B_ooLnE) ' F = —(E+ ELE) EL,E.ooF

where the second identity follows from the equality (5.39). This shows that the
sequence (Lf’l‘)n>0 is strongly convergent. To show that the limit coincides with
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L on Dg cousider y € Dg, x € D(L). Because of 2 we have then,

lim (y,L%2z) = lim (L.Fy, Fz)
n—oo n-—0oc
= (LFy, Fz)

= (y, FL"Fz)

= ()

This completes the proof. O

5.5 Inner quantum flows

It this section, following [41], we show how to construct a class of quantum
Markov processes with unbounded infinitesimal generator using unitary solu-
tions of quantum stochastic differential equations. Moreover we give a general
condition 1 order the restrictions to an abelian sub-*-algebra to be commuta-
tive.

Definition 5.26 . Let A be a unital sub-*algebra of B(h). A quantumn flow on
A is a family § = (ji)i=o of identity preserving *-homomorphisms from A into

B(H) such thai:
1. forallx € A, jo(x) =z,

2. forallx € A, (Ji(2))iz0 is an (h, Mg)-regular adapted process,

3. there exists a sub-*algebra Ao of A dense in A for the norm || - |l and
structure maps 0%, : Ao — A such that the quantum stochastic differential
equation

di(r) = > 5165 (2))dAT (1), jo{z) = = (5.43)
¢,meSs

in Dg 15 satisfled for all z € Ay.

We refer to [68], [74] for results on quantum flows with bounded structure
maps. in particular, the existence theorem of M. Evans [34].

Definition 5.27 Let A be o commutative sub-*algebra of B(l). A quantum
fow (3,);5, on A is commutative if, for all x,y € A and all 5,1 > 0, we have

[4s(y), Fs+e{2)] = 0.

In the following we shall assune

Hypothesis LLF .
An operator L in h ® k satisfies the hypothesis LLF if:

1. it satisfies LLD,
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2. D is a dense submanifold of D,

3.V, V are the unique unitary solutions of the quantum stochastic differen-
tial equations

dV(t) = V(t)dAL(t), V(0)=1, inDg,  (5.44)
dV(t) = V(t)}dA;(t), V(0)=1, inDs. (5.45)

Note that V, V are strong limits of cocycles V;,, 17,1 satisfying the quantum
stochastic differential equation in H

1
1

I

dV,(t) = Va(t)dAp, (1), V.(0)
dVi(t) = Va(t)dAz (1), Va(0)

by Proposition 5.24.

Theorem 5.28 Let L be an operator in h ® k satisfying the hypothesis LLF
and let A be a sub-*-algebra of B(h). Moreover let A, be a sub-*-algebra of A
which is dense in A for the uniform norm ||-||_,. Suppose that:

1. forallz € As, wE 15, ¢, m e S, the strong limit

s— lim ™M¢¢ (z)w

n—oc

4

exists and defines a bounded operator 0, (x) satisfying, for all u,v € D,

(v, 05, (x)u) = (FLFveg, zue,) (5.46)
- <?)€g, LDLb'U.Em> + (FL"JFUEE, a:Lbuem>

2 forallz € As, £, m e 5, we have

™t (2)| < oo

sup
n o0

Let V, V be the unique unitary solutions of the quantum stochastic differential
equations (5.44), (5.45) in Dg. For allt > O consider the *-homomorphism j,
on A defined by

Jelz) =V {t)zV™(t).

Then (ji)i>o0 s a quantum flow on A with structure maps given by (5.46) sat-
isfying the quantum stochastic differential equation (5.43).

Proof. Under the present hypotheses we have

s— lim Va@®) =V(8), s— lim Va(®) =V (), s— lim V() =V*(#)
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for all ¢t > 0. Moreover the cocycles V' and v satisfy quantum stochastic dif-
ferential equations (5.44), (5.43). Foralln € IN, u,v € D, f,g € Mg and all
z € A we have then

(Va (t)ve(g), 2V (B)ue(f)) = (velg), zue(f)) (5.47)
+ Z / Vr(s)ve(y () 9,{‘( NV (s )u((f)> Ge(s)f"(s)ds
¢,meSs

¢, are given by (5.46) with L
replaced by L,. For all x € A, the operators (®§° (2) in h are uniformly

m

bounded by condition 2. Then, because of condition 1, for each w € h and each

[.m e S, we have

where, for all £,m € §, the structure maps ™

lim (M@¢ (z)w = 6f (z)w. (5.48)

n—oo

Hence, by the dominated convergence theorem, taking the limit of both sides of
(5.47) we obtain (5.43). O

The following results give sufficient conditions in order that the restriction to
a commutative sub-*-algebra of B(h) of a quantum Markov flow in Fock space
with unbounded structure maps to be commutative.

Proposition 5.29 Lef v : Ay — A be a linear map such that (A — v)(As)
is dense in A for the norm || - ||o for all X greater than a fired positive number
Xo. Let (Ti),sq be a family of linear maps T; : A — B(h) with the following
properties:

1. for allt > 0 and all z € A, we have

1T2(2) oo < Nzl -

2. forallz € A and all v,u € D the function t — {v, T,(x)u} s continuous,

S for allx € Age, v,u € D we have
¢
(v, Te(2)w) :/ (v, Ts(v(x))u) ds. (5.49)
0

Then T; =0 for allt > 0.

Proof. For all A > 0 let 7, be the operator on B (h) defined by
<U,ﬁ(:ﬂ)u> :/ exp(—As) (v, To(x)u) ds
0

for all z € A and all v,u € D. Taking the Laplace transform of both sides of
(5.49) and integrating by parts the right-hand side we obtain

(0. T (M= 9)(@)u) =0,
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for all z € A.,. This implies that ﬁ = 0 because of condition 1 and the density
of (Al — v){Aw) in A. Hence we obtain 7; = 0 for all t > 0 by a well-known
property of the Laplace transform. O

Remark. If (Al — v)(Au) is o-weakly dense in A and the map z — T;(2)
satisfying 1, 2 and 3 is also o-weakly continuous and positive the same conclusion
holds.

The following result, obtained in [41], generalises the corresponding result of
Parthasarthy and Sinha [75] for quantum flows with bounded structure maps.

Theorem 5.30 Let (ji)i>0 be a quantum flow on A with structure maps (85,
}E,WIES with

gt A — A

m

satisfying the quantum stochastic differential equation (5.43). Suppose that
(M = 0:2)(Ax) is dense in A for all X greater than a positive number Ag.
Then the following facts hold:

1. if A is commutative, then the quantum flow (ji)i=0 is commutative,

2. the adapted family of operators (ji(z)),~q is the unique solution of the
quantum stochastic differential équation (5.43) for all € Ax.

Proof. Fixy € A and g,f € Mg. We will prove that, for all p.q € IV,
s,t 20, v,u € D and all x € 4 we have

(0g%%, [1s(9), Jora() wfEP) =0 (5.50)
Let us first consider the case when n = 0. For all ¢ > 0 from the homomor-
phism property of j; we have ||js(a)|leo < ||a|lcc- Hence we can define bounded
operators 7; : A — B(h) by
(v, Te(z)u) = (ve(0), [7s(), Js e (2)] ue(0))

Write j544(y) as the sum of 7,(x) and a stochastic integral on (0,¢). Since j, is
a *-homomorphism we have

Us(2),3s()] = Js ([z,y]) = 0.
Then, applying the Ito formula (5.7), we obtain the equation
¢
@ = [ (TS @)
0

and (5.50) follows from Proposition 5.29. The proof can be completed by in-
duction on n = p + ¢ by the same argument of the case n =0. O
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5.6 Quantum diffusions

In this section we construct an inner quantum flow extending the flow of a
classical multidimensional diffusions with smooth covariance and drift. This
generalises the result obtained in [41] for elliptic diffusions.

Let (y(t)):>0 be a d-dimensional diffusion, as considered in Chapter 4, Sec-
tion 2, satisfying the stochastic differential equation

d
dy;(t) = Zcfjk(y(t))dwk(t) + b, (y(t))dt, 1<5<d (5.51)

k=1

In this section we will always assume that o and b satisfy the hypothesis
D in Chapter 4, Section 2. The quantum extension of the semigroup obtained
there guides the our construction of the operator cocyele here.

Denote again a = o*a. ~

Let i = L2(IR%@) and let D and D be the linear manifold C°(IR%ET) of
compact support functions with continuous partial derivatives of all orders. Let
§=1{1,...,d} and § = SU {—c0,+oc}. For every operator L in h@k we
denote by L? the restriction to Ds of the operator FL*F.

Let A = CP(IR"!;IR) and A, be the algebra generated by multiplication
operators by a function which is either constant or infinitely differentiable with
compact support.

We define now an operator L which is the candidate “infinitesimal generator”
of a cocycle V satisfying the quantum stochastic differential equation

dv(E) = V(dAL(t), V() =1

Denote by L be the restriction to Dg of FL*F.
If both the operators L and I satisfy the hypothesis L then the following
identities hold

ELE+EL*E+ELEL*E=0 (5:52)
ELE+ EL'E+ EL*ELE =0 (5.53)
ELE. o+ ELE o+ ELEL*E 100 =0 (5.54)
a0 1 o, R O T N B 17 W (5.55)

Let us consider:

e ad x d matrix y with entries in C¢ (IR%; IR) such that 14y is unitary (real
orthogonal),

e a d-dimensional vector p in CZ(R%; IR),
e a d-dimensional vector n in C?(IR%; IR) such that

d d
1 .
nj=b; — 3 Z(dkakj) + ZPEC’EJ" (5.56)
k=1

=1
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Define the operator L. the “infinitesimal generator” of a coeycle V', through
its “matrix elements” 1}

DAL =h L =ME") ife.mes

D(L7™)=H'(R%C)  L;™ == 000+ pe ifees

where M (") denoted the nultiplication operator by the function ;. Con-
dition {5.34) yields

ELE,. =1+ ELE)EL'E.
or. in the coordinate notation. for m = 5,

DfL';:w) - HY(R%:@

L = =360 490 ()

= —Z (67 + %) Zoej3:'+/)f
j=1

where 8" =0 if { #m and 6* =1if { = m.
Finally let L7 be the operator

D(L‘ ) = H(RT),

d
- 1 ST | :
L7 = _52 Ly™(Ly™) +5 > (095 +dim;)
=1 B

J=1

Notice that (L, *)* (resp. (L12)*) coincides with the operator L (resp.
() given by (4.10) (resp. (4.13)).

The results of Chapter 4, Section 2 allow us to prove immediately the fol-
lowing

Proposition 5.31 The apemtors LI, L7 satisfy the hypothesis AA as well
as the operators (L130)", (L_ ¥, The assocm,z‘.mi quantum dynamical semi-
groups are Markov.

Proof. The operators L oo, (L7 g5)* are infinitesimal generators of contraction
semigroups in h by Theorem A.3. Indeed these are second order differential
operators with sufficiently regular coefficients.

Moreover the linear manifold C°(IR%;@) is a core for both. Therefore the
identity (3.28), which is immediately checked for u € C2(IR%:@) by our choice
of the coefficients of the differential operators LT3, L"“o aud (B, (LhT%,
is fulfilled. Hence condition AA holds.
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Finally, since the coefficients of L 2o, (L7%)" are sufficiently regular (Hy-
pothesis D) holds, we can apply Theorem 4.6 to concluded that both the
quantum dynamical semigroups associated with ESo LF* and with (L755)",
(Lt .)* are Markov. O

Let K and H be the operators

d
D(K)= H¥(R%@), K=-5> L;™IL;=),

3| =
(Y
Il
o

D(H) = HYR:E), H=—23 (00 +0m)

bol =
3=

XY
Il
it

-

Notice that both K and H are self-adjoint. (K is negative self-adjoint). For
every nn > 1 let

K, =n’R(n; K)KR(n;K),  H,=inHR(in; H)

Counsider bounded approximations of L

TP = I if ¢,m € 5,
(Ln)7% = AREE)LE™ ifte s,
(Ln)tee = LT R(n; K), ifme S,
(Ln)7 = Kn+iH, if m=-—00,{=+co.

Straightforward algebraic computations show that the operators L,, satisfy
identities (5.24). Therefore there exists a dual pair of unitary cocycles Vi, V;,
such that

dVi(t) = Vo ()AL, (),  dVi(t) = Va(t)dAz (1) (5.57)
The well-known properties of resolvent operators yield
s— lim Lp¢=L¢, g— lim Li¢ = Lhe.
n—od —0o0
Theorem 5.32 The sequence (Vi (t))n>1 (esp. (Vn())no1) converges strongly

to a unitary operator V(t) (resp. V(t)) for every t > 0. The dual cocycles
(V(t))sz0 (resp. (V(£))i=0) satisfy the quantum stochastic differential equations

AV {t) = V()dAL(),  dV(t) = V{t)dAz () (5.58)
with initial conditions V(0) =1, V(0) = 1.

Proof. The identity (5.39) for the operators L, L is immediately checked by
our choice of the coeflicients of the differential operators L}*. Therefore there
exists unique contractive solutions of the above quantum stochastic differential
equations.
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Since the associated quantum dynamical semigroup are Markov by Proposi-
tion 5.31, the cocycles (V(£))sz0, (V{ (£))ez0 are isometric. Thus, being a pair of
dual cocycl(‘s they are unitary.

By virtue of Proposition 5.16 there exists a subsequence (Mm)m>1 such that

Vit)=w— lim V, (¢), V{E)=w— lim V, (2.
M-— oo T——CO
for every ¢ > (.
The above limits are also strong because both the operators V{t) and V(r)
are isometries.
Finally we can remove subsequences by the same argument of the proof of
Proposition 5.21 because limit cocycles are unique. O

We find now, applying Theorem 5.28, the quantum stochastic differential
equation satisfied by the quantum flow obtained by conjugation through the
unitary cocycle V. In order to show that the operators (™@¢ (f) with f € A..
are uniformly bounded in norm we need the following easy lemma.

Lemma 5.33 For every f € A, the operators
R(n; K} K, [K, f]] R(n; K) {5.59)
are uniformly bounded in norm.

Proof. A straightforward computation shows that the double commutator
(K, [K, f]] is given by the multiplication operator by

= Z a;i(2)(8;06 1) () + Y br(2)(8kf)(2)
_? k=1 k=1
where
18 d
bk(s'; ol Z Il ) () + Z Pm{T)Tmi(T).
m=1 m=1

Indeed the second order differential operator f — [, [K, f]] must coincide with
the second order differential operator given by the choice 7 = 0 in ( 5.56).

The conclusion follows from the fact that the operators R(n; K') are contrac-
tions. O

Proposition 5.34 Let A = CY(R% R) and let Ay, be the algebra generated
by compact support functions and constant functions and let (V (t )eso be the
umitary cocycle satisfying the quantum stochastic differential equation (5.58).
The gquantum fow

Jele) = V(O)aV(t)*, € B(h) (5.60)
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satisfies, for f € A, the quantum stochastic differential equation (5.45) with
structure maps

an(f) = 0, tmesS
d

0ro(f) = = D B+ owu(@f), meSs
k,g=1
d

B2 = — > (BE+v)ows(@f), L€S
k,j=1

() = a0 + (0;)

e ‘:bj)lgjgd 5 _(}E"UB?’L by (556)

Proof. Clearly Ay is dense in A for the uniform norm.
We check the hypotheses 1 and 2 of Theorem 5.28. For every f € A, n > 1,

¢,me {1,...,d}, by the basic rules of quantum stochastic calculus, we have
WL () = o) =0, (5.61)
D) = nLloRlo ) = 1L RO )
tn Z WL R K) (5.62)
Moo () = nR(n; K)Lg ®f +nfR(n; K)(LY o)
+nR(n; K) i Ly f4E (5.63)
k=1
WIR(f) = ilHa f] + Knf + [Kn
+ i nR(n; K)L; > fn(L; %) R(n; K) (5.64)
i=1

Therefore hypothesis 1 of Theorem 5.28 follows from the well-known properties
of resolvent operators.

In order to check the hypothesis 2 notice first that structure maps (mgt
with £,m € {1,...,d} are obviously uniformly bounded in n. Then, due to the
structure relation,

d
(Mo (yz) = y™OTS(x) + 0520z + Y M= W) M8 (o)
£=1

it suffices to prove that, for every f € Aq, the operators (M8, 22(f) are uni-
formly bounded in .
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A direct computation from (5.64) yields

MGTX(F) = i[Hu f]+ Knf + fKn
d
+> nR(n; K)Ly™ fn(L7*°)" R(n; K)
i=1

I

{Ho, £] 4+ nR(n; K)O52(fynR(n: K)
+n®R(n; K)[R(n; K), f] + n?[f, R(n; K)|R(n; K)

The second term is obviously uniformly bounded. The first one can be written
in the form

i|Hn, f] = nHR(in;H)f — nfHR(in; H)
= nHI[f, R(in; H)] + n[f, H|R(in; H)
HR{in; H)[H, fl(nR{in; H)) + [f, H{(nR(in; H)).
Since [f, H] is a bounded multiplication operator, the operators [Hy, f] are

uniformly bounded.
The sum of the third and fourth term can be written in the form

n*(R(n; K))?[f,n — K|R(n: K) + n2R(n: K)[n - K, f](R(n; K))?
(nB{n; K)} (R(n; K)[K, f] — [K, fIR(n; K)) (nR(n; K))

(nR(n; K)) [Rws K), (K, £]) (nR{n: &)

(nR(n; K)) {R(n; K) [K, |K, f]] R(n; K)} (nR(n; K)).

f

Therefore it is uniformly bounded in norm by Lemma 5.33. O

We can now prove the main result of this section.

Theorem 5.35 The restriction of the quantum flow (5.60) to the algebra A
coincides with the flow of a classical diffusion with infinitesimal generator gL

Proof. The algebra A, is a core for # o by Theorem A.1. Moreover the
structure maps 65, (¢{,m € {1,...,d, + o0, —oc}) of the quanturn flow (5.60) map
As into A. Therefore, by virtue of Theorem 5.30, the algebra A is invariant
under the homomorphisms j7; and the restriction to A of the quantum flow (5.60)
is comnmutative.

Proposition 5.34 implies that it satisfies the quantum stochastic differential

equation

d

de(f) =Y e (87°(F))) (AL o () + dA; @) + 50 (B5(F)) )t

=1

with jo(f) = f. Interpreting (AL _ (¢) + A7 ™(t))i>0 as an operator version of
classical Brownian motion via the Segal isometry it turns out that the above
equation coincides with the stochastic differential equation for the flow of a
diffusion process with infinitesimal generator #725. O
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5.7 Conclusion

The boson Fock quantum stochastic calculus developed by Hudson and Partha-
sarathy [58] allows to construct several quantum flows by conjugation with uni-
tary cocycles extending the flow of a classical Markov process to the algebra
of all bounded operators on a Hilbert space which is often an L? space of the
state space. Since q.s.d.e. are driven by brownian motions and Poisson processes
which are mutually non-commuting, in this way we can realise a classical Markov
process as a non-commutative functional of brownian motions and Poisson pro-
cesses. Moreover the quantum flow enjoys the quantum Markov property in the
sense of Accardi [1] and satisfies a quantum stochastic differential equation.
A class of quantum flows which are not necessarily of the form

Ji(x) = V(t)zV (1)

has been studied by Evans and Hudson in [36]. A detailed account on this
subject for classical Markov processes with bounded generator can be found in
the recent books by Meyer [68] and Parthasarathy [74].

The generalisation to unbounded generators is necessary to construct a non-
commutative extension of flows of most interesting classical Markov processes.
Here we described the general scheme (outlined in [41]) for constructing such
extension. The main steps are the following:

1. from the infinitesimal generator of a classical process find a possible choice
of the structure maps of the quantum stochastic differential equation satis-
fied by the flow j and the coeflicients of the quantum stochastic differential
equation satisfied by the cocycle V,

2. show the existence of V' by an approximation procedure,
3. show that 1/ is unitary,

4. study a “regularity” property of a sequence { j(”)}n>1 of approximating
quantum flows with bounded structure maps, -

5. show that the homomorphisms {7, },-, are also homomorphism of a smaller
commutative algebra.

This scheme has been successfully followed here to construct quantum flows
extending the classical flow of multidimensional diffusion processes with “reg-
ular” covariance and drift. The same can be done for discrete state quantum
Markov chains (see [70]) and other classical stochastic processes as for exam-
ple Bessel processes (see [71] and also [17] with a different approach for integer
dimension index).

The analytical methods described here can be used also to construct quan-
tum diffusions on manifold studied by Applebaum in [11] and Sauvageot in [80)]
mainly from the algebraic point of view.

The success of this scheme depends essentially on the form of infinitesimal
generator. Some techniques remind constructions of classical Markov processes
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done in [33]. The most difficult problem arises when it turns out that the cocycle
V is not isometric (see, for example, [19], [38] and [44]). This always occurs
when the classical process has some “singular state”, for example a boundary
point that can be reached in finite time, so that the infinitesimal generator
depends on boundary conditions. In this case the minimal quantum dynamical
semigroup arising from the representation in Lindblad form of the infinitesimal
generator might not be identity preserving. Therefore we expect that the cocycle
V satisfies a very singular quantum stochastic differential equation.

The attempts to study directly the quantum stochastic differential equation

de(2) = D ji(B,(2))dAF(t) (5.65)
£,meS

have been successful only when the structure maps are bounded [34] or satisfy
and analyticity condition which is very hard to check in practice [48].

A result of Accardi and Mohari [9] states that, given a family of homomor-
phisms (j;);>0, if the domain of the infinitesimal generator of the associated
quantum Markov semigroup is an algebra, then the quantum flow must satisfy
an equation of the form (5.65). However there are no known results (besides
those in the classical commutative cases and [48] in the noncommutative one)
allowing to prove that given unbounded structure maps satisfying the structure
relations the maps (j;)i>o solving (5.65) are homomorphisms.

The direct study of the equation for {j,);>¢ however scems important be-
cause, even in the simplest cases, it might not be possible to find a suitable
choice of the coefficients of equation for V. In fact consider, for example, the
classical Markov process on IR with infinitesimal generator

(Af)(x) = F(0) — f(=z).
The heuristic discussions in Chapter 4 and 5 lead us to the choice
—(65(F))(x) = —(60()) () = (B:(/))(z) = f(0) - f(z)

and it is not possible to find a unitary operator on L?(IR) such that (Sf5*)(x) =

£(0).





