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Algebraic Probability
Spaces

In this chapter we recall some definitions of quantum probability theory in
the general framework developed by Accardi and several co-workers. Several
expository papers in the series Quantum Probability and Related Topics and
two monographes [68!, [74] are already available in the literature. We will only
illustrate the definitions by two examples which are included only with the aim
to give a flavour of the relation with classical probability.

The reader is supposed to be familiar with the basic language and facts
on C*-algebras and von Neumann algebras. In Section 5 we recall only some
fundamental definitions and results. '

1.1 Fundamental definitions

Definition 1.1 A =-algebra is ¢ complex algebra A with an dnvolution, denoted
by =, with the following properties:

(a+pb)” = Xa*+ab*
@) = a
(ab)* = b*a”

for all a,b € A, M\ ju € . An element a of A is called positive if there ewists
b e A such thal a = b*b.

We shall consider often =-algebras with a unit denoted by 1.

Definition 1.2 Let A be a +-algebra with a unit k. A state v on A is a linear

maop
w: A—=C

with the properties:
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1. (positivity) w(a*a) = 0, for alla € A,
2. (normalisation) p(1) = 1.

We can now introduce the notion of algebraic probability space and algebraic
random variable according to Accardi, Frigerio and Lewis [5].

Definition 1.3 An algebraic probability space is a pair (A, ) where A 1s a
x-algebra with unit and ¢ is a state on A.

Definition 1.4 Let (A, ) be an algebraic probability space and let B be a *-
algebra. An algebraic random variable on A with values in B is @ *-homororphism

j:B—= A

Tle above quite general definitions will be always applied in “concrete” cascs
when A and B are at least C™-algebras. In this case it is well known (see [21]
Th. 2.1.10 p.60) that A and B are isomorplic to a norm-closed #-algebra of
bounded operators in a Hilbert space.

1.2 Classical probability spaces as algebraic

A measurable space ({2, F) clearly determines uniquely the commutative x-
algebra A = £>(0}, F;@) of F-measurable, bounded, complex-valued functions
on {2. A probability measure I’ on F induces a state ¢ on A by

of) = L J(@)dP(w).

Therefore the classical probability space (€, F, IP) can be considered also as the
algebraic probability space (A, ).

Let (£,£) be a measurable space. Classical random variables on © with
values in E can be also interpreted as algebraic random variables. In fact,
consider the s-algebra B = £7(E, £:T'). A classical random variable @ can be
described as an algebraic random variable by the =homomorphism

j:B— A, i(f)=fou.

It is worth noticing here that each event can be represented by a projection
in the =-algebra A through the identification with its indicator function.

1.3 Quantum probability spaces

Algebraic probability spaces appear as the basic structure in mathematical mod-
els for quantum mechanics. The mathematical structure however is (or at least
can be assumed to be) richer with some more analytical properties on the al-
gebra A and state . In order to distinguish an important class of algebraic
probability spaces we give the following:
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Definition 1.5 A quantum probability space is a pair (A, @) where A is a von
Neuwmann algebra and ¢ a o-weakly continuous state on A.

An event in the guantum probability space (A, @) is a projection operator in
A.

A quantum random variable in (A, ) with values in @ von Neumann algebra
B is a o-weckly continuous homomorphism

j:B—= A

Although one could define events in the same way also when A is only a
C*-algebra the set of events in this case might be very poor. Indeed, if A is
the C=-algebra of complex-valued continuous functions on IR?, then the set of
events is trivial. On the other hand a von Neumann algebra A is gencrated by
projections in A.

Notice that, coutrary to the classical case, the intersection (product) of two
cvents is uo longer an event if the corresponding orthogonal projections do not
commute.

We will show now in which sense a self-adjoint operator X affiliated with
the von Neumann algebra A of a quantumn probability space (A, ) can be
considered both as a classical and a quantum random variable.

As we already noted we can assume that A is a sub von Neumann algebra
of the von Neumann algebra B(h) of bounded operators on a Hilbert space h.
Therefore X is a self-adjoint operator on h.

Let B be the von Neumann algebra L>(IR;@"). By the spectral theorem n
functional caleulus form ([78] Th. VIILA p. 262), for all f € B, we can define
the element f(X) of A. The map

B A J(f) = f(X)

is a *-homomorphism. This is clearly o-weakly continuous because, for every
increasing net (fo)q of positive clements of B with least upper bound f in B we
have

sxipj(fu) = s:ipfa(X) = flX) = 30f).

Therefore X defines a quantum random variable.
Let © = IR and let F be the Borel o-field on Q. Since both j and ¢ are
o-weakly continuous we can define a probability measure on F by putting

P(B) = #(15(X)) (11)

where 15 denotes the indicator function of a B € F. Thus we have constructed
a classical probability space (2, F, I).

We want to show now that X can be represented as a classical real random
variable on (€, 7, IP). Fix a unit vector ¢ in h and consider the closed subspace
hg of h generated by e and vectors of the forin

X)) f2(X) - fa(Xe
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withn > 1, f1,..., f, € B. Let U be the unique unitary operator
U:hg— L*(Q,F,IP)

such that
Ue = 1, [’Yfl(}{)fZ(‘Y) % 'fn(-"{Je - flf? e fn-

The operator U/ is unitary because of the relation

[ glw)dP(w) = ¢lg(X))
R

for g integrable with respect to [P which follows immediately from (1.1).
It is easily checked that the following diagram conunutes:

X
n’l.(] —_— f?.()
v | | v
LE(Q,}—, ) Lz(ﬂ,}—, JP)
fx

(where fx(z) = x}. Precisely we can show that

~v € D(X) if and only if fx (W Uv)(-) € L*(Q, F,IP),

—ifwe U(D(X)), then (UXTU™w)(-) = fx()w().

Therefore UXU~™ acts on L2(Q, F, IP) as the multiplication operator by a real
function fx and the self-adjoint operator X defines a classical reql random
variable.

Two non-commuting self-adjoint operators, however, cannot. be represented
as multiplication operators on the same Hilbert space L*(9, F, I?). This, roughly
speaking, can be suminarized by saying that (A. ) is a quantum probability
space “containing infinitely many classical probability spaces.”

The following are concrete example in which the above fact occurs. We will
use these models to illustrate also how classical probabilistic notious appear
naturally in the quantuin context.

Example 1.1 Spin matrices

Let i = @2, and let A be the von Neumann algebra of 2 x 2 complex valued
watrices and ¢ be any state on A. The pair (A, ) is clearly a quantum proba-
bility space. The self-adjoint operators on b (also called spin matrices or Pauli
matrices).

0 1 0 —i 1
n=(Uo) == (09) =l 5)

represent three non-commuting quantwm random variables. The above discus-
sion shows iminediately that o3 can be represented as a classical real random
variable » taking values {—1,+1} with probabilities

rican=e(§8)). me=onmo((§ 1)
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Notice that —1 and 1 are the eigenvalues of o3 and the events {o3 = 1} and
{m3 = ~1} arerepresented respectively by the orthogonal projections

o) 1)

In a similar way the laws of o7 and =y can be computed using the spectral

decompositions
oo (Y22 _ (2 -y
PTO\/2 142 VL2 L2
oy - 1/2 —if2\ [ 1/2 if2
2 = \if2 1/2 —i/2 1/2
Thus @, o4, 3 are three non-commutative random variables with values in

Example 1.2 The harmonic oscillator
Let /& be the Hilbert space

h=0@N), -N={012..}

with the canonical orthonormal basis (e,.). ‘We consider then the following
operators:

1. annihilation operator

D{a)

{z =(zn)n € B Znian2 < oo}
) T
ae, = +ne,_; Hn>0, aey =0,

2. creation operator

D({],*) = {_L’ e (In.)n ch ‘ anan < OO}
a*e.n = Vv I +1 En41 fOI‘ a].i ki Z 0,

3. number operator
DIN) = {z={zp)n€h| anlmﬂlz < oo}
Ne, = a%ae, =ne, fc?;r all n > 0.
4. wmomentum (or electric field) operator

D(p) = Dfa) = Dia"), p=
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o

5. position (or magnetic field) operator

L@ ta)
= —= 1 .
q \/§

It is well-known that the operators N,p, g arc self-adjoint. Therefore they
can be considered as algebraic random variables. The canonical commutation
relations (domains of the operators involved will be made precise later)

[@,a”] = aa® ~ a*a = 1, (N +1)a=ah, a*(N+1) = Na*
([, -] denoting the commutator) yield
lg.p] =41, [N, p] = iq, [N, gl = —ip.

Therefore N, p, g can not be representad as random variables on the same clas-
sical probability space.

The above model is called the Heisenberg representation of the canonical
commutation relations over @ It is well-known that it is unitarily equivalent
to the Schradinger represcutation. Indeed, letting (Hu)pn>o be the orthonormal
sequer o of the Hermite polynomials in Z2(JR; 7~ /4 exp(—a2/2)d2) the unitar
aoperator

U:B(IN) = LR =~/ exp(—22/2)dz), Ue, = H,
allows us to move from one representation to the other.

P
() e 12(IV)

ul l'u

L} (Ryw Y4exp(—x?/2)dz) — L2(IR; w14 oxp(~22/2)dz)

We refer to Meyer's book [68] for more details on this subject. The following is
a “conversion table”

Heisenberg representation Schroedinger representation
. d
) —i—
: dx
q x
. 1 d? o
A 2 ( dx? -1

Let  be the state on B(L*(fR; 7"/ exp(—2?/2)dz)) defined by the unit
vector Hy (coinciding with the constant function 1)

wla) = {Hy,aHy).
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Well-known facts allow us to compute easily the law of the random variables
p,q. Notice first that the unitary groups generated by ¢ and p are

(exp(itq)v)(z) = exp(itz)v(x), (exp(itp))v(z) = v{x + t).

Therefore the characteristic functions of p and q in the state  are given by

plexplitq)) = (Ho,exp(itq)Ho) = exp(—t/4),
elexp(itp)) = (Hy,exp(itp)Hy) :exp(~t2/4).

Thus p and g are two non-commuting random variables with gaussian distribu-
tion with mean 0 and variance 1/2.
Moreover we have

@(N) = (Ho, NHp) = {eg,a"aeg} = 0.

Therefore, since N is a non negative random variable, it is almost surely 0 with
respect to the probability law determined by the state .

1.4 Conditional expectation
Fxamples given in the previous section motivate the following

Definition 1.6 Let (A, ¢) be an algebraic probability space. For oll clement a
of A we call the expectation, or mean value, of a in the state ¢ the number

wla).
For all a.b € A we define the covariance

e ((a - (a))* (b — ()

and the variance

¢ ((a— ()" (e = el@))

Notice that here we defined an algebraic analogue of expectation, covariance
and variance essentially for bounded random wvariables. In fact a is an element

of A.

We are now in a position to introduce the notion of conditional expectation.

Definition 1.7 Let (A, ) be an algebraic probability space and let Ay be o sub
+-algebra of A with unit 1. A conditional expectation is a linear map

El-| Ao]: A Ao
with the following properties:
1. for all a € A such that a = 0, we have IE [a | Ag]| > 0,

2 E[1] A =1,
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3. for all ay € Ag and 2/l a« € A we have
[E.'aoa ‘ _4{)] = (I()EE(J _,Jlg'

4. for alla€ A we have IE1a” | Agl=(Elal Agil",

. for all a € Ag we lave

[

vla) =9 (Elal Aol).

Example 1.3 The conditional expectations we shall use are of the following
form. Let h, iy be complex separable Hilbert spaces, Consider the Hilberr
space & = h & h) and consider the s-algebras

A= B(.‘\,) ,/-1() = B(}.’) A1

For all states ¢ on B(h) wnd oy on B{/y). consider the state ¢ on A defined by

wla®ar) =gla)ei(ar)
for all @ © B(h), ay € B(hy). Then the linear map

Bl Ag]: A — Ao Eilava | Ayl = 21(a)) (@x 1)
is a conditional expectation.

Although our definition of counditional expectation in the x-algebraic lan-
guage seenis to be quite natural, it is too restrictive in quantum probability. In
fact, contrary to the classical case. given a quantum probahility space (A, )
and a suby s-algebra let Ay of A with identity 1, a conditional expectation
El-1Ag] + A — Ap may not exists. A detailed discussion on conditional
expectations in von Neumann algebras can be found in [72] and [77] by D. Petx.
Definition 1.8 Let (A, ¢} be an algebraic probability space. A filtration is o

¥ 4 ! 1
fannly ((A'J)wn of sub-#-algebras of A such that
Ay S Ay
forall s <t.

Definition 1.9 Let (A, @) be o quantum probabilily space and let ((Afi)r)() be

a filtration. Suppose that, for allt > 0, there czists conditional expectations
E[-{At;} A= Ay

The family (IE' [ | Ay ]) s called projective if, for all s <t, we have

>0
E[E[-]A49] 1 Ay = E[-|Aq].
We refer to the recent books of Meyer [68], Parthasarathy [74] and the ref-

erences therein for a more detailed introduction to the language of quantum
probability and other interesting examnples.
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1.5 Topologies on algebras

A von Neumann algebra (or W*-algebra) could be defined intrinsically as a

special C*-algebra. However we will consider only “concrete” von Neumann

algebras, that is sub-#-algebras of operators on some Hilbert space h closed

under the weak or o-weak or strong operator topology (sec [21] pp.71-72).
These topologies can be defined through the convergence of nets.

Definition 1.10 Let (x,)a be a net in B(h) and let v € B(h). We say that:

1. (24)a converges weakly to z if (v,zqu) converges to (v,zu) for every
v, % € h.

2. (1a)a converges a-weakly to « if the sum 3, (v, Ty converges to the
sum Y (v, 2y for every pair of sequences (v, ), (n)n of elements of
h such that the series > HunH2 and Y, ﬂvnﬁz converge.

3. (24)e converges strongly to x if T,u converges to Tu for every u € h.

converges (o
|2

4. (za)a converges o-strongly fo z if the sum 3, {{xa —T)un 1z
0 for every sequence (i, )y of elements of h such that the series 3 lun

CONVETFES.

Clearly (24)a converges o-weakly to x il and only if, for every trace class
operator pin h, tr{z,p) converges to tr{xp).

The following facts will be frequently used:

(a) the o-wealk topology is stronger than the weak topology and not compa-
rable to the strong one,

(b) the weak and m-weak topology coincide on bounded subsets of B{h}.

Definition 1.11 A von Newmnann algebra is a *-subalgebra of B(h) containing
1 closed in the weak {(or by the bicommutani theorem [21] Th. 2.4.11 p.72 -
a-weak or strong or o-strong) topology.

We recall the following property of the cone of positive elements Ay of a
vor Neumann algebra A (see [21] Lemma 2.4.19 p.76).

Proposition 1.12 Let A be a von Neumann algebra of operators acting on a
Hilbert space h and let {x,) be an increasing net in Ay with an upper bound
in Ap. Then (xo)a has a least upper bound x = sup, To tn Ay and the net
converges o-strongly to x.

We define a useful class of positive functionals on a von Neumann algebra.

Definition 1.13 Let A be o von Neumann algebra of operators acting on the
Hilbert space b and lel w be a positive linear functional on A. We say thet w is
normal if

supw(g) = wsup z.).
(a3 (a3
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The following fundamnental properties of states on a von Neumann algebra
are well-known (see [21] Theorem 2.4.21 p.76).

Theorem 1.14 Let A be a wvon Newmann algebra of operators acting on a
Hilhert space b and let « be o state on A, The following conditions arc equiva-
lent:

! s normal,
2w s a-weakly continuous.

3. there exists a density matriz p (i.e. o positive trace-class operator on
weth tr(p) = 1) such that w(z) = twr(pr).

We shall use often a consequence of the equivalence of 1 and 2. Let us recall
that a subset £ of a Hilbert space /i is called tofal in /v if the linear manifold
generated by £ is dense in k.

Proposition 1.15 Let A and B be von Newmann algebras. B acting on « Hilbert
space h, and let T : A — B be a positive Lincar mop. The fellowing conditions
are equivalent:

1. T is c-weakly continvous {icc. contirvuous wiih respect to (e g-weal

topologies on A and B

2. for ceery dncreasing net (vq)a o Ay with least upper bound » in AL the
increasing net (Tra o 10 B converyes o-weakly to T,
3. for cvery increasing net {xy)a m A, with lcast upper bound o i AL we
have
lim (r, (Tao)u) = sup {u, (Tra ) = (e (Tr)u)

P
[a} ey

for each u tn a linear submanifold of i which is novm-dense in i,

A for every mercasing net (wa)o in Ay with least wpper bound xom AL we
have

i {v (Ta)u) = v (Te)u) (1:2)
o

for cach v w in a total subset of .

Proof. 1 implics 2. Indeed it suffices to note that the net (v,), couverges
weally to 2 by Proposition 1.12.

2 implies 3. Obvious since the linear functionals on By — {u, yu) with v €
are 7-weakly continuous.

3 implies 4. We show first that 3 implies that the net ({u. (Tz, }u)), con-
verges to {u, (Tx)u) for each v € h. Indeed. for every £ > 0, there exists n.
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in the dense subset such that ||u — .|| < . The inequality Tz, < Tz clearly
inplies [Tz || < ||Tz|]. We have then
[, (Tira)u) = (o, (Te)u)] £ [{w— e, (Taa)u) — (u =, (Tz)u)]
+ ey (Ta)(w — ue)) = (ue, (T2) (v — ue))|
+ e, (Txa)ue) — (e, (TxYu)l
< = ve T zall + 1T (lull + [luel)
4+ e, (Tza)ue) — (ue, (T2)ue)| .

Therefore we have

lim {uy (Tzo)uy — (u, (Tx)u)| < 2

||+ ).

Since = is arbitrary, the net {{u, (Taq)u))e converges to (u.(T)u) for each
w e h.
By the polarisation identity

3
1 . :
(v, (Txq)u) = 1 E (v + i*u, (Taa ) (v -+ i%u))

it follows then that (1.2) holds for each v,u € h.

4 implies 3. In fact 4 implies that (1.2) Lolds for each v, u in the dense subset
of h linearly spanned by the total set. This lincar span is obviously dense.

3 implies 2. Let (v,)n>0, (Un)nzo0 be two sequences of vectors in h such that
the sequences {(||vn/)nz0, ([|tn]l)nso are square-summable. We must show that

lin Z (U, (T2 Jn} = Z {vn, (Tz)un) -
nz0 n>0
To this end, for every ¢ > 0, take an integer v such that
Sl <o D llwal? <
> T

We have then

Z (U, (T )tin) & Z (o, (Tx)un)

n>0 n>0
< (ITzall + T2} D llun] - floall
nxv
+ Z (U, (Tzo)un) — Z (Un, {(T2) )| -
n=0 n=0

The first term, since |7z || < || T, can be estimated by

| Tz (Z lheall® + llvnHQ) < 2eTz|-

nxu n> v



12 1. ALGEBRAIC PROBADILITY SPACES

Moreover, as we have shown in the proof that 3 implies 4, the property 3 implies
the convergence of the net ({v, (T2,)u})q to {v. (Tx)u) for each v.u £ h. We
have then

li{:\_u Z (g, (Tir g Juy) — Z (v, (T )uny| < 2T

nz0 nx=0n |
Since ¢ s arbitrary this shows that (1.2) holds.

2 implies 1. Let (z,), be anet in A converging o-weakly to . For every pair
(U3 )20y (n)nz0 of sequences of vectors in h such that (leallnzo; Jlunll)nso
are square-sunmmable let w be the o-weakly continuous {unctional on B

w(yh = Z (U Yy
nz0

By the complex polarisation identity @ can he written as a linear combination
of four positive linear functionals w;, & = 0.1.2.3. with

oely) =S {4 Fa)yle  Fa).

Fa—
n=0

Thercfore, in order to show that 2 hmplies 1. it suffices 1o prove that the net
(w(Tra))e converges to w( ) for every positive linear functional w of the above

form.

If. for sucli an w. we have w{T'1) = 0. then we Lave also w{Tr) = 0 for
each self-adjoint element @ of A because il < » < {l2||T and T is positive.
Therefore

w(Tw)=w(T(c +a7))/2+iw{T(x—-2)7/i)/2=0
for each » ¢ A. Thus there is nothing to prove.
If w(T1) > 0, then, letting
Hy) = w(Ty)/w(T1),

we define a state w on A. Condition 2 implies then that & is normal. Then, by
virtue of Theorem 1.14, it is #-weakly continuous so that

limw(Tr,) = lmw(THZ(Tr,) = (THS(Ta) = w(Tx).

o
This completes the proof. O

A map enjoying the property 3 is also called normal. We will often use the
above equivalence to show that a positive map is continuous for the o-weak
topology. Moreover we will often use normal with the same meaning of g-wealk
when no confusion can arise.

We refer to the book [21] for more detailed results on von Neumann algebras.





