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Algebraic Markov Processes

In this chapter we describe the abstract definition and the basic facts on alge-
braic Markov processes (see [5]). The main goal is to show that the fundamental
definitions and properties of Markov processes are easily formulated in an alge-
braic language suitable for the study of Markov processes appearing in quantum
theory. Moreover, we discuss in detail the notion of complete positivity which
turns out to be the natural generalisation of positivity for commutative (classi-
cal) case and a non-comuutative version of the Feynman-Kac formula which is
the basic ingredient in the construction of Markov cocycles and processes.

2.1 Fundamental definitions

Definition 2.1 Let (A, ) be an algebraic probability space and let B be o *

algebra.  An algebraic stochastic process on A with values in B is a Jamily

u = (ut),»q of algebraic random variables on A with values in B. The quantum

stochastic process u is adapted with respect to a filtration (A4),op o
Usg (B) - At}

for all t > 0.

In the remaining part of this chapter we fix the following framework:

— an algebraic probability space (A, ) with a filtration (Ai]) e and 1 € Ag,
- a projective family of conditional expectations (IE [ | Ay D
— an adapted process u with values in Ay,
— a family of conditional expectations (I [- | u (Aq))]) +q: Such that

E [ Elo | Ayl | g (Ao])] =F [u lug (Ag)) | for every a in the x-algebra gener-

ated by ug (AU}) with s > ¢.

t>0°

Definition 2.2 An adapted algebraic stochastic process u is an algebraic
Markov process, with respect to the filtration (At])pg) if, for all 5,1 > 0 and all
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X € Ay, we have
E [urs(X) | Ag ] = E Juers(X) | us (Ag) ] - (2.1)

An algebraic Markov process is covariant or homogeneous if, for all s,t > 0 and
all a € Ag), we have

m (J_'E [us(a) | Ag]]) =JF [uH__&.(a) | Ag]] . (

ro
3]
—

Example 2.1 To illustrate the above definition we show that an homo-
geneous classical Markov process can be considered as a covariant quantum
Markov process.

Let © = (21),., be a classical (adapted) Markov process with values in a
measurable space (E, £), initial law g and transition probability function

P:DxEx&— IR,

where D = {(s,%) € [0, +o0) |0 < s <t}. Suppose that, for every (s,t) € D,
T € E and every A € £ such that y{4) = 0 we have P(s,t,2,4) = 0. We
consider the canonical realization on the classical probability space (2, F, IP)

where
Q:HE, F = &yz0f,

i>0

and [P is the probability measure on F defined by
Ef(ze,. .yx,)] = /d,u(z)/ P(O:tlsz:dzl)[ P(ty,tg, 2. d2g)...
E E E
o [ Pl tuszns G 20)
E

where 0 <) < 3 < ... < ¢,. Consider the filtration (]7,5])00 given by
Fo= 1] &
0<s<t

Consider a quantum probability space (A, ¢) with a filtration (Ay) i»p Where

.A = L= (Q,.}—,m}, At] = 2 (Q;}TJ’}!@) ]
Lp(f(ﬂlt,! piions oy mtn)) =IF [f(;(:tl 1y Itn.)} .

The classical process z defines a family of *-homomorphisms

ug t Ag) — Ay, ur(f) = flzy).

Therefore the classical Markov property

E [ f(xies) | Foy] = ELf(Tes) | 7]
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for all s,t > 0 and all f € Ay is immediately translated, in the algebraic
language, mto the identity (2.1).
The Markov process is time homogeneous if and only if

/. flW)P(s,t+s.x,dy) = / Fl) POt w, dy)
E JE

for all s,¢ > 0, and all /€ Ay. Now (2.2) can be easily understood in view of
the following correspondence table between the quantuin and classical case

quantum — classical
E [u.Hs(f) | At]] — /E Fly) Pt + s, 2. dy)
Elu(f) | Ay] /L F) PO, 5, . dy)

w (B [us(f) | Ag))  — /F @) PO, 5, 50, dy).

Proposition 2.3 The fellowing conditions are equivalent:
1. w is an homogeneovs algebraic Markov process,
2 Jorellnz=1andallay,.. . 0, € Ay, 0 <t < ... <t,, 520 we have
¢ ; i
Eiug vslar) -0 ur,slan) | Ay |

= LE [?}t‘+s((l]) ¥’ ..H-L“+s((in) ‘ TLS(\A(]})} B
E [ug +s(a1) | Ay

li

iy, (IE [us(al) | AU]D

Proof. Clearly it sullices to prove that, if » is an homogeneous quantum
Markov process, then the fivst identity of condition 2 holds. We will consider the
case n = 2 for simplicity. Using the Markov, covariance and *-hiomomorphism
property of u we can show that the conditional expectation

E[ugﬁs{al}u (aa) | AS;}

totsl |
is equal to

I {wgs(@) I [uges(aa) | Ay ] | Ayl
= K [21,,:+5(a1)u£i?, (IE [utg_.h (az) | Ag D | AS]}
[wi4s (1 [ug,—q, (a2) | Ag 1) | Ay ]
[we, 4o (@1 IE [, 1, (a2) | Ag)]) [ us (Ag) ]
[ut‘ alag )ty s (I [“tg--m (a2) | Ag) }) w “-5‘(“40})]
[0, 25 (@) IE [, 4s(a2) | Arwa ] T us(Ag) ]

g, a0 )18 (@2) | 1. (Apy ) } .

—
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This completes the proof. O

The following proposition shows that, as in classical probability, one can
associate a semigroup to an algebraic Markov process.

Proposition 2.4 Let v be a covariant algebraic Morkou process. For allt > 0
define the map

72 : A(}} — AU}; ‘];((I) =l SLV'U.,J'(H) Am] (25)

ThenT = (1), s o semigroup of operators in Ag with the following propertics

1. for every integer n > 1 and every Jomily aq, .. ay. by, ... . b, of elements
of Ay we have
) sl
S b Tilalag)b, = 0 (2.4)
==l

for every t = 0,

2. (W) =1 for every t > Q.

Proof. 7 is a semigroup in fact, for overy £,5 > 0 and a4 ¢ Ay we have,
=) h {1

Tiasla} iE [u.h-_h fat ,/1(); J
(projectivity) = FEusla)] Ay} Aoy |
sl ) - L (FE Tufa) s A IV 0 A
(covariance) = I (E .Lu.bka) CAg ) Ao }

= T (T.a))

Clearly property 2 holds since 1 belongs to Agy and both u, and the condition:]
expoctation preserve 1.

Finally for every integer n > 1 aud everv family ay, . ...
clements of Ay the left-hand side of (2.4) is equal o

N g [ * P i
> DRIE [ uglagag) | Ag | b

L
=1

T
= E IF ib;?u(ﬁ:] uilig by | Ay |

ICESN
F ,,/ n 5 * / n \ s 'il
il 5 N i
=F (E 'u._f(up}i')pj % ) we (g g | !./1[)} i
P i
p=1 Nyl / Jl

a positive operator because of property 1 of conditional expec-
tation. This completes the proof. O

which is clearly

Property 1 of algebraic Markov scinigroup is called complete positivity and
plays a kev role in our exposition. As we have scen in the proof of Proposi-

tion 2.4, it follows from complete positivity of conditional expectation. More
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general conditional expectations in quantum probability (see [3], [77]) are also
completely positive. Therefore complete positivity is the proper generalization
of positivity in the non-commutative framework.

The next section will be devoted to a detailed study of this property and its
connections with positivity.

2.2 Completely positive linear maps

Let A and B be two #-algebras with unit. We denote by 1 the unit of both since
cach time it will be clear from the context to which algebra it belongs.

The obvious generalization of the notion of positivity for classical (sub)
AMarkov operators is too weak when A and B are non commutative. Proposition
2.4 motivates the introduction of the following stronger notion of positivity.

rocindtion 2.5 The linear map T @ A — B is called:

L. n-positive if for every family a;. ..., a, of elements of A and every family
bi..... b, of elements of B we have

> b T{apug)by 2 0,

pag=I
2. completely positive if it is n positive for every integer n > 1.
The following fact is obvious.

Proposition 2.6 Let T': A — B be a “-homomorphism. Then T is completely
positive.

In the remaining part of this section A and B will be C*-algebras with unit

Note that, for every integer 12 > 1, the algebraic tensor product x-algebras
A M, and B = M, can be represented as the x-algebras of n x n matrices
with entries in A and B respectively. Every clement @ of Ao M, can be written

n the form
r = Z x5 00 By (2.5)

1<1,j<n

where E;; denotes the n x n matrix with all the entries equal to ( except the
ij-th which 1s equal to 1.
Given a linear map T : A — B we can define linear maps 15, : A v M, —
B & M, by
Tnla s Ei;) = T(a) % Ei; (2.6)

In order to give a useful condition equivalent to complete positivity by means
of the maps Th,we prove a simple fact on positive clements of A w0 M,, in the
case when A is a C*-algebra.
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Proposition 2.7 Let A be a C™-algebra and let © be an element of A 5 M,,.
The following conditions are equivalent:

1. T is positive,

2. 1 s a finite sum of matrices of the form

e
E ajaj i Fyj

1<e,5<n
with ay,....a, € A,
g foralla;,...  a, €A we have
E arwiga; > 0.
1<i f,<n

Proof. 1 implies 2. In fact, since z is positive, it can be written in the form
y*y with y € A M, (see, for exzunple, [21], Th. 2.2.10). Writing y in the formn
(2.5) we have

i

o= Z Z Yeshes S Eij.

=1 1<4,5<n

2 obviously implics 3.

3 implies 1. By representing A as a sub-C*-algebra of the algebra of all
bounded operators on a Hilbert space H (sce [21] Th. 2.1.10 p. 60) and de-
composing H into cyclic orthogonal subspaces we may suppose that there exists
a cyclic vector u for the representation. Condition 3 then implies then the

inequality
E {au, ra;uy > 0.
2]

Therefore, since the vector w is eyclic, we have

Linim, oz i
E (v, 25050 20

%]
for all vy, ..., v, € H. This completes the proof. O

We are now in a position to prove the following

Proposition 2.8 Let A, 5 be C*-algebras and let T : A — B be a linear map.
The following conditions are equivalent:

I. T 1s completely positive,

2. for every integer n > 1 the map T,, defined by (2.6) is positive.
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Proof. The second condition implies the first by parts 2 and 3 of Proposition
2.7. Since the operator z = 37, aja; % Eij in A® M, is positive, we have that
Tn(z) = 32, ; T{aja;) @ Ey; is positive.

Conversely the first condition implies that }_, . T'(afa;) = E;; is positive.
Therefore T, is positive because of the equivalence of conditions 1 and 2 of
Proposition 2.7. O

Proposition 2.9 Let T : A — B be a linear map where B is the C*-algebra
B(K) of all bounded operators on a Hilbert space K. Then T is completely
positive if and only if for every integer n > 1 and every a;,...,a, € A,
Uy, ... uy €K

> (w, T(ajas)u;) = 0.

1<5,7€n

Proof. Notice that the C*-algebra B& M, can be represented as the C*-algebra
of all bounded operators on the n-fold direct sum X @) ... ¢ K. Therefore the
above condition is clearly equivalent to positivity of the map T}, on A ® M, for
overy integer n > 1. O

The following counterexample, essentially due to W.B. Arveson [12], shows
the existence of positive maps that are not completely positive, Let n > 2 be
an integer and let both A and B be the x-algebra AM,,. Consider the positive
linear map

T: My, —M,, T(a)=d (2.7)

(a® denoting the transpose matrix). We will prove that T is not 2-positive. Let
b be the 2 x 2 matrix with entries in M, having the matrix F,; as 11-th entry,
Eh,. as 12-th entry, E,,, as 21-th entry, E,, as 22-th entry. For example, when
n = 2, we Liave

100 1 100 0
oo 0o o010
b=1p 000 O=|g 1 ¢ g

1 0 0 1 00 0 1

It is easy to check that the matrix b/2 is a self-adjoint projection. Thus it is
positive. However the 2n x 2n real matrix T,(b) is not positive becausc its
elements do not satisfy the inequality |2,/ < xyz;; fori =n,j =n+ 1.

Other counterexamples of maps which are n-positive but not (n+ 1)-positive
for an arbitrary integer n can be found in {29)].

We deduce now two useful properties of 2-positive maps.

Proposition 2.10 Let A B (B C B(K)) be C*-algebras with unit and let T :
A — B with be a 2-positive map. Then:

1. 4f (1) is dnvertibie in B then for alla € A we have the Schwarz inequality

T(a™)(T(1)~'T(a) < T(a"a), (2.8)
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2. for all a € A we have the inequality

T(a*)T{e) <11 T(a"a). (2.9)

[

2. T s continuous and

ST == Ty

Proof. The operator in B(K) = My

T{a*a) T{a") g f atnoa® o 0 )
- - o | =1 =+
T(a) T(1)+ <1 a 1 0 =1

is positive for every ¢ > 0. Hence, for every ao e & Kowe have
(v, T(a"ajuy = (w.Tia ey = o Tlaju, s o () = Ly = 0.

The operator T(1)+¢1 has a bounded inverse. Taking ¢ = - (T{I)+z1)7" 770t
we have the inequality

<11_T((1")(T(ﬂ) + f]ll_lf{u)u} < fu Pilaayu}

for all w & L. If T'(1) is invertible in B then, by letting 2 tend to O we obtain
the inequality (2.8).
ln any case, since 1< {|T(1) + =1 (T{1) + =1)7", we find the inequality

T(a")T(a) < T(L) + e1il TN T (1} — 1)~ T(a) < I T(1) + =1 T(a*a).

Therefore, letting ¢ tend to 0, we obtain (2.9).

)

The mequality (2.9) and the property e = 007 of CF norms innned:-
1 3 proj 3 ]
ately yield

Tla))* < T 4T (e ), < L) T = DTy - e

This completes the proof. O
The following results show, in particular, that a positive linear map T 0 A4 —

B is in fact completelv positive when at least one of the ("-ulgebras A and B
is commutative. We refer to [12], (82 tor the proofs.

Theorem 2.11 (Avveson) Let B be a commueiative C*-clyclhra. Then cvery
positive linear map T+ A — B is completely jpositive.
Theorem 2.12 (Stinespring) Let A be a commutative O -algebia. Then cvery
positive linear map T+ A — B 15 completely positive.

The following simple properties of completcly positive maps turn out to be
useful.

Proposition 2.13 Let T : A — B and S : A — B be two completely positive
linear maps. Then the map §+ T completely positive.
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Proof. Obvious. O

Proposition 2.14 Let A;, Az, A3z be C*-alyebras and T : A) — Ap, S: Ay —
Az be two completely positive linear maps. Then the linear map ScT' @ A — Aj
is completely positive.

Proof. It suffices to notice that, for every integer » > 1, the map (SoT), :
Ay % M, — Az 0 M, coincides with the composition 5, o T,,. O

Proposition 2.15 Let K be a Hilbert space and let (Th, )1 be a sequence of
completely positive lineer maps T, + A — B(K). Supposc thal, for coery a € A,
the sequence (Tin{a)) >, converges weakly. Then the lincar map 1" A — B(N)
defined by

T(a)= lim T,,{a)

m—oc

< completely positive.

Proof. By Proposition 2.9 it suffices to note that

* 2 E b * - -
g (v, T{aa;}us) = mlllt'l\_ i {u; T afayugy > O
1<i,1<n i L <

for every integer > 1, every uy, ...,y € K and every ay, ... 0, € A O
W.F. Stinespring proved in (82 the following characterization of completci

PosItive maps.

Theorem 2.16 (Stinespring) Let B be o sub C*-ulgebra of the alyclbra of !
bounded operators on a Hilber! space H and let A be o C™-algebra with wnit. A
linear map T : A — B is completely posttive if and only if it has the form

T(a) =V m(a)V (2.10)

wheve (m,K) 4s o representation of A on K for some Hilbert space K. and V' 1
a bounded operator from H to K.

Proof. Let T be a lincar map of the form (2.10) and let (a;;)1<i <., b a
positive matrix in A & M,,. For all vectors ()<< it H we have then

Z (g, Tlai)ug) = Z (Vug, m(a;)Vuy 2 0
i i
because w Is completely positive by Proposition 2.6.
Conversely suppose that T is completely positive and consider the vector
space A 'H, the algebraic tensor product of A and H. On this space we define
the bilinear form (-, )

(r,y) = Z (i, T(a7b;)v;)

]
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forx =3, a;eu; andy = Zj by oo vy in A w ML Since T is cowpletely posifive
we have
(Eod)i= Z (u;. Tlatajju;) =0
i
for all = € A= H. Hence the bilinear for (-. ) is positive. Consider the algebra
homomorphism 7g defined on A4 with values in Hnear transformations in A <’H

m{a) Z apvu; | = Z(rur.,‘) 5 Uy

i i
Notice that, {for all &,y as above, we have
(. mplaly) = {zola™)z, y) .
It follows that, for every @ & A0 7, the linear map
wi A=, w(a) = (x.mola)r)

is a positive linear functional on A. Therefore we have (see (21] Prop. 2.3.11}

o i

Imala)l? = (o moloTalr) € @tal ol = Lt (21
Let A be the linear subspace of vectors .« in A H such that (. x) = (. Since
A s invariant under mo{a) for every a £ A because of (2.11). we can eonsider
the quotient pre-Hilbert space A & H/A defining the pre-scalar product on
Ao HIN by
(w4 Ao Ny = (er).

Let K be the Hilbert space obruined by completion. By the above construction
the “-homomorphism 7y extends to a vepresentation m of A into H{A7) such that

Tlale - N = mpla)r + N

for « ¢ A and v e A= H. Consider the finear operator Voo H - X

Vie=13 . w—\.
This operator is bounded becanse of the inequality
Val® = Tilljuy < ST{T0EF ()™

A straightforward computation vields (2.10). O

Definition 2.17 A puir (7w, V) satisfying 72.10) is colled o Stinespring repre-
sentation of the complelely positive map T. Tt 1s called ¢ minimal Stinespring
representation if the Hilbert space K coincides with the closure of the veclor
subspace generated by

{mia)Vuias A usHy {2.12)
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In other words a pair (7,V) is a minimal Stinespring representation if the
set (2.12) is total in K.

Every completely positive map admits a minimal Stinespring representation.
In fact, with the notation of the proof of Theorem 2.16, it suffices to consider
as Hilbert space K the closure K'; of the vector space generated by (2.12). The
restriction 7, of m to Ky also satisfies (2.10).

The minimal Stinespring representation is unique in the following sense

Proposition 2.18 Let my and my be two representations of A on Hilbert spaces
Ky and Ky and let Vi : H — K, be fwo bounded operators such that

{mi{a)Viu|a € Au e H},
is total Ky for i = 1,2 and such that

T(a) =V m(a)V]
jore =12, Then there exists o unitery map U K1 — Ky such that
Uy =V, Umi(a) = mo{0)U (2.13)
Jor alla  A.

Proof. Let U: Ky — K3 be the densely defined lincar map defined by

i

T
- o
U E m (e )i, | = > ma(a; ) Vau,
=1 i=1
for every integer n > 1 and a1,...,a, € A, uy,...,u, € H. A straightforward
computation shows that

(Um (b)Viv, Uy (a)Viu), = (v, T(b*a)u) = (Viv, m(b"a)Viu), ,

where (+,); denotes the scalar product in £, for all a,b € A and u,v € H.
Therefore U is an isometry and can be extended to Ky by an obvious density
argument. In a similar way one can prove that also U* : K3 — K; is an isometry.
Thus U is unitary. Finally, since

UViu = Um (D)Viu = mo(1)Vou = Vau, Umy(a)Vie = mo(a)Vau
for every u € H, (2.13) follows. O

We finish this section by proving K. Kraus’ characterisation [63] of o-weakly
continuous (i.e. normal) completely positive maps.

Lemma 2.19 Let A and B be two von Neumann algebras of operators on Hilbert
spaces H and K. A normal completely positive map T : A — B can be written
in the form

T(a) =V "r(a)V

where V' is o bounded operator from K to a Hilbert space Ky and 7 is o normal
representation of A in B(K1).
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Proof. Let (w, V) be a minimal Stinespring representation of T with V' : K& —
X1. We check that 7 is normal.

Let (2a)a be a non-decreasing net of elements of A converging to = (z € A)
in the o-weak topology. For all vectors u, v € K and operators a, & € 4 we have
lim (w(b) Vv, m(za)m(@)Vu) = lim (Vo,m(b*2zqa)Vu)

a3 x
= lim{v, T(0"zqa)u)
= (v, T(b*za)u}
= {w(M)Vov,m{z)r(a)u)

because T is normal. Thus 7 is normal by Proposition 1.15 4. 0

Theorem 2.20 (Kraus) Let A be o von Neumann algebra of operators on a
Hilbert space H and let K be another Hilbert space. A linear map T : A — B(K)
is normal and completely positive if and only if it can be represented in the form

T(a) = ivj*avj (2.14)
=1

where (V;)52, are bounded operators from K to 'H such that the series > ViaV;
converge strongly.

Proof. Clearly a completely positive map of the form (2.14) is normal. Indeed,
for every non-decreasing net (,)q of positive elements of A converging strongly
to its least upper bound z we have

sup {u, T{zo)u} = Z sup {Vyu, za Vju)
> (Viu, eVyu)
J

= {u, T{z}u)

for every u € K.

Conversely we can represent the normal completely positive map T in the
form T(a) = V*7(a)V with 7 normal as in Lemma 2.19. Therefore it suffices
to establish (2.14) for the representation n. By decomposing K; into cyclic
orthogonal subspaces we can suppose that there exists a cyclic vector w for
m(A) in K;. The state on A

a — (w,7(a)w)

is normal because 7 is normal. Hence (see, for example, {21] Th. 2.4.21 p.76)
there exists a sequence (un)n>1 of vectors in H such that

SlualP =1, (w,m@w) = {un, )

n>1 n>1



[Sw]
ot

2.3. A QUANTUM FEYNMAN-KAC FORMULA

for all a € A. Moreover, for every x € 4 and n > 1, we have
2 * ;% 2
lzug||” = (un, (2"0)u,) < (w.r(z"r)w) = ||r(z)w|]”.
Therefore there exist contractions V;, : K; — K such that
Vam(z)w = 2u,.
For all & € A we have also
\

(m(z)w, m(a)m(z)w) = {(w.w(e"az)w)

/ R
{uj. a"avu;)

o
Il
-

I I
e i[v]s

(ruy, azu;)

[
Il
-

gk

(Vim(z)w, aVim{z)w)

.
fl
=

4

= (m(x)w, T{,-*alﬁrr(z)w) :

-
I
=

This completes the proof because w is cycelic for 4. O

Remark. It is worth noticing here that Kraus® representation (2.14) can also

be written in the form
T(a)=V*(ax )V

where 1 denotes the identity operator in another Hilbert space H; and V : K —
‘H o2 Hy is a bounded operator. In fact it suffices to consider an orthonormal
basis (e;) in M, and define

Vu=(Vju) xej.

The notion of minimality for Kraus representations is obviously a special
case of the analogue for Stinespring representation.

2.3 A quantum Feynman-Kac formula

In this section we outline a perturbation technique similar to the Feynman-
Kac perturbation in classical probability. The abstract algebraic generalisation
described by Accardi in [1] shows the importance of the notion of cocycle in the
construction of algebraic Markov processes,

We shall use the notation of Section 2.1, (A, ) is an algebraic probability
space with a filtration (A )i>0; conditional expectations I [ | Ay ] will be
denoted also by Ey).
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Definition 2.21 A family (6;):>0 of *-homomorphisms of A is called a covari-
ant shift ¢f:

1. (semigroup property) fp(a) = a and 6,(85(a)) = Ops(a) for all s, > 0
and all a € A,

2. (left wnverse) for all t > 0 the map 8, has a leff inverse denoted 87, ie.
for alla € A, we have
87 (6,(a)) = a.

3. (covariance) for all s,t > O and all a € A we have

6, (IE [Os(ct) | AU]D =F [9£+a’(”‘) \ Ar]] :

It is easy to check that the standard time shift of classical homogencous
Markov process is a covariant shift according to the above definition. In fact,
with the notation of Example 2.1, is defined by

Be (f (e, 2e,)) = F®@qeys - Vuge,, )

Consider a family (j, of *-homomorphisms on A which are adapted in
3 t=0
the sense that

Jt (]Ei” } AfJ) = IE|[ji(a) | AQJ (2.15)

for every a € A. We now try to find conditions in order that the algebraic
process 1 on (A, ) with values in Ay defined by

ue(-) = Jo (6e(0)) (2.16)

is a covariant algebraic Markov process.
The following proposition gives a necessary condition.

Proposition 2.22 Let (j;),5, be a family of x-homomorphisms on A satisfying
condition (2.15). Suppose that the algebraic process w defined by (2.16) is a
covariant algebraic Markov process. Then, for all 5.t > 0 and oll a € 644,(Ag)
we have

Iy Uets(a)] = Iy [0 (8¢ (45 (67 (a))))]- (2.17)

Proof. If u is a covariant quantum Markov process then, by Proposition 2.4,
the family 7 of linear maps defined by (2.3) is a semigroup on Ag. Now, for
all s,t > 0 and all @ € Ay}, denoting the conditional expectation with respect
to Ag by [y, we have

T (Ts(a)) = E(]' [ ‘ (5r (Eoi [j‘,- (95((1))]))]

covariance = IEo [j (6. (js (6 s(“)))])]

7 is adapted = Iy [Eﬂ Je (82 (7s (Bs(a) ))”
projectivity of IF = IEy [J: (00 (js (65 (a)))]

inverse & semigroup = IEU' Je(Brcjsobf ) (9”5( ))
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On the other hand 7;., is defined by
Tiys(a) = Eoy [Jets (0r45(a))]
for all @ € Ag). Therefore, since 7 is a semigroup, 2.17 holds. O

Definition 2.23 A family (ji),»q of #-homomorphisms on A satisfying (2.15)
is called a Markov cocycle with respect to the covariant shift § if, for all s,t > 0
and all a € Ay, we have

Je+s(0ers(a)) = ji (60 (45 (95(a)))) - (2.18)
We prove now the fundamental result of [1].

Theorem 2.24 Let 0 be a covariant shift and let (j;),., be a Markov cocycle
with respect to 0. Then the algebraic process u defined by (2.16) is a covariant
atgebrate Markou process on (A, ) with values in Ag).

Proof. The proof of Proposition 2.22 shows that the maps (73)¢>0 are a semi-
group. Let us show first that w is a quantuin Markov process. For all a € A
and all s,¢ > (0 we have

Ey [utrs(a)) = By [fess (0rr5(a))]
cocycle property = Iy [js ((6; 01 067) Ory5(a))]
projectivity of IE = FE, [js (Es] (85 04z 0 03) 9t+s(a)])]
covariance of # and £ = IEy [(js of,) (EO} [35(91(@)))])]
= Ey[(js 0 8s) (T (a))]]
us(Te(a))

Let us show now that u is covariant; for all a € Ag) and all 5,2 > 0, we have

Uy (on [“s(@)f) = u (T(a)) = Ey) [tt4.5(a)]
This completes the proof. O

Remark. The analogy with the classical Feynman-Kac formmila becomes clear
if we take a standard Brownian motion (w; Je>0 with natural filtration (Fi)ez0

Fr=o{w, |0 <8<t}

as the classical stochastic process 2 in Example 2.1. Let M; be the multiplicative
functionals ;
M; = exp (—/ c(ws)d&i)
0

Jila) = Mia.

Clearly j; : A — A is not an identity preserving homomorphism but it CIjOys
the cocycle property (2.18) with respect to the standard (classical) shift 8 (see

2]).

and let



28 2. ALGEBRAIC MARKOQOV PROCESSES

Proposition 2.25 Let H be a complex sepurable Hilbert space, let A be the
*-algebra B(H) of all bounded operators on H and let (Aﬂ)wo a filtration of
sub-*-algebras of A. Consider a family (Vi)e>o of unitary operators on H such
that Vi € Ay and, for allt > 0, define the map

je: A— A, gila) = VeV (2.19)
Suppose that, for all 5,1 > 0, we have

Vigs = V30:(V5) (:

®)
1
)
=

Then j is a cocycle with respect to 8.
Proof. For all s,t > 0 and all a € Ay we have
Jrobrojsof(a) = V(6 (Vi ()V )V
= [Vibu(Vi)] rs(a) Vi (V)]
= Jtts (Br4s(a))
as required. O

The family of operators (Vs> defining the cocyele § is called an operator
3 p t}t=0 £ Y J P
cocycle or, when no confusion can arise, simply a cocycle.





