Proyecciones Journal of Mathematics
Vol. 37, N° 1, pp. 153-169, March 2018.
Universidad Catdlica del Norte
Antofagasta - Chile

Sequentially spaces and the finest locally
K-convex of topologies having the same
onvergent sequences

A. El Amrani
University Sidi Mohamed Ben Abdellah, Morocco
Received : June 2017. Accepted : November 2017

Abstract

The present paper is concerned with the concept of sequentially
topologies in non-archimedean analysis. We give characterizations of
such topologies.

Keywords : Non-archimedean topological space, sequentially spaces,
convergent sequence in non-archimedean space.

MSC2010 : 11F85 - J6A03 - 46A5.



154 A. El Amrant

1. Introduction

In 1962 Venkataramen, in [19], posed the following problem:

Characterize "the class of topological spaces which can be specified com-
pletely by the knowledge of their convergent sequences”.

Several authors then agreed to provide a solution, based on the concept of
sequential spaces, in particular: In [9] and [10] Franklin gave some prop-
erties of sequential spaces, examples, and a relationship with the Frechet
spaces; after Snipes in [17], has studied a new class of spaces called T—
sequential space and relationships with sequential spaces; in [2], Boone and
Siwiec gave a characterization of sequential spaces by sequential quotient
mappings; in [4], Cueva and Vinagre have studied the K — c—Sequential
spaces and the K — s—bornological spaces and adapted the results estab-
lished by Snipes using linear mappings; thereafter Katsaras and Benekas,
in [13], starting with a topological vector space (t.v.s.) (E,7), have built
up, the finest of topologies on E having the same convergent sequences as
7; and the thinnest of topologies on E having the same precompact as 7;
using the concept of String (this study is a generalization of the study led
by Weeb [21], on 1968, in case of locally convex spaces l.c.s. ); in [8], Fer-
rer, Morales and Ruiz, have reproduced previous work by introducing the
concept of maximal sequentially topology. Goreham, in [11], has conducted
a study linking sequentiality and countable subsets in a topological space
by considering the five classes of spaces: spaces of countable first case, se-
quential spaces, Frechet spaces, spaces of ”C.T.” type and perfect spaces.

In this work, we will study, in the non-archimedean (n.a) case, for a
locally K—convex space F the finest sequential locally K—convex topology
on F having the same convergent sequences as the original topology.

2. Preliminaries

Throughout this paper K is a (n.a) non trivially valued complete field with
the valuation |.|, and the valuation ring is B (0,1) : = {A € K: |A| < 1}.
There exists ¢ € R such that ¢ > 1 and for all n € Z there exists A\, € K
verifing | A, |= 0" see [18],p.251.

The field K is spherically complete if any decreasing sequence of closed
balls in K has a non-empty intersection.

For the basic notions and properties concerning locally K—convex spaces
we refer to [14] or [18] if K is spherically complete and to [15] if K is not
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spherically complete. However we recall the following:

Let £ be a K—vector space, a nonempty subset A of E is called
K—convex if Az + py + vz € A whenever z,y,z € A, A\, pu,v € K, |\ < 1,
lul < 1,]y] <1Tand A+ p+ v =1. A is said to be absolutely K—convex if
Az + py € A whenever x,y € A, A\, u € K, [A\| <1, |u| < 1. For a nonempty
set A C E its absolutely K—convex hull ¢y (A) is the smallest absolutely
K —convex set that contains A. If A is a finite set {z1, ..., x,, } we sometimes
write ¢g (21, ..., T,) instead of ¢g (A).

A topology on a vector space E over K is said to be locally K—convex
(IKes) if there exists in E a fundamental system of zero-neighbourhoods
consisting of absolutely K—convex subsets of F.

If Eis a iKes, E' and E* denote its topological and algebraic dual,
respectively, and o(FE, El) and O’(E/,E) the weak topology of E and E',
respectively.

If (F, ) is a locally K—convex space with topology 7 we denote by Pg, (or
by P if no confusion is possible) a family of semi-norms determining the
topology 7. We always assume that (E, 7) is a Hausdorff space.

If A is a subset of E we denote by [A] the vector space spanned by A.
Remark that, if A is absolutely K—convex [A] = KA. For an absolutely
K—convex subset A of ' we denote by ps the Minkowski functional on
[A], i.e for z € [A], pa(z) =inf{| X\ |: v € NA}. If A is bounded then p4 is
a norm on [A]. We then denote by E4 the space [A] normed by p4.

Let (,) be a duality between E and F where E and F are two vectors
spaces over K (see [1] for general results), if A is a subset of E, the polar
of A is a subset of F' defined by A°={ye€ F /Vzec Al|(z,y)| <1}.

We define also the polar of a subset B of F' in the same way. A subset
A of E is said to be a polar set if A°° = A (A°° is the bipolar of A )

A continuous semi-norm p on F is called a polar seminorm if the cor-
responding zero-neighbourhood A = {z € E : p(x) < 1} is a polar set. The
space E is called strongly polar if every continuous semi-norm on FE is po-
lar, and it is called polar if 3P such that every p € Pg is polar. (see [15]).
Obviously:

FE strongly polar = FE polar.
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If £ is a polar space then the weak topology o (E, E’) is Hausdorff.
([15] prop. 5.6). In that case we have a dual pair (E,E’). The value of
the bilinear form on £ x E (and similarly on ExE) is denoted by (z,a),
x € E,a € FE'. If Eis a polar space and p is a continuous semi-norm on
E we denote by E, the vector space E/Ker(p) and by m, the canonical
surjection 7, : £ — E,. The space E,, is normed by || 7, (z) |l,= p(x). Its
unit ball is m, (U) , with U = {x € E : p(z) < 1}. Its completion is denoted
by Ej.

3. Sequential spaces in non-Archimedean analysis

3.1. Definitions and properties

Definitions 1. 1. Let E a locally K—convex space and V a subset of
E.
V is called a sequential neighborhood (S — neighborhood ) of 0 if ev-
ery null sequence in E lies eventually in V, that is to say:

(v (l‘n)n € Cy) AN eN): (Yn>Ny), zp € V.

2. A locally K—convex space E is called sequential space if every convex
sequential neighborhood of 0 is a neighborhood of 0.

Remark 1. Every sequential neighborhood of 0 is absorbent and contains
0.

Proposition 1. If V is absolutely K—convex and absorbent subset of a
locally K—convex space I, the following are equivalent:

(i) V is a S — neighborhood of 0;

(ii) py is sequentially continuous. Where py is the Minkowski functional
associated to V.

Proof. (i) = (i7) Suppose that V is a sequentially neighbourhood

n—-+00

of 0; and let (), € Co (E), let us show that Py (z,) — 0.

Let € > 0. Let us consider A € K such that 0 <| A |< ¢, then <$—;> €
n
eV,

Co (F), from where there exists N € N such that (Vn > N), x—/\n

Y
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which implies that Vn > N, py (§2) <1, 0r (Vn > N), py (z,) <| X [< e
Thus the result follows.

Reciprocally, suppose that py is sequentially continuous over E. Let
(xn),, € Co(E), so Py (xy) "ZE2° 0, therefore there exists N € N such
that (VYn > N), py (zn) <1,and so (Yn > N), z, € V. 11

Proposition 2. For a locally K—convex space E the following are equiv-
alent:

(i) E is a sequential space;
(ii) Every sequentially continuous seminorm on E is continuous;

(iii) For every locally K—convex space F, every sequentially continuous
linear map from E to F is continuous;

(iv) For every Banach space F, every sequentially continuous linear map
from E to F' is continuous.

Proof. (i) = (ii). Suppose that E is sequential and let p a semi-
norm sequentially continuous on E. Let: V={z € F:p(z) < 1}.

V' is a sequential neighborhood of 0 and so V is a neighborhood of 0
and consequently p is continuous: Ve > 0, let A € K such that 0 <| A |< e.
Then:

U = AV is a neighborhood of 0 and we have p(U) C B(0,¢).

(ii) = (i). Let V a convex subset of F which is a sequential neighborhood
of 0. V is absorbent and contains 0, therefore it’s absolutely K—convex
(K—convex and contains 0). Then, by Proposition 1, py is sequetially
continuous, then continuous, and so V' is a neighborhood of 0. Therefore £
is sequential.

(1) = (iii). Let F' a locally K—convex space and f : £ — F a
sequentially-continuous linear mapping .

Let V a K—convex neighborhood of 0 in F, f~!(V) is a sequential
K —convex neighborhood of 0 in E, and so f~! (V) is a neighborhood of 0
in E, (E is sequential and (i) < (7)). And then f is continuous.
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(iv) = (7). Let p a sequentially-continuous semi-norm on E; consider
the Banach space E; the completion of FE, = E/Ker(p). The canonical
mapping m, : &/ — ]/E; is sequentially continuous, because: for all (z,), C
F such that x, s 0, we have:

7 "0 p(r,) "

= plE) "=
= mp (2n) fmasa}

Then 7, is continuous, and so p is continuous:
(Ve>0) U= ng (B]; (0, 5)) is a neighborhood of 0 in E
and we have p(U) C B(0,¢).

(iii) = (iv) Obvious.

3.2. The sequential topology

Let (E,7) a locally K—convex space. Consider U the set of all sequen-
tially K—convex neighborhood of 0 and let P, the family of all sequentially
T—continuous n.a. semi-norm on £ .

e U{ is a base of neighborhood of 0 for a locally K—convex topology on
E which is denoted 7° [16, 1.2. p.14]. Since every neighborhood of 0
is a sequential neighborhood of 0, then 7 < 7°.

e P, define a locally K—convex topology on E which is denoted T*.
A base of neighborhood of 0 for 7* is formed by the balls B, (0,¢)
where € > 0 and p is a n.a. sequentially 7—continuous semi-norm.
B, (0,¢) is sequential neighborhood of 0, because for all sequence

(xn),, converging to zero in (E,7), there exists ng € N such that for
n—+400 )

all (n>ngp), p(x,) <e (p(:vn) — 0
Remark 2. The topology T* is sequential.

Proposition 3. 77 is the coarset of all sequential locally K—convex topolo-
gies on E finer than .

Proof. 7% is sequential and 7° > 7.

Let 0 a sequential locally K—convex topology on E finer than 7. Let
U € U; U sequential neighborhood of 0 for 7, and so U is a sequential
neighborhood of 0 for ¢ (¢ > 7) and then U is a neighborhood of 0 for p
(0 is sequential). Therefore g > 7. Which proves the proposition. i



Sequentially spaces and the finest locally K-convex of topologies... 159

3.2.1. Characterization of sequential locally K— convex spaces

Proposition 4. 7 is sequential if, and only if, T = 7°.

Proof. <= Obvious.

Suppose that 7 is sequential and let U € U; U is a sequential K—convex
neighborhood of 0 for 7, so U is a neighborhood of 0 for 7 and then 7 > 75.
Finally 7 = 7°. 1

Lemma 1. For all sequence (x),, of (E,T) we have:
(mn ey for T) & (a:n ey for 7'8> .

Proof. =] Let U € U, there exists N € N such that: Vn > N z,, € U,

hence z,, 22200 for 5.
The converse follows by 7 < 7°. 1

Lemma 2. Let g a locally K—convex topology on F such that for all null
sequence for T is a null sequence for ¢. Then 75 > p.

Proof.  Consider i : (E,7) — (E, p) the canonical injection. Then

for every sequence (z,),, in E we have:

T8 Lemma 1 T
X, — 0 = "z, —0

= Tp 2,0
Then, i is sequentially continuous, and since (F,7°) is sequential, i is
continuous (Proposition 2). Hence 7 < 75.

Proposition 5. 7° is the finest locally K—convex topology on E having
the same convergent suequences as T.

Proof. By Lemma 1 before, 7° and 7 has the same convergent se-
quences. Let g a locally K—convex topology on F having the same con-
vergent sequence as 7 and let (x,), a sequence of E converging to 0 for 7,
then z,, — 0 for p, hence, by Lemma 3, 7° > o. 1

Remark 3. 7% is also the finer topology on E having the same null se-
quences as T.

Lemma 3. Let (E,7) a locally K—convex space and A a subset of E, then:
A is T—bounded if, and only if, for all null sequence (\,),, in K and all
sequence (x,),, in A; the sequence (Apx,,), converges to zero in (I, ) that

is to say (Anxy),, Is a null sequence in (E,T).
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Proof.  Suppose that A be bounded in (E, 7).
Let (M), € Co (K) and (z,),, a sequence in A.
Let V a K—convex neighborhood of zero in F, then there exists A in K* such
that AA C V and there exists N € N* such that (Yn > N) | A\, [<| A |;
but
(Vn>N) Az, = %/\xn
€ )4
C v
cV.

Then the sequence (A zy),, converges to zero in (E,7).
Reciprocally, if A is no 7—bounded, then there exists U a K—convex neigh-

borhood of zero such that Vn € N A gZ U where (), is the sequence

n

of general term |\,| = " and p is the real number defined in the prelim-
inary. For all n € N, let z, the element of A such that x, §é U then,

(Vn e N) Apz, ¢ U that is to say that the sequence ()\nwn) does not
converge to zero, and we have: (z,), C A and (\,),, € Co (K). I

Proposition 6. Let (E,T) a locally K—convex space, then:
7 and 7° have the same bounded subsets.

Proof. Let A a subset of E.
If Ais 7°—bounded, A is T—bounded, because 7% > 7.
If Ais 7—bounded, let (zy,),, C A and (),),, € Co (K), then, according to
the previous Lemma, the sequence (A,zy),, converges to zero in (F,7) and
therefore it converges to zero in (E, 7°) (Lemma 1). So A is 7°—bounded. 1

Proposition 7. Let (F, 7'/> a locally K—convex space and f: E — F a
linear mapping, then:
f is 7°—continuous if, and only if, f is sequentially T—continuous.

Proof.  Suppose that f be 7°—continuous, and let (x,),, a converg-
ing sequence to zero in (E,7) and let V' € Vg (0), there exists U € U
such that f(U) C V. U being a sequential neighborhood of zero, so there
exists ng € N such that (Yn > ng) x, € U and consequently (Vn > ng)
f(zn) € f(U) (C V). Therefore the sequence (f (x5)), converges to zero
in F.
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Conversely, suppose that f is sequentially 7—continuous; let us show
that f: (E,7%) — F' is continuous. According to Proposition 2, it suffices
to show that f is sequentially 7°—continuous. Let then (z,),, a converging
sequence to zero in (F,7°), then it converges to zero in (F,7) (Lemma 1)
and consequently (f (z,)),, is converging to zero in F. I

3.3. Comparison of topologies 7° and T*

Lemma 4. For every U € U, py is a n.a. sequentially T—continuous semi-
norm.

Proof.  Let U € U; then for all (z,),, € Co (F), all e > 0 and all A € K*
such that 0 <| X |< e we have: (A 'z,), € Co(E) from where it exists
no € N: (Yn>ng) A 'z, € U and then:

(Yn >no) pu (A lz,) <1= (Vo >ng) pu(zn) <| A |< e. Therefore
the sequence (py (zn)),, converges to zero in R* and consequently py is
sequentially 7—continuous. i

Proposition 8. 7% =1T%

Proof.  T% being a sequential locally K—convex topology (Remark 2),
whence 75 > T%.

For the other inequality, it suffices to show that i : (E,T°) — (E,7%) is
continuous, and by Proposition2, it suffices to show that the mapping ¢ is
sequentially T"®—continuous.

Let (z,), a sequence that tends towards zero in (F,T*). Then for any
U € U, py is sequentially 7—continuous, therefore the sequence (py (z,)),,
converges to zero in R, from where it exists ng € N : (Vn > ng) pu (z,) <
1, or (Yn >ng) x, € U. Therefore the sequence (z,),, tends to zero in
(E,7°%). From where i is T°—sequentially continuous. And consequently
T >7°. 1

Remark 4. We can show otherwise the previous Proposition: Since any
n.a. T—continuous seminorm on E is sequentially T—continuous, T° > T.
But T% is sequential and 7° is the coarset sequential locally K—convex
topology finer than T, then T° > 7°.

3.4. The sequential polar topology

Let V the family of all K—convex, subsets A of E which are polar and
sequential neighborhood of 0 in (E, 7). V is a base of neighborhood of 0 of
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a locally K—convex topology on F which we noted 77° [16, 1.2., p. 14]. 7P*
is a polar topology on E and 7° > 7% (V CU).

Remark 5. Since, if V € V, then V' € V, we can suppose that all V € V),
V' is 7—closed.

Lemma 5. Suppose that K is spherically complete, and let A a subset of
FE absolutely K—convex and T—closed, then:

1. If K is discrete, A°° = A.

2. If K is dense, Va € K:| a |> 1 A°° C aA.

Where A°° is the bipolar of A with respect the duality <E, El> .

Proof.  See [18, Theorems 4.14, 4.15, p.280 — 281]. 1
Lemma 6. If K is spherically complete, then TP° is a sequential topology.

Proof. Let U a subset of ' which is K—convex, 7—closed and se-
quential neighborhood of 0 on (F, 7). Let us show that U is a neighborhood
of 0 of 7P%. By Lemma 5, before U°° C aU for a = 1 if K is discrete and
| @ |> 1is K dense. We pose V' = U°°, then V is K—convex, polar and
sequential neighborhood of 0 on (E,7) (U C V), then V is a neighborhood

1
of 0 for 7% and therefore U is a neighborhood of 0 for 7P* (EV - U) .

Then 7P¢ is sequential. 1
Proposition 9. If K is spherically complete, then 7% > 7.

Proof. It is a matter of showing that i : (E,7P%) — (E,7) is
continuous, and since 7P° is sequential (Lemma 6), it suffices to show that
1 is sequentially 7P —continuous.

Let (z,),, a sequence of E which is converging to zero on (E,7P%) and let U
an absolutely K—convex and 7—closed neighborhood of zero on (E, 7), then
U®® C aU where a = 1 if K is discrete and | o |> 1 if K is dense (Lemma 5).
The sequence (axy,),, converges to zero on (E, 7°%) and U°® € V hence there

1
exists ng € N : (Vn > ng) ax, € U and so (VYn > ng) =z, € =U°° C U.
a

Then the sequence (), converges to zero on (E,7). 11
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Remark 6. IfK isspherically complete, then TP > T; but 7° is the coarset
of all sequential locally K—convex topologies finest than T and since TP is
sequential, then ™% > 7%, and so ™% = 75,

Proposition 10. Let (E,7) a locally K—convex space. Then 7P% is the
finer of all polar locally K—convex topologies § on E such that all sequence
on E which is T—convergent is j—convergent.

Proof.  7P% is a locally K—convex polar topology on F.
Let (z),, a converging sequence to zero on (E, ), then for all V' € V, there
existsng € N : (Yn > ng) x, € V, then (z,),, converges to zero on (£, 7P%) .

Let § a locally K—convex polar topology on E such that all sequence
on E which is 7—convergent is d—convergent; showing that 7P > §. Let
U a K—convex and polar neighborhood of zero for 4, and let (z,),, a se-
quence which converges to zero on (FE,7), then it’s convergent to zero for
J; hence there exists ng € N : (Vn > ng) =z, € U. Then U is a sequential
neighborhood of zero and so U € V. And then 7P° > 6. 1

Corollary 1. If 7 is polar, then 7™° > 7 and 7P° and T have the same
convergent sequences.

Proof. 7P° > 7 follows immediately of the proposition before and we
have all 7P%—convergent sequence is T7—convergent. And we have already
all 7—convergent sequence is 7P° —convergent; then 7P° and 7 have the same
convergent sequences.

Or equivalentely the two topologies have the same null sequences .

Lemma 7. Let p a seminorm n.a. over E. And let:
A={zeFE:p(x)<1l} and B={ze€ E:p(x) <1}.
Then A° = B°.

Proof. If K is discrete, A = B, then we can suppose that K is
dense.

A is a subset of B, then B° C A°.
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Let f € E* such that f ¢ B°, then there exists y € B such that
| f(y) |> 1. Suppose that f € A°, that is to say that (Vx € 4) | f(z) |<1;
then, since K is dense, there exists A € K such that 1 <| A |<| f (y) | so:

<[ f(§)| — ¥ ¢ A
= (3) 21
—p(y) 2| A
—p(y) >1
—y¢B

Which is absurd. &

Proposition 11. 7P° coincides with the locally K—convex topology gen-
erated by all n.a. polar and sequentially T—continuous semi-norms.

Proof.  Let T?® the locally K—convex topology generated by S, the
familly of all n.a. polar and sequentially 7—continuous semi-norms. Then
TP* admits a basis B of neighborhoods of zero formed by polar balls B, (0, ¢)
where p € S, and € > 0.

Let us show that i : (F, 7P%) — (E,TP®) is bicontinuous.

Let V = B, (0,¢) an element of B, then V is K—convex. Let (z,), a
sequence of elements of E' which converges to zero in (E,7), then

hIE p(xn) = 0 (p is sequetially 7—continuous), hence there is ng € N :
n—-+0oo

(Yn >ng) p(z,) < e, or (Yn>mng) =z, €V which implies that V is a
sequentially neighborhood of zero, hence V € V and so TP® < 7P%.

Conversely, either V' € V, then it’s sequentially K—convex neighbor-
hood of zero. Whe have:

{reE:py(z)<l}CcV C{zeFE:py(z) <1}.

And by the previous Lemma T7:

AOO :BOO — VOO — ‘/’

where A={x € F:py(z) <l}and B={x € E: py (z) < 1}; from where
B°° = B, and consequently p is polar or py is polar

[15, Proposition 3.4, p. 195]. Let us show that py is sequentially
T—continuous. Let (z,), a sequence of elements of £/ which converges to
zeroin (E, 7) and let € > 0; let us consider A € K such that 0 <| A |< ¢, then
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the sequence ()Fla:n) ,, converges to zero in (E,7) and V being a sequential
neighborhood of 0, then there exists ng € N : (Vn > ng) A "'z, € V, from
where (Vn > ng) py (A 1a,) <1or (Vo >ng) pv(zn) <| A7!|< & from
where py is sequentially 7—continuous and consequently py € Sp; then
TPs > 7PS_ So what TP = 7P5.

Proposition 12. 7P is the finer of all polar locally K—convex topologies
which are less fine than 7°.

Proof. 7P%is a polar locally K—convex topology and 7P < 7%,
Let o a polar locally K—convex topology such that ¢ < 7%, and let V' a
polar K—convex neighborhood of 0 for g, then there exists U € U such
that U C V(o < 7°), from where V is a sequential neighborhood of zero,
consequently it is a sequential neighborhood of zero for 7P¢. Thereforer?® >
o- 1

3.4.1. Continuity of linear mappings

Lemma 8. Let E and F' be two locally K— convex spaces and f : E — F
a continuous linear mapping, then for any subset V of F.

If V is polar in F, f~1 (V) is polar in E.

Proof. LetV C F, putting U = f~ (V). Suppose that V is sequen-
tial.

Let € U°°; let us show that = € U. By absurd, suppose that = ¢ U,
and let y = f(x) then y ¢ V from where y ¢ V°° (V°° = V) then there
exists p € VO : | (y) |> 1. But Vt € U, f(t) € V from where

Vee U |(f(t))|<1and consequently pof € U°andso | ¢ (f (z)) |<
1, therefore | ¢ (y) |< 1; which is absurd. &

Proposition 13. Let (F,7) and (F, 1) two locally K—convex spaces .

If f: (E,7) — (F,m1) is a continuous linear mapping, then f is

(7%, 7$) —continuous and (7P, ) —continuous.

Proof.  Let us show that f : (F,7°) — (F,7{) is continuous. For
this it suffices to show that for every sequential neighborhood V' of zero for
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71, f~1(V) is a sequential neighborhood V' of zero for .

Let V a sequential neighborhood of zero for 7 and let (z,), a se-
quence of F which converges towards zero in (F,7); then the sequence
(f (zn)),, converges towards zero in (F, 1), from where there exists ng €
N : (Vn > ng) f (z,) €V, then (Yn > ng)z, € fH(V).

Let us show that f : (F,7P%) — (F,7]") is continuous. For this it
suffices to show that for every polar and sequential neighborhood V' of zero
for 71, f~1 (V) is a polar and sequential neighborhood V' of zero for 7.

Let V a polar and sequential neighborhood of zero for 71, then by
Lemma 8, f~1 (V) is polar for 7. In the other hand, for all sequence (zy,),, of
E which converges towards zero in (E, 7) , the sequence (f (zy)),, converges
to zero in (F,71), from where there exists ng € N : (Vn > ng) f (z,) € V,
therefore (Vn > no)x, € f~1(V). 1

Proposition 14. Let (E,7) = H (Ey, k) , then:
k=1

n
(i) = 1] =
k=1
n
(ii) 7% = H .
k=1

Proof.  Let us show that ¢ : (E,7%) — (E, H T,j) is contin-
k=1

uous. Let us show that V is neighborhood of zero for (E,T%), where
V = (Ug)1<k<n is a K-convex neighborhood of zero for the arrival space.

n
Let (yp), = H xi) a sequence of F which converges to zero in (E,T),
k=1 /p

then for all £k € N, 1 < k < n, the sequence (l‘i)p converges to zero in

(Ek, %), from where there exists p, € N :  (Vp>py) af € Uy. Let

Po = WAX py, 50 (Vp>po) Vk € N, 1 <k <n, a} € Uy, from where
<n

(Vp > ];0) yp € V. Therefore V' is a sequential neighborhood of zero in
(E,7); V being K—convex, therefore V' is a neighborhood of zero in (E, 7).
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n
Let us show that i : (E, H T,‘j) — (FE,7%) is continuous. Let V a
k=1

sequential K—convex neighborhood of zero in (F, 7). For all k, 1 <k < mn,
let ji : Ex, — FE the canonical injection and pose Vi = j,;l (V),so Vi is a
sequential neighborhood of zero in (Ej, 1), from where V is a neighbor-

hood of zero in (Ey, 73;) , and consequently U = H Vi is a neighborhood of
k=1

n
zero in (E, H T,j) .But U C V (V is absolutely K — convex ) ; therefore
k=1

n
V is a neighborhood of zero in H T 1
k=1
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