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Classical and Quantum
Semigroups

Several quantum Markov semigroups admit an invariant abelian subalgebra
which can be looked at as an algebra of bounded functions on some measurable
space. The restriction to this subalgebra is a semigroup of positive and identity
preserving operators i.e. a classical Markov scmigroup (see Examples 3.3, 3.4).

We first study the following problem: given a classical Markov semigroup
is it the restriction to an abelian subalgebra of a quantum Markov semigroup?
The answer to this question would be a step towards the understanding which
classical processes can appear in quantum stochastics. Here shall see that the
answer is in the affirmative in for homogeneous diffusions on R? with smooth
coefficients (see also the partial result of [41]).

It can be shown that the answer is in the affirmative also for:

~ countable state Markov chains (see [70]),

- some diffusion with non-smooth drift (e.g. the transient Bessel processes
(44)),

- the Azéma martingales for parameters smaller than a critical value (see
[27]).

A complete characterisation of classical semigroups which can arise as re-
strictions of quantum Markov semigroups however is not known. We point out
the analytical difficulties related to the “quantum” interpretation of classical
boundary conditions.

This problem, however, is also interesting from a probabilistic point of view
because it is a natural generalisation of the theory of classical stochastic pro-
cesses. In fact B.V.R. Bhat and K.R. Parthasarathy showed in [20] that every
quantum Markov semigroup admits a canonical dilation to a quantum Markov
process (in the appropriated sense).

In the second part of this chapter we apply our results to construct a class of
quantum Markov semigroup arising in Quantum Optics in the weak coupling or
singular coupling limit of a multi-mode Boson field interacting with a reservoir in
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76 4, CLASSICAL AND QUANTUM SEMIGROUPS

the so-called “squeezed vacuum”. These semigroups appear in several contexts
in physical applications (see e.g. [10}, [13], [47]).

4.1 Preliminary definitions and results

Let E be a closed subset of IR and let £ be the Borel o-field of E. Let L™=(E;{)
(resp. CP(E;)) be the Banach space of complex-valued measurable (resp.
continuous) functions on E (resp. having a limit as [z| — oo if E is unbounded)
endowed with the norm

[ fllee = sup | f(z)]
z€E

Moreaver, for all integer k > 1, let CF(E;@) be the vector space of complex-
valued functions on E with all the partial derivatives of the first & orders in
CYE;CT). Let

P:[0,400) x Ex & —[0,1]

he a transition probability. Consider the identity preserving semigroup T =
(Ty)t>0 on L=(E;@) defined by

T,f(z) = ]E )Ptz dy).

Suppose that the semigroup T enjoys the Feller property ie.
1. for all f € CP(E;@) and all t > 0 the function T; f belongs to CUE@),
2. the restriction of T to CP(E;C) is a strongly continuous contraction semi-
group.

Clearly, in this case, the semigroup T is uniquely determined by its restriction
to C?(E;T). Therefore we shall work with this restriction. Denote by A the
infinitesimal generator, the operator on C?(E:@') defined by

D(A) = {feC)(EC) | ,;lhél+(ﬂf ~ f)/t exists in norm },
Af = tli%g(th — )/t

Let h = L?(E;@) and let B(h) be the algebra of all bounded operators on
h. Clearly we have the embeddings

CUE@) — L®(EQ)— B(h)
f — I — f't/f(f)

where M{f) denotes the multiplication operator by f.

In order to extend the semigroup 7 to a quantum Markov semigroup on B(h)
as a first step we find a suitable representation for the infinitesimal generator
A allowing to find the operators GG and Ly related to forms £(M(f)) for a
multiplication operator M (f) by a function f.
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Definition 4.1 We say that the infinitesimal generator A can be represented in
Lindblad form if there exists operators G, (L¢),o, on h satisfying the hypothests
AA such that

(v, (Af)u) = (v, fGu) —f-Z Lev, fLouy + (G, fu)
e

for all v,u € D(G) and all f € D(A).
The following proposition gives necessary conditions for an infinitesimal gen-
erator A to be representable in Lindblad form.

Proposition 4.2 Suppose that A can be represented i Lindblad form. Let
wor € DG and let f e D(A).

1. We have the inequality

| (o, (Af)w) | < (full + lo[l) NIGel + Gui) [ £l - (4.1)

2. The non-negative function
o0
= [w(Gu)| + [w(Gv)] + > [(Lev)(Lew)] (4.2)
£z,
belongs to LY(E;@) and we have the inequality
[ Af | < [ o) f@)lds. (43)

Proof. By Definition 4.1 and the Schwarz inequality we can estimate the mod-
ulus of the scalar product (v, {Af)u) by

1G]] lull + Y sl [[Esu

j=1

-Gl } il

o

b o=

< Gl lull +

> (120l + 1Z52ll®) + ol - G ) |

Using the hypothesis AA we obtain the inequalities

STILpull = 2% (u,Gu) < 2 lu] [|Gul,
Jj=1
SOILplP = 2% (v, Gv) < 2ol [Gul

H

i=

Then a simple computation yields (4.1).
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By the Schwarz inequality and hypothesis AA, for all u,v € D(G), we have

1

/ mz @@ = 3 | TN L)) (Lyu)(e)|de

< Il Lyl

i=1
< —Re(v,Gv) — Re {u, Gu)
< ull - lIGull + lloll - 1Gvll-

This shows that the function g given by (4.2) belongs to L'(E;@). Therefore it
is easy to obtain the inequality (4.3). O

When A can be represented in Lindblad form we can construct the minimal
quantum dynamical semigroup on 55(k) associated with A.

The following result can be applied to check whether it is an extension of
the corresponding classical Markov semigroup generated by A.

Theorem 4.3 Suppose that A can be represented in Lindblad form through op-
erators G, L¢ and let T be the minimal quantum dynamical semigroup solving
(3.15) with the given operators G, Ly. Then T is an ertension of the classical
semigroup T generated by A if and only if it is Markowv.

Proof. If T is an extension of T then, denoting by 1 the constant function
equal to 1 on E, and identifying bounded functions with the corresponding
multiplication operators, we have

L) =T,(1)=1=1

Therefore 7 is Markov.
Conversely, notice that, for every f € D(A), and v,u € D{G) we have

<'U> (th)“>

¢
. fu)+ [ 0 (AT ds
0
ot
= (v, fu) +/ (v, £(Te flu) ds
0
Hence, if 7 is identity preserving, then by Corollary 3.23 we have

T(M(f)) = M(T.(f))

for every t > 0. The above identity yields also for f € CP(E;@) because the
domain D{A) is dense for the uniform norm.
This completes the proof. 0O

Remark. Proposition 4.2 and an analogue of Theorem 4.3 also hold when
the semigroup T is w*-continuous, i.e. continuous with respect to the topology
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a(L°®, LY). Here we deal with classical Markov semigroups enjoying the Feller
property because they are widely studied in the literature.

The above discussion suggests to study quantum extensions of classical
Markov semigroups in two steps:

1. represent the infinitesimal generator of the classical semigroup in Lindblad
form,

2. show that the minimal quantum dynamical semigroup arising is identity
preserving.

The analytical tools for the second step were already discussed.
The following heuristic remarks suggest a recipe for the first one.
Suppose that
£(x) =Gz + > LizLe+2G
=1

where the operators G, Ly satisfy the hypothesis AA. Then £(1) =0 i.c.
G+G =-> LiLe
=1

Letting
1 o
iH=-5% LiLl¢—G
=1

the operator H turns out to be symmetric since (formally)

1 o0
—iHT = 5 Z BT
=1
1 o0 oo
= 5> LiLi+> LiLe+G
=1 f=1
= —iH.

Therefore we can write G in the form

1o, ,
G=-5> LiLe—iH. (4.4)
=1
Then the form £ can be written as
1 o
£(z) = i[H 2] - 5 ; (LjLex —2L3zLe + aL3L,) .
A formal computation yields

o~

(v, (Elay) - 2£(y) — £(@)y) u) = > ([Le,x*]v, [Le, ylu) .

=1
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The following is our recipe: given the classical infinitesimal generator then
we try to find operators L, such that

o0

0, (A(F9) = S 4l0) = A(0) ) = D ([Le MU (Lo M) (45)

Then we try to find a symmetric operator H such that
H M) =EM(f 9 Z(L(,LM[ (f) =2L;M(f)Le+ M(f)L;Le) (4.6)

and consider as operator G an operator defined formally by the right-hand side
of (4.4).

Domain problems will be considered later.

4.2 Diffusion processes on R’

In this section we will show how to construct a quantum Markov semigroup
extending the semigroup of homogeneous diffusions (y(t)):>0 on R satisfying
the stochastic differential equation

dy; (t Z% Ndwy(t) + b (y(e))dt, 1<j<d (4.7)

(where (wy)i1<i<n is a d dimensional Wicner process) under the following reg-
ularity condition on the matrix o (a square root of the covariance matrix) and
on the drift vector &:

Hypothesis D

1. The functions oy, : R — R (1 <4,k < d) are bounded and four times
differentiable with bounded partial derivatives of the first four orders,

2. the functions b; : R* — R (1 < j < d) are bounded and three times
differentiable with bounded partial derivatives of the first three orders.

It is well known that, if & and b are Lipschitz, then, for every fixed initial
condition y(0) = yo, there exists a unique Markov process y on IR? satisfying
(4.7). We refer to the books [83] by D.W. Stroock and S.R.S. Varadhan, [33] by
S.N. Ethier and T.G. Kurtz, [39] by K. Itd, H.P. McKean for detailed results
on these processes. Here we use the above stronger assumption simplifying the
analytical problems with the unbounded infinitesimal generator.

Let a = oo® and let 9; denote the partial derivative with respect to the j-th
coordinate. The infinitesimal generator is the operator

d

d
1
Af =5 Y andiof + ) b;0;f (4.8)

Jik=1 J=t
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characterized by Corollary A.2.
Fix h = L? (]Rd;@‘%. We compute now formally the operators G, Ly.
For every f,g € Cj (IR*;@) we have

d
A(fg) — fAlg) — A(flg = ;1 (85 f}(Org) (4.9)
7 k=1
d o d
= > | > 0681 (Z Jek(akg))
=1 7=1 k=1
Formula (4.5) suggests to find operators L, such that
> M), L] - [Le, M(g)]
=1

coincides with the multiplication operator by the right-hand side of (4.9). This
is the case if we consider the operators

d .
Ly = Zcfgkak + pe (4.10)
k=1

where (p¢)1<e<a is & d-dimensional vector with entries in C*R;R)and L, =0
for { > d. Indeed the commutators [Lg, M(g)], [M(f),L;] coincide with the
multiplication operators by

da d
D oow(dig), Y oe(95f).
k=1 J=1

With this choice of the operators Ly a straightforward computation shows
that {(with the convention of summation over repeated indices and identification
of functions with the corresponding multiplication operator)

LyLeM(f) — 2L M(f)Le + M(f)LyLe

= Ly[Le, M(f)] — [Lg, M(f)]Le
= (—Okoer + pe)oe; M(0; f) + M(9; f)ae; (0o Ok + pe)
= —0g04; M(0k0; f) + (2(peoe;) — (Oran;)) M (0;f)
+(O’gj0’g,lc = O‘gktf,gj}ﬂ’f(ajf)ak
= —oae; M(0k0; 1) + (2(pece;) — (Onar;)) M (85 f)

where we have used
(ngcrgk i ngffgj) = Qg — Qky = 0.

Therefore the right-hand side of (4.6) cvincides with the multiplication by

1
(bj & '2'(8kar’cj) 23 PEUEJ') M(3;f).
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Consider a d-dimensional vector (1;)1<;<q with entries in CHR; R). Letting

;4
:—32 (05 + Oymy), (4.11)

£(M(f)) coincides with the multiplication operator by Af if and only if

d d
Z 8kakj) + Zpgﬂ’gj. (412)

{\.'Jlr—l

Consider the closure of the operator G with domain Ce(IR%,@) given hy
(4.4) where Ly, H are defined on C(RR%,Q) by (4.10) and (4.11) respectively.
Straightforward computations yield

1 1 1
G = 5%;050; + 5 ((Bear;) — 21;) 8 + 5 ((Ocveroe) = (9jm5) — pepe)  (4.13)
and
_1 1., ;
G* akﬁka + = ((&a;m) +20;)0; + = ((d;;dgkpg) +(9m;) — pepe) (4.14)

We shall construct the minimal quantum dynamical semigroup associated
with G and L. As first step let us check hypothesis AA.

Proposition 4.4 Suppose that hypothesis D holds and pg, e € C(IR%; IR) for
£=1,...,d. Then the operators G and Ly (¢ =1,...,d) obtained as closure of
the operators with domain C2°(IR%T) defined by ({.13), (4.10) satisfy hypoth-
esis AA.

Proof. By virtue of Theorem A.3 in the Appendix, the operator G is the
infinitesimal generator of a strongly continuous contraction semigroup in h and
C(IR4E) is a core for G. Moreover, for every u, v € Ce(RY,@), we have

(v,Gu) + > " {Lev, Leu) + {Gv,u) = 0.
=1

For every u € D(G), let (u,)n>1 be a sequence of clements of C®(IR%; @) such
that
im u, = u, lim Gu,, = Gu.

N—00 n—00

The above identity yields

Z IZe(un = um) | = =28 ((un — 1), G(tn — upm)) .
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Therefore the sequence (Letn)n»1 also converges to Leu for £ =1,...,d and
o0
{u, Gu) + Z (Lew, Leu) + (Gu,u) = 0.
=1

The identity (3.28) follows then by complex polarisation. O

The operators G, Ly, allow to represent the infinitesimal generator (4.8) of
the homogeneous classical diffusion (4.7) in Lindablad form.

Proposition 4.5 Suppose that hypothesis I holds and let G, Ly (£=1,..., d)
be as in Proposition {.4. For every f € D(A) and every v,u € D(G) we have

(v, (Af)u) = {v, fGu) +Z Lyv, fLeu) + (G, fu).
=1

Proof. Indeed the above identity holds for v,u € C>*(R%@) and f € O (R
@) or constant. The conclusion follows easily since these domains are a core
for both G and A and the fact (shown in the proof of Proposition 4.4) that,
convergence of a series ((up)r>1 with uw € D(G) to Gu implies the convergence
of (Letin)pz1 to Lu. 0O

The following is the key step in the construction of the semigroup of a
quantum diffusion.

Theorem 4.8 Suppose that hypothesis D holds and let py,ne € CE(R* R) for
t=1,...,d. Then the minimal quantum dynamical consiructed from G (4.13)
and Lg (4 10} is conservative.

Proof. We shall apply Theorem 3.40. Let C and & be the operators given by

D(C) = HYR%D), Cu = c(a, p) E 9;0;u+u |,
1
— 2 d. _ 5
D(®) = H2(R%a), Pu=— ;zleELEU.

where (o, p) is the constant

d
o(0,0) =23 max {[lows[Zr-.. . loeals, ocliZ}
£=1

Clearly C and @ are self-adjoint by von Neumann’s theorem (see [62] Th.3.24
p.275). The linear manifold CS°(R%E) is a core for both (for example by
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Theorem A.3). Moreover it is easy to check that, for every u € C®(R%:T), we
have '

—2%e {u, Gu) i Lo, Leu) = <<I)L/2u,¢*1/2u>,
/=1
<@1/2u3¢)1/2u> < <Cl/2u’01/2u>‘

Since C®°(IR*;@) is also core for G, the above identities hold for v € D(G) and
u € D(C). Thus the hypothesis 1 of Theorem 3.40 holds.

In order to apply this result it suffices then to check that the operator C
satisfies the hypothesis C.

Notice that, for every u € Cf:’c(le;dﬁ'), integrating by parts we can write the
right-hand side of (3.37) in the form

20 (Cu, Gu) +Z Ly, CLpu)
=1

({(Hu, Cu) (Cu, Hu})

d
1
—= ((u L3LeCu) — 2 (u, Ly CLeu) 4 (u, CLy Leu))

[\

( Hu Cu)y — (Cu, Hu))
+5 }: ((Low, [C, LeJu) + ([C, Lelu, Lew))
£=1

Now, for every u € C°(IR%,@), still integrating by parts we have (with the
convcn’slon of summation over repeated mndices)

|(Hu, Cu) — (Cu, Hu)|
= 15 + Bym; e BuB) — (OB, (03 + Oy |
= %\ = {(n;05 + B5m;) O, D) — (((Bwn;)0; + 8;(Oumy) ), Brt)
(B, (005 + Bymy)Buis) + (O, (D135 + 05 (D))

Since (;8; + 8;m;) is antisymmetric on C$°(IR%;€) the sum of the first and
third term in tho right-hand side vanishes and we remain with

2[(Hu,Cu) — (Cu, Hu)|
= | = {((Bkny)8; + 3 (B ) ), Buw) + (Due, ((Buy)8; + 8 (Bkry) )|
= | — 2(0;u, (Brns) ) + 2(Bru, (k) 0;u) + 2Re(w, (8;8m;) G|

Elementary inequalities lead us to the estimates

2 |(Hu, Cu) — (Cu, Hu)| < zsupl\a am;,uDCZqu || G|
k=1
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d
+ dsup|Benyllo D NB5ull - |||
kg k=1
d
o 18;8kmjllo > _ (Ilul® + [|0sul|?)
2 k=1

d
+  Asup ||0en;[oo (ZIWWH)
k.j k=1
d
sup [9;06m;1los 3 (Ilal® + 19uf?)
7

k=1

A

2

I/

d
+  ddsup [|Okn;llec > 18wl
kg k=1
Since
d
(u, Oy = {[ull® + > || Opu|?
k=1

for every u € C°(IR%,@) we have then
|(Hu, Cu) — {Cu, Hu)| < by {u, Cu)

where

by =d (sup 105065l + 2sup BkT]jioo) :
%) ke,

J
Similar estimates can be done to show that, for every second order differential
operator X with coefficients in CZ(IR%;@) and every u € C(IR4;T) we have
[{u, Xu)| < by {u, Cu) (4.15)
where by is a constant depending only on the coefficicnts of X.
Let us estimate now

d
> " ((Lew, [C, Lelu) + {[C, Lelu, Lou)) (4.16)

f=1

The coefficients of the operators Ly (4.10) and L} belong to CF(IR%; IR). There-
fore, computing explicitely the action of commutators [C, Ls] on u € C2°(IR%,@),
we can write the above sun as

- Z ((Ufrnarn“: (}A(Uﬁn‘!’j)aju> -+ <8k{8kﬂé’j )ajus aé’nbam,u\))

2,3,m,k

—2Re D~ (8;(0;pe ), 0emBmts) — 2R Y {peu, 8 (rous)B5u)

&,3,m L.k
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The regularity assumption on o, p allows us to establish an estimate like (4.15)
of the last two sums.
Integrating by parts we can write the first sum as

—~ Z (TemOmt, (Oroe;)OL0;u) — Z {TenOmt, (B0 em)Omu, )

2,4,m,k &dm,k
+ 3 (0005, O OxBmu) + Y ((Be0e)B5u, (Ok0em)Omu) .
£,,m,k £,4,m,k

The second and fourth term satisfy an estimate like (4.15) since they involve
only second order partial derivatives. Exchanging 7 and m in the first sum we
can write the sum of the first and third term as

Z (D51, (Okoe; )T om Ok Omu) — {Oju, Oom (Or045) OuOmu}) = 0.

C,4,mm,k

This shows that (4.16) can be estimated by b3 (u, Cu) wherce b3 is a constant
depending only on « and p.

Summing up we have shown that there exists a positive constant b depending
only on &, p and 7 such that, for every « € C°(IR*%;T), we have

00
2% (Cu, Gu) + Z Lo, CLgu) < b{u, Cu) . (4.17)
£=1

The above inequality obviously holds for every u & CET(IR‘i;Gf) with v > d/2
by a standard approximation argument with mollifyiers.

The domain CEW(IH“!;GC') (v > d/2) is invariant under the semigroup P(#)
generated by G and under the resolvents R(A; &) by Theorem A.1. Therefore
it satisfies all the assumptions on the domain I in the hypothesis C. Thus we
take D = C2_(IR*%@) (v > d/2) The inequality (3.37) for v € R(); G)(D) now
follows from (4.17) because, il u belongs to R(X; G)(D), then by the identity
GR(N; G) = AR(N, G) — 1, Gu belongs also to the domain of cl/2.

This completes the proof. O

By Theorem 4.3 we proved then the following

Proposition 4.7 Suppose that hypothesis D holds and let pg.me € CFH{IR; IR)
for £ = 1,...,d. Then the mintmal quantum Markov semigroup constructed
from the above operators G and Ly is an extension to B(h) of the semigroup of
a classical d dimensional diffusion.

When dealing with diffusions on domains with boundaries difficult analytical
problems arise to carry on the same program. We refer to the papers [18], [28]
and [42] for discussions of some important examples.
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4.3 A quantum master equation

In this section we construct a quantwn Markov semigroup arising as the solution
to a class of master equations in Quantum Optics (see e.g. [13], [47]).

We start by introducing the Heisenherg representation of the d-dimensional
canonical commutation relations.

Let h be the tensor product Hilbert space of d copies of [2(IV) and denote
by (€a)acve the canonical othonormal basis. Here o is a multindex and the
vector ey is the tensor product of unit vectors eq(yy,. .. y€a(q) taken from the
canonical orthonormal basis of each copy of {*(IV) (see the example (1.2)).

We denote by ag, aj, N the standard ampliation to % of the annihilation,
creation and number operator acting on the k-th copy of [2(IV).

The master equation we shall study is the following

d
—p(t) = L (p(t
el (o(t))
where L. Is the predual operator on density matrices of the Lindblad operator

on observables

d
E (Ju;‘ aperr — 2apzag + rapag) + Mp(apaic — 2axxal + zagal)
k=1

ﬁ
l\Dlr—'

+¢e{af’a — 2atza) + zal?) + Ce(aiz — 2apzay + lai))
d
Y [wragan + &eai? + Geal + meal + fiar, ] . (4.18)
k=1
Here wy, is a real number, &, y, 7 are complex numbers, e =0, Ag 2 0 and

1Cel? < s (4.19)

for all k£ € {1,...,d}. These inequalitics are necessary and sufficient conditions
for £ to be formally (i.e. algebraically) conditional completely positive as it will
be clear later.

Solving the above quantum master equation means showing that the oper-
ator L, interpreted in the form sense as in Chapter 3, can be viewed as the
infinitesimal generator of a quantum Markov semigrup.

As a first step we identify the operators G, L, allowing to represent in
Lindblad form the above operator £ (denoted £ as in Sect.1 to make clear that
it should be understood in the form sense). We proceed as in Sect.1 noting that,
for suitable x,y € B(h),

£(xy) — z£(y) — £(z)y = Z{:r, Lely, Ly
£
must be positive. If £ is given by (4.18) and # = y*, then a straightforward
computation shows that
d
> (il ] + Gl and" [y, o8] + Gl 031" 9 i + el o[y, )
k=1
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is positive. Taking operators y obtained by standard ampliation of operators
acting on the k-th copy of [?(IN) we can see that this is the case if and only if
each term of the above sum must be positive,

Thus we concentrate on k = 1 and drop the index to reduce the clutter of the
notation. Letting L = za + wa* with z, w complex numbers to be determined
we have

ly, L*y, L] = I-zig[y, al*[y, a]+zuwly, ol*ly, e’ +zwly, ™" [y, (1]—1—[1{)&2[3;, a™*ly, a"].

Hence, choosing two numbers g/, A such that 0 < p/ < g, 0 < A < X and
WX =|¢|?, we can find a pair z, w of complex munbers (unique up to a phase
factor) such that

|22 =y, Zw=¢, zm =, |w|> = X.
Therefore can write the decomposition

uly ol [y, a] + Cly, o} [y, %] + Cly, a** s @] + Ay, a”* "
= Ly L+ (e — 1)y, o] ly, o) + (A = N[y, ™" [y, 7).
To reduce the number of operators L, In the representation in Lindblad form
P
(to the dimension of the minimal representation space associated with the com-
pletely positive part of £ we shall choose N = X if A < p and g/ = g, if A > p
Summing up, in order to represent £ in the Lindblad form, we define (do-

mains will be made precise later), for k=1,...,d,
Loy = zpap +wpag,
Tow = [x — P B e > X

Low = (Ax—X)Y2al, if e <A
With this choice of Ly, a natural choice for the operator G is the following

2d
Pk
szzgélLﬁLf—zH

where

d
H= Z (wrakak + E,ai2 + Epal + Mal + fuek) -
k=1

The above operators are obviously defined on the linear manifold I spanned
by the elements e, of the canonical orthonormeal basis of 2. Now we shall con-
struct rigorously the quantum Markov semigroup associated with an appropri-
ated extension of these operators.

As a first step we shall prove that the closure of the above operator G with
domain D generates a strongly continuous contraction semigroup on i applying
the following result due to Palle E.T. Jorgensen (see [73] Th.2 p.398)
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Theorem 4.8 Let &G be a dissipative linear operator on a Hilbert space h. Let
(Dn)nz1 be an increasing family of closed subspaces of h whose union is dense
tn h and contained in the domain of G and let Pp,, be the orthogonal projection
of honte D,,. Suppose thal there exists an integer ng such that GD, C Dy,
for all n > 1. Then the closure G generates a strongly continuous contraction
semigroup on h and U,>1D,, is a core for G, if there exists a Sequence (r,:”)nzi
in IRy such that |GPp, — Pp, GPp, || < ¢ for all n and

2

|
b

With the above notation let D, be the lincar manifold spanued by vectors
voowith Jof < ne Clearly D = U, D, The operator G is abviously densely
cdefined and dissipative. Therefore it is closable (see e.g. [21] Lemma 3.1.14

p-175) and its closure, denoted G is dissipative.

Proposition 4.9 The operator G is the infinitesimal generator of a strongly
conlinuous contraction semigroup on h.

Proof. Clearly, by the explicit form of the action of creation and annihilation
operators on vectors e,, the operator G maps D, into D, 5 for all n > 0. In
order to apply Theorem 4.8 we shall show that the norm [|GPp, — Pp, GPp, ||
grows at most linearly. To this end let us fix u = Z;in.\gn Za€o & vector In D,,.
A straightforward computation yields

o
(GPp, = Pp,GPp,)u=—i» m »_ (alk)+ 1) 2,004y,
k=1  |a|=n
d < )
- (T& s &) Z ((eu(k) + 1){a(k) + ?—))1/2 Lot 2,
k=1 - Jal=n—1

d )
=5 (% + Ek) > ((alk) + D){alk) +2))? zaeass,.

k=i || =n

The squared norm of the third term can written

i > (% 1 Ekw) <% + §k>

k=1 |af,|a'|l=n

(@' (K) + 1) (K) + 2)(a(k) + 1)(alk) + 2)7* Farzalearsn, easn,

Note that, for each k, k" € {1,...,d} and o € IN® with |o| = n, there exists
exactly a multindex o” = J(«, k, k') such that the scalar product (€ar+2,is Catay)
does not vanish. Therefore the squared norm of the third term can be estimated
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by
(n+2)° Z Z _“Hf +§k |Z8(a,k.k1 | 122l
kk'=1|al=n
+92 & 1G - G A |
i (n 2_) k; %"ﬁ"gk’ %+fk Z (‘Eﬁ(mk,kn);z—ﬁ—|za|2>
k=1 |a|=n
d 2
= (n+ 27 (z %m)
k=1'"

In a similar way we can majorize the squared norms of the first and second term
respectively by
) 2

1/2

%m) (Z ) (n+ 2)ul.

2

d d
(7 + 1) [jull? (Z Im) . (n+ 2 (Z

k=1 k=1

%+£k

By the elementary |r + s +t|? < 3(|r|? + |s|? + |t|?) we have then

d

\GPp, — Pp,GPp,ull <v3 (2 (Z

k=1

Since the series > (n +2)~! is divergent the proof is complete. O

A similar argument (or an application of an extension of Nelson's theorem
on analytic vectors, [79] Th.X.40 p.206) allows us to prove the following

Proposition 4.10 The closure © of the operator on h with domain D defined
by
ZLng = Z ety 4 Cats 4 Cute Araray) (4.20)
k=1

is essentially selﬁ adjoint.

Let us denote by G both the operator &G and its closure. The operators Ly
can be extended to the domain of G and further extended to the domain

{u S h‘u = ZznﬁnZa\“z\zﬂ'z < x}
a3 [ed

by standard arguments. Moreover, it follows readily that the hypothesis AA
holds.

In order to solve the quantum master equation (4.18) it suffices now to prove
that the minimal quantum dynamical semigroup associated with the operators
G, Le (£=1,...,2d) is Markov. To this end we shall choose a suitable operator
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" and apply the results of Section 3. The choice of the operator C, however,
depends upon some non-degeneracy conditions on the parameters o, Ak, Cx,
Wiy &k, M. We shall study only the following case and make some comments on
the solution of our problem in the other cases at the end.

Hypothesis ND - Tor each k& € {1,...,d} at least one among fg, Ay, |wi
|€] is nonzero.

5

Proposition 4.11 Suppose that the hypothesis ND holds. Let C be the opera-
tor defined by

W= ZZQBQ,Z(QQ'F +1)|24]? < o0 } . Cu= CZ || zaeq-
fad (2 [a3

chere ¢ > 0 4s a constant. Then C is self-adjoint and D is a core for C.
Moreover:

D(C) = {u. g h

(1) the domain of G coincides with the domain of C,
(2) if ¢ > maxi<p<d(ppn + Ax + 2|G]), for all w € D we have

{u, Du) < {u, Cu).

Proof. For every e € IN? and every n > 1 we have C"e,, = |a|"e,. Therefore
C 1s self-adjoint and D is a core for ' by Nelson's theorem on analytic vectors
(see e.g. [79] Th.X.39 p.202). (This can be shown alternatively applying [73]
Corollary 1 p.397 with D,, as hbefore).

A direct computation allows to show that for each v = 3 zn¢, in the
domain of C the sequence (u,),>; defined by u, = > Za€o forn > 1
converges strongly to w and (Gun)n>1 converges strongly to in h. Since G is
closed, it follows that u belongs to the domain of G. Thus the domain of G is
contained in the demain of C.

On the other hand the restriction of G to D is relatively bounded with
respect to C. Indeed, for all w € D and all € {1,...,d} we have

laf<n

lai?ull® = (u, azaiu) = (apatu, (apa; + Du) < ||(apar + Du|*.

So that ‘
laf?ull < ICull + Jul.

AMoreover, similar estimates can be easily obtained for the other terms in the
sum defining . Thus @ is relatively hounded with respect to C.

It follows that the domain of & contains that of ' and (1) follows.

Finally, in order to prove (2) it suffices to note that, for all w € D and all
ke{l,...,d}, we have

(u, (Cpa}? + Ceal)u) = 2Rely(u,ap®u)

21Ck] - llaul] - [laful]

[A

9 )1/2

Skl ({w, ajagu) - (u, agajy)

IACTA

2| Gl aragu).
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Then (2) follows easily. O

Proposition 4.12 Suppose that the hypothesis ND holds. Then the mini-

mal quantum dynamical semigroup associated with the operators G, Le¢ (€ =
.,2d) is Markov.

Proof. We apply Corollary (3.41). The domains of G and C coincide by the
above Proposition. We check now the hypotheses a), b), ¢) of the Corollary.

The hypothesis a) clearly holds because D is invariant under the L;’s.

The hypothesis b) also holds by Proposition 4.11 if we choose ¢ big enough.

Finally we check condition ¢). Since D is an invariant domain for the oper-
ators G, Ly, C' it suffices to compute algebraically £(C). Indeed the left-hand
side of (3.41) can be written in the form (u, £(C)u). Although there arc at times
a product of eight operators in the working below it should be remembered that
these expressions should strictly be interpreted as forms, and so everything is
well-defined by the invariance of D under the action of creation and annihilation
operators.

Note that, for every k,m € {1,...,d}, by the canonical commutation rela-
tions [ak,a),] = 6k,m1 (on the domain D), we have

a;a.k(ama;) ‘)ak(arnam)ak + (ama, )a:ak = =20pm,
apap (G, ) — 203:00mas, Jay + lamtr Jesdr = Wi
a;2(amal,) — 2af(amal,)ag + (amat)al? = 0,
az(amal,) — 2ar(amar,)ax + (amas)az = 0,
[wrafak + £xal? + Epal + neal + ficar, ol
= 6k,m (26ral — 264052 + Mpar — M r)
Therefore, for u € D, we obtain
d d
(u, £(C)u Z u, (26pai — 26,072 + frag — Mreal)u) + 2 Z(,\k — )|lu))?
k=1 k=1

The same arguments of the proof of Proposition 4.11 lead to the inequality
(u, (€rak — Ekap®)u) < 2/€kl(u, araju),
and
(u, (e — meai)e) = 2l - lul - llagall < fmel (el + lagull?) = Inil(u, apagu).
Summing up we find

d

(wE£C) < o max {4l + el } (u, Cu) + 23 (e — pue) Ju?

1<k<d
k=1

d
2 c—lmax{lrsnfgd{4|£kl+|?]k|} Z (Ak — px) } u, Cu).
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This shows that condition ¢) of Corollary (3.41) holds. Then the proof is com-
plete. O

Remark. If the hypothesis ND does not hold let

K, = {ke{l,...,d}

e + A + |wie| + [§k| > 0} ;

Ko = {ke{l,...,d}—[ﬁ :’f']ki>0}.

Then we can show that the minimal quantum dynamical semigroup associated
with the operators G, L ({ =1,...,2d) is Markov by the same arguments with
the choice of the operator C given, up to a multiplicative constant ¢, by

Z apay, + Z (awal) /2.

I!GEJ'\’] kEI{_}





