Proyecciones Journal of Mathematics Vol. 37, N^o 1, pp. 119-131, March 2018. Universidad Católica del Norte Antofagasta - Chile

Generalized Drazin-type spectra of Operator matrices

A. Tajmouati Sidi Mohamed Ben Abdellah University, Maroc M. Abkari Sidi Mohamed Ben Abdellah University, Maroc and

M. Karmouni Cadi Ayyad University, Maroc Received : May 2017. Accepted : August 2017

Abstract

In this paper, we investigate the limit points set of surjective and approximate point spectra of upper triangular operator matrices $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. We prove that $\sigma_*(M_C) \cup W = \sigma_*(A) \cup \sigma_*(B)$ where W is the union of certain holes in $\sigma_*(M_C)$, which happen to be subsets of $\sigma_{lgD}(B) \cap \sigma_{rgD}(A)$, $\sigma_* \in \{\sigma_{lgD}, \sigma_{rgD}\}$ are the limit points set of surjective and approximate point spectra. Furthermore, several sufficient conditions for $\sigma_*(M_C) = \sigma_*(A) \cup \sigma_*(B)$ holds for every $C \in \mathcal{B}(Y, X)$ are given.

Subjclass [2010] : 47A10, 47A11.

Keywords : Surjective spectrum, approximate point spectrum, generalized Drazin spectrum, Single-valued extension property, operator matrices.

1. Introduction and Preliminaries

Let X, Y be Banach space and $\mathcal{B}(X, Y)$ denote the algebra of all bounded linear operators from X to Y. For Y = X we write $\mathcal{B}(X, X) = \mathcal{B}(X)$. For $T \in \mathcal{B}(X)$, we denote by T^* , N(T), R(T), $R^{\infty}(T) = \bigcap_{n \geq 0} R(T^n)$, $\sigma_{ap}(T)$, $\sigma_{su}(T)$, $\sigma_p(T)$, $\rho(T)$ and $\sigma(T)$, respectively the adjoint, the null space, the range, the hyper-range, the approximate point spectrum, the surjectivity spectrum, the point spectrum, the resolvent set and the spectrum of T.

Next, let $T \in \mathcal{B}(X)$, T has the single valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP) if for every open neighborhood $U \subseteq \mathbb{C}$ of λ_0 , the only analytic function $f: U \longrightarrow X$ which satisfies the equation (T - zI)f(z) = 0for all $z \in U$ is the function $f \equiv 0$. T is said to have the SVEP if T has the SVEP for every $\lambda \in \mathbb{C}$. Obviously, every operator $T \in \mathcal{B}(X)$ has the SVEP at every $\lambda \in \rho(T)$, then T and T^* have the SVEP at every point of the boundary $\partial(\sigma(T))$ of the spectrum. In particular, T and T^* have the SVEP at every isolated point of the spectrum. We denote by S(T) the open set of $\lambda \in \mathbb{C}$ where T fails to have SVEP at λ , and we say that T has SVEP if $S(T) = \emptyset$. Note that $S(T) \subset \sigma_p(T)$ and $\sigma(T) = S(T) \cup \sigma_{su}(T)$ see [1, 4].

For a compact subset K of C, let accK, intK, isoK, ∂K and $\eta(K)$ be the set of all points of accumulation of K, the interior of K, the isolated points of K, the boundary of K and the polynomially convex hull of K respectively.

Let $T \in \mathcal{B}(X)$, T is said to be Drazin invertible if there exists a positive integer k and an operator $S \in \mathcal{B}(X)$ such that

$$ST = TS, \ T^{k+1}S = T^k \ and \ S^2T = S.$$

Which is also equivalent to the fact that $T = T_1 \oplus T_2$; where T_1 is invertible and T_2 is nilpotent. The concept of Drazin invertible operators has been generalized by Koliha [5]. In fact, $T \in \mathcal{B}(X)$ is generalized Drazin invertible if and only if $0 \notin acc(\sigma(T))$, which is also equivalent to the fact that $T = T_1 \oplus T_2$ where T_1 is invertible and T_2 is quasi-nilpotent. The generalized Drazin invertible spectrum is defined by

 $\sigma_{gD}(T) = \{\lambda \in \mathbf{C} : T - \lambda I \text{ is not generalized Drazin invertible}\}$ Now, set

$$\sigma_{lgD}(T) = acc(\sigma_{ap}(T)).$$

$$\sigma_{rgD}(T) = acc(\sigma_{su}(T)).$$

Hence $\sigma_{gD}(T) = \sigma_{lgD}(T) \cup \sigma_{rgD}(T)$.

For $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$, we denote by $M_C \in \mathcal{B}(X \oplus Y)$ the operator defined on $X \oplus Y$ by

$$\left(\begin{array}{cc}A & C\\0 & B\end{array}\right)$$

It is well known that, in the case of infinite dimensional, the inclusion $\sigma(M_C) \subset \sigma(A) \cup \sigma(B)$, may be strict. This motivates serval authors to study the defect set $(\sigma_*(A) \cup \sigma_*(B)) \setminus \sigma_*(M_C)$ where σ_* runs different type spectra [2], [3], [6], [7], [9].

The following questions arise naturally:

- 1. Under which conditions on A and B does $\sigma_*(M_C) = \sigma_*(A) \cup \sigma_*(B)$ for arbitrary $C \in \mathcal{B}(Y, X)$?
- 2. Given A and B, for which operators $C \in \mathcal{B}(Y, X)$ does $\sigma_*(M_C) = \sigma_*(A) \cup \sigma_*(B)$?
- 3. How to describe the passage of $\sigma_*(M_0)$ to $\sigma_*(M_C)$?

Where $\sigma_* \in \{\sigma_{lgD}, \sigma_{rgD}\}.$

In this paper, we motivated by the relationship between $\sigma_*(M_C)$ and $\sigma_*(A) \cup \sigma_*(B)$, where $\sigma_* \in \{\sigma_{lgD}, \sigma_{rgD}\}$. In addition, we show that the passage from $\sigma_*(M_0)$ to $\sigma_*(M_C)$ can be described as follows:

$$\sigma_*(M_C) \cup W = \sigma_*(M_0) = \sigma_*(A) \cup \sigma_*(B)$$

where W is the union of certain holes in $\sigma_*(M_C)$, which happen to be subsets of $\sigma_{lqD}(B) \cap \sigma_{rgD}(A)$, $\sigma_* \in \{\sigma_{lqD}, \sigma_{rgD}\}$.

2. Main results

We start this section by the following proposition.

Proposition 2.1. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then :

$$\sigma_{lgD}(M_0) = \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$$

$$\sigma_{rgD}(M_0) = \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$$

Proof. $\lambda \in \sigma_{lgD}(M_0)$ if and only if $\lambda \in acc(\sigma_{ap}(M_0))$ if and only if $\lambda \in acc(\sigma_{ap}(A) \cup \sigma_{ap}(B)) = acc(\sigma_{ap}(A)) \cup acc(\sigma_{ap}(B))$ if and only if $\lambda \in \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$.

By duality, we have: $\sigma_{rgD}(M_0) = \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$

As a straightforward consequence, we have the result of H.Zariouh and H. Zguitti [6].

Corollary 2.1. [6] Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then :

$$\sigma_{qD}(M_0) = \sigma_{qD}(A) \cup \sigma_{qD}(B)$$

Theorem 2.1. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then :

$$\sigma_{lgD}(A) \subseteq \sigma_{lgD}(M_C) \subseteq \sigma_{lgD}(A) \cup \sigma_{lgD}(B) \subseteq \sigma_{lgD}(M_C) \cup \sigma_{lgD}(B)$$

$$\sigma_{rgD}(B) \subseteq \sigma_{rgD}(M_C) \subseteq \sigma_{rgD}(A) \cup \sigma_{rgD}(B) \subseteq \sigma_{rgD}(M_C) \cup \sigma_{rgD}(A)$$

Proof. Without loss of generality, let $\mu = 0 \notin \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$, then $0 \notin acc(\sigma_{ap}(A)) \cup acc(\sigma_{ap}(B))$. Thus there exists $\varepsilon > 0$ such that for any λ , $0 < |\lambda| < \varepsilon$, we have $A - \lambda I$ and $B - \lambda I$ are bounded below. According to [7, Theorem 3.5], we have $M_C - \lambda I$ is bounded below for any λ , $0 < |\lambda| < \varepsilon$, thus $0 \notin acc(\sigma_{ap}(M_C)) = \sigma_{lgD}(M_C)$. Therefore $\sigma_{lgD}(M_C) \subseteq \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$.

If $0 \notin \sigma_{lgD}(M_C)$, then $0 \notin acc(\sigma_{ap}(M_C))$, as a result, there exists $\varepsilon > 0$ such that for any λ , $0 < |\lambda| < \varepsilon$, we have $M_C - \lambda I$ is bounded below, then $A - \lambda I$ is bounded below for any λ , $0 < |\lambda| < \varepsilon$ by [7, Theorem 3.5], thus $0 \notin \sigma_{lgD}(A)$. Therefore $\sigma_{lgD}(A) \subseteq \sigma_{lgD}(M_C)$

Let $\mu = 0 \notin \sigma_{lgD}(M_C) \cup \sigma_{lgD}(B)$, then $0 \notin acc(\sigma_{ap}(M_C)) \cup acc(\sigma_{ap}(B))$. Thus there exists $\varepsilon > 0$ such that for any λ , $0 < |\lambda| < \varepsilon$, we have $M_C - \lambda I$ and $B - \lambda I$ are bounded below. According to [7, Theorem 3.5], we have $A - \lambda I$ is bounded below for any λ , $0 < |\lambda| < \varepsilon$, thus $0 \notin acc(\sigma_{ap}(A)) = \sigma_{lgD}(A)$. Therefore $\sigma_{lgD}(A) \cup \sigma_{lgD}(B) \subseteq \sigma_{lgD}(M_C) \cup \sigma_{lgD}(B)$.

By duality, we have:

$$\sigma_{rgD}(B) \subseteq \sigma_{rgD}(M_C) \subseteq \sigma_{rgD}(M_0) = \sigma_{rgD}(A) \cup \sigma_{rgD}(B) \subseteq \sigma_{rgD}(M_C) \cup \sigma_{rgD}(A)$$

The inclusion, $\sigma_{rgD}(M_C) \subseteq \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$, may be strict as we can see in the following example.

Example 1. Let $A, B, C \in \mathcal{B}(l^2)$ defined by:

$$Ae_n = e_{n+1}.$$
$$B = A^*.$$
$$C = e_0 \otimes e_0.$$

where $\{e_n\}_{n \in \mathbb{N}}$ is the unit vector basis of l^2 . We have $\sigma_{su}(A) = \{\lambda \in \mathbb{C}; |\lambda| \leq 1\}$, then $\sigma_{rgD}(A) = \{\lambda \in \mathbb{C}; |\lambda| \leq 1\}$. Since M_C is unitary, then $\sigma_{rgD}(M_C) \subseteq \{\lambda \in \mathbb{C}; |\lambda| = 1\}$. So $0 \notin \sigma_{rgD}(M_C)$, but $0 \in \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$. Notes that $A^* = B$ has not the SVEP. Also, we can show that the inclusion $\sigma_{lgD}(M_C) \subset \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$ is strict. This will lead us to a necessary condition that ensures the equality desired.

The following proposition will be needed in the sequel.

Proposition 2.2. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$.

- 1. If A is invertible, then $0 \notin \sigma_{lqD}(M_C)$ if and only if $0 \notin \sigma_{lqD}(B)$.
- 2. If B is invertible, then $0 \notin \sigma_{rgD}(M_C)$ if and only if $0 \notin \sigma_{rgD}(A)$.

Proof. 1) Suppose that $0 \notin \sigma_{lgD}(M_C)$, $0 \notin acc(\sigma_{ap}(M_C))$, then there exists $\varepsilon > 0$ such that $M_C - \lambda I$ is bounded below for every $\lambda, 0 < |\lambda| < \varepsilon$. Since A is invertible, then there exists $\beta > 0$ such that $A - \lambda I$ is invertible for every $\lambda, |\lambda| < \beta$. Let $\eta = min(\varepsilon, \beta)$, $A - \lambda I$ is invertible for every $\lambda, |\lambda| < \eta$ and $M_C - \lambda I$ is bounded below for every $\lambda, 0 < |\lambda| < \eta$. Hence $B - \lambda I$ is bounded below for every $\lambda, 0 < |\lambda| < \eta$. Hence is similar.

By duality, we have 2). \Box

Theorem 2.2. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then :

$$\sigma_{lqD}(M_C) \cup S(A^*) = \sigma_{lqD}(A) \cup \sigma_{lqD}(B) \cup S(A^*)$$

Proof. Since $\sigma_{lgD}(M_C) \subseteq \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$, then $\sigma_{lgD}(M_C) \cup S(A^*) \subseteq \sigma_{lgD}(A) \cup \sigma_{lgD}(B) \cup S(A^*)$. Conversely, let $\lambda \in (\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C)$, we can assume without loss of generality that $\lambda = 0$. Then $0 \notin acc(\sigma_{ap}(M_C))$, since $\sigma_{lgD}(A) \subseteq \sigma_{lgD}(M_C)$, then $0 \notin acc(\sigma_{ap}(A))$. Suppose that $0 \notin S(A^*)$:

- If $0 \in \sigma(A)$, since $\sigma(A) = \sigma_{ap}(A) \cup S(A^*)$ then $0 \in \sigma_{ap}(A)$. As $0 \notin acc(\sigma_{ap}(A))$ then $0 \in iso(\sigma_{ap}(A))$, therefore $0 \in iso(\sigma(A))$, which implies

that there exists $\varepsilon > 0$ such that $\lambda I - A$ is invertible for all λ , $0 < |\lambda| < \varepsilon$, since $0 \notin acc(\sigma_{ap}(M_C))$, then there exists $\beta > 0$ such that $\lambda - M_C$ is bounded below for all $0 < |\lambda| < \beta$. Let $\alpha = min(\beta, \varepsilon)$, then $\lambda I - A$ is invertible and $\lambda I - M_C$ is bounded below for all $0 < |\lambda| < \alpha$, by [9, Lemma 2.7], we have $\lambda I - B$ is bounded below for all λ , $0 < |\lambda| < \alpha$, hence $0 \notin acc(\sigma_{ap}(B))$, thus $0 \notin \sigma_{lgD}(B)$. Then we have $0 \notin \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$, contradiction.

- If $0 \notin \sigma(A)$ then A is invertible and since $0 \notin \sigma_{lgD}(M_C)$, according to Proposition 2.2, we have $0 \notin \sigma_{lgD}(B)$, thus $0 \notin \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$, contradiction.

Then $(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C) \subseteq S(A^*)$, this finishes the proof.

Theorem 2.3. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then :

 $\sigma_{rgD}(M_C) \cup S(B) = \sigma_{rgD}(A) \cup \sigma_{rgD}(B) \cup S(B)$

Proof. Since $\sigma_{rgD}(M_C) \subseteq \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$, then $\sigma_{rgD}(M_C) \cup S(B) \subseteq \sigma_{rgD}(A) \cup \sigma_{rgD}(B) \cup S(B)$. Conversely, let $\lambda \in (\sigma_{rgD}(A) \cup \sigma_{rgD}(B)) \setminus \sigma_{rgD}(M_C)$, we can assume without loss of generality that $\lambda = 0$. Then $0 \notin acc(\sigma_{su}(M_C))$, since $\sigma_{rgD}(B) \subseteq \sigma_{rgD}(M_C)$, then $0 \notin acc(\sigma_{su}(B))$. Suppose that $0 \notin S(B)$:

- If $0 \in \sigma(B)$, since $\sigma(B) = \sigma_{su}(B) \cup S(B)$, then $0 \in \sigma_{su}(B)$. As $0 \notin acc(\sigma_{su}(B))$ then $0 \in iso(\sigma_{su}(B))$, therefore $0 \in iso(\sigma(B))$, which implies that there exists $\varepsilon > 0$ such that $\lambda I - B$ is invertible for all $\lambda, 0 < |\lambda| < \varepsilon$, since $0 \notin acc(\sigma_{su}(M_C))$, then there exists $\beta > 0$ such that $\lambda I - M_C$ is surjective for all $\lambda, 0 < |\lambda| < \beta$. Let $\alpha = min(\beta, \varepsilon)$, then $\lambda I - B$ is invertible and $\lambda I - M_C$ is surjective for all $\lambda, 0 < |\lambda| < \alpha$, by [9, Lemma 2.7], we have $\lambda I - A$ is surjective for all $\lambda, 0 < |\lambda| < \alpha$, hence $0 \notin acc(\sigma_{su}(A))$, thus $0 \notin \sigma_{rgD}(A)$. Then we have $0 \notin \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$, contradiction.

- If $0 \notin \sigma(B)$ then B is invertible and since $0 \notin \sigma_{rgD}(M_C)$, according to Proposition 2.2, we have $0 \notin \sigma_{rgD}(A)$, thus $0 \notin \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$, contradiction. \Box

Corollary 2.2. 1) Let $A \in \mathcal{B}(X)$. If $S(A^*) = \emptyset$, then for every $B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$, we have:

$$\sigma_{lqD}(M_C) = \sigma_{lqD}(A) \cup \sigma_{lqD}(B)$$

2) Let $B \in \mathcal{B}(Y)$. If $S(B) = \emptyset$ then for every $A \in \mathcal{B}(X)$ and $C \in \mathcal{B}(Y, X)$, we have:

$$\sigma_{rgD}(M_C) = \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$$

Lemma 2.1. Let $T \in \mathcal{B}(X)$. Then:

$$S(T) \subset \sigma_{lgD}(T)$$
 and $S(T^*) \subset \sigma_{rgD}(T)$.

Corollary 2.3. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. If one of the following conditions holds:

- 1. $int(\sigma_p(A^*)) = \emptyset$,
- 2. $int(\sigma_{rqD}(A)) = \emptyset$,
- 3. $\sigma_{laD}(B) \cap \sigma_{raD}(A) = \emptyset$.

then we have

$$\sigma_{lgD}(M_C) = \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$$

Proof. Note that $S(A^*) \subseteq \sigma_p(A^*)$. If $int(\sigma_p(A^*)) = \emptyset$, by Corollary 2.2, we have $\sigma_{lgD}(M_C) = \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$.

If $int(\sigma_{rgD}(A)) = \emptyset$, as $S(A^*) \subseteq \sigma_{rgD}(A)$, by Corollary 2.2 we have the result.

According to Theorem 2.1, we have $(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C) \subseteq \sigma_{lgD}(B)$ and from Theorem 2.2 $(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C) \subseteq S(A^*)$, since $S(A^*) \subseteq \sigma_{rgD}(A)$, then $(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C) \subseteq \sigma_{lgD}(B) \cap \sigma_{rgD}(A)$. If $\sigma_{lgD}(B) \cap \sigma_{rgD}(A) = \emptyset$, then $\sigma_{lgD}(M_C) = \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$. \Box

Corollary 2.4. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. If one of the following conditions holds:

- 1. $int(\sigma_p(B)) = \emptyset$,
- 2. $int(\sigma_{lgD}(B)) = \emptyset$,
- 3. $\sigma_{lgD}(B) \cap \sigma_{rgD}(A) = \emptyset$.

then we have

$$\sigma_{rgD}(M_C) = \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$$

Proof. Note that $S(B) \subseteq \sigma_p(B)$. If $int(\sigma_p(B)) = \emptyset$, by Corollary 2.2, we have $\sigma_{rgD}(M_C) = \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$.

If $int(\sigma_{lgD}(B)) = \emptyset$, as $S(B) \subseteq \sigma_{lgD}(B)$, by Corollary 2.2 we have the result.

From Theorem 2.1, we have $(\sigma_{rgD}(A) \cup \sigma_{rgD}(B)) \setminus \sigma_{rgD}(M_C) \subseteq \sigma_{rgD}(A)$ and from Theorem 2.3 $(\sigma_{rgD}(A) \cup \sigma_{rgD}(B)) \setminus \sigma_{rgD}(M_C) \subseteq S(B)$, since $S(B) \subseteq \sigma_{lgD}(B)$, then $(\sigma_{rgD}(A) \cup \sigma_{rgD}(B)) \setminus \sigma_{rgD}(M_C) \subseteq \sigma_{lgD}(B) \cap \sigma_{rgD}(A)$. If $\sigma_{lgD}(B) \cap \sigma_{rgD}(A) = \emptyset$, then $\sigma_{lgD}(M_C) = \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$. \Box

For $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$, let L_A (resp. R_B) be the left (resp. right) multiplication operator given by $L_A(X) = AX$; (resp. $R_B(X) = XB$), and let $\delta_{A,B}(X) = AX - XB = L_A(X) - R_B(X)$ be the usual generalized derivation associated with A and B. When A = B, we simply write $\delta_{A,A} = \delta_A$. $N^{\infty}(A) = \bigcup_{n \ge 1} N(A^n)$ the generalized kernel of A.

The following theorem gives an answer to Question 2.

Theorem 2.4. Let $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y)$. If C is in the closure of the set

$$R(\delta_{A,B}) + N(\delta_{A,B}) + \bigcup_{\lambda,\mu \in \mathbf{C}} [N^{\infty}(L_{A-\lambda}) \cap N^{\infty}(R_{B-\mu})]$$

then:

$$\sigma_{lgD}(M_0) = \sigma_{lgD}(M_C)$$
$$\sigma_{rgD}(M_0) = \sigma_{rgD}(M_C)$$

Proof. If C is in the closure of the set

$$R(\delta_{A,B}) + N(\delta_{A,B}) + \bigcup_{\lambda,\mu \in \mathbf{C}} [N^{\infty}(L_{A-\lambda}) \cap N^{\infty}(R_{B-\mu})]$$

then, $\sigma_{ap}(M_C) \setminus \{0\} = \sigma_{ap}(M_0) \setminus \{0\}$ and $\sigma_{su}(M_C) \setminus \{0\} = \sigma_{su}(M_0) \setminus \{0\}$, see [2, Theorem 2.2], it remains to discuss the cas of the origin. Let $C \in N^{\infty}(L_{A-\lambda}) \cap N^{\infty}(R_{B-\mu})$, because of translation stability of spectra, we may assume $\lambda = \mu = 0$. If $C \in N(L_A^n)$ is a nonzero operator, then $0 \in \sigma_p(A) \subseteq \sigma_{ap}(A) \subseteq \sigma_{ap}(M_C) \cap \sigma_{ap}(M_0)$. On the other hand by duality, we use the assumption $C \in N(R_B^n)$ to obtain $0 \in \sigma_{su}(B) \subseteq \sigma_{su}(M_C) \cap \sigma_{su}(M_0)$. Finally $\sigma_{ap}(M_C) = \sigma_{ap}(M_0)$ and $\sigma_{su}(M_C) = \sigma_{su}(M_0)$.

Remark 1. 1) Let T defined on $l^2(\mathbf{N})$ by $T(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Let $A = T, B = T^*$ and C = A - B, then $C \in R(\delta_{A,B})$, according to theorem 2.4, we have $\sigma_{lgD}(M_0) = \sigma_{lgD}(M_C)$ and $\sigma_{rgD}(M_0) = \sigma_{rgD}(M_C)$. But, $S(A^*) = S(B) = \{\lambda \in \mathbf{C}, |\lambda| < 1\}$. We conclude that in general there is no

definite relation between the condition considered in corollary 2.2 and the condition considered in the above theorem.

2) The closure of the set $R(\delta_{A,B}) + N(\delta_{A,B}) + \bigcup_{\lambda,\mu \in \mathbf{C}} [N^{\infty}(L_{A-\lambda}) \cap N^{\infty}(R_{B-\mu})]$ is not the largest class for which $\sigma_{lgD}(M_0) = \sigma_{lgD}(M_C)$ and $\sigma_{rgD}(M_0) = \sigma_{rgD}(M_C)$ hold. Indeed: Let $A \in \mathcal{B}(X)$ such that $A^3 = 0 \neq A^2$ and A = B. For every $C \in \mathcal{B}(X)$, we have $\sigma_{lgD}(M_0) = \sigma_{lgD}(M_C)$ and

 $\sigma_{rgD}(M_0) = \sigma_{rgD}(M_C)$. A simple computation shows that $\delta_A^5 = 0$ then $R(\delta_A) \subseteq N(\delta_A^4)$. If $\lambda \in \mathbf{C}$, $C \in N(L_{(A-\lambda)^2})$, then $(\lambda^2 - 2\lambda A + A^2)C = 0$. Since $A^3 = 0$, we conclude that $A^2C = 0$ and so $C \in N(\delta_A^4)$. Then

$$\bigcup_{\lambda,\mu\in\mathbf{C}} [N^{\infty}(L_{A-\lambda}) \cap N^{\infty}(R_{B-\mu})] \subseteq N(\delta_A^4)$$

Consequently, we have

$$cl(R(\delta_A) + N(\delta_A) + \bigcup_{\lambda,\mu \in \mathbf{C}} [N^{\infty}(L_{A-\lambda}) \cap N^{\infty}(R_{B-\mu})]) \subseteq N(\delta_A^4) \neq \mathcal{B}(X)$$

In [9], it was shown that the passage from $\sigma_{gD}(M_0)$ to $\sigma_{gD}(M_C)$ is accomplished removing certain open subsets of $\sigma_{gD}(A) \cap \sigma_{gD}(B)$ from the former, that is, there is equality

$$\sigma_{gD}(A) \cup \sigma_{gD}(B) = \sigma_{gD}(M_0) = \sigma_{gD}(M_C) \cup W$$

where W is the union of certain of the holes in $\sigma_{gD}(M_C)$ which happen to be subsets of $\sigma_{gD}(A) \cap \sigma_{gD}(B)$. The passage from $\sigma_{lgD}(M_0)$ (resp. $\sigma_{rgD}(M_0)$) to $\sigma_{lqD}(M_C)$ (resp. $\sigma_{rqD}(M_C)$) is more delicate.

Theorem 2.5. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then

$$\sigma_{lgD}(M_C) \cup W = \sigma_{lgD}(A) \cup \sigma_{lgD}(B)$$

where W is the union of certain holes in $\sigma_{lgD}(M_C)$, which happen to be subsets of $\sigma_{lgD}(B) \cap \sigma_{rgD}(A)$.

And

$$\sigma_{rgD}(M_C) \cup W' = \sigma_{rgD}(A) \cup \sigma_{rgD}(B)$$

where W' is the union of certain holes in $\sigma_{rgD}(M_C)$, which happen to be subsets of $\sigma_{lgD}(B) \cap \sigma_{rgD}(A)$. **Proof.** First, we can claim that, for every $C \in \mathcal{B}(Y, X)$.

$$(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C) \subseteq \sigma_{lgD}(B) \cap \sigma_{rgD}(A) \quad (1)$$
$$\sigma_{lqD}(M_C) \subseteq \sigma_{lqD}(A) \cup \sigma_{lqD}(B)$$

Indeed, the second inclusion follows from Theorem 2.1. For the first inclusion, according to Theorem 2.1, we have $(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C) \subseteq \sigma_{lgD}(B)$ and from Theorem 2.2 $(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C) \subseteq S(A^*)$, since $S(A^*) \subseteq \sigma_{rgD}(A)$, then $(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C) \subseteq \sigma_{lgD}(B) \cap \sigma_{rgD}(A)$.

Next we claim that, for every $T \in \mathcal{B}(X)$, we have

$$\eta(\sigma_{lgD}(T)) = \eta(\sigma_{gD}(T)) \quad (2)$$

where $\eta(K)$ denotes the polynomially convex hull of the compact subset K of **C**.

Since $\sigma_{lgD}(T) \subseteq \sigma_{gD}(T)$, we need to prove $\partial \sigma_{gD}(T) \subseteq \partial \sigma_{lgD}(T)$. But since $int(\sigma_{lgD}(T)) \subseteq int(\sigma_{gD}(T))$, it suffices to show that $\partial \sigma_{gD}(T) \subseteq \sigma_{lgD}(T)$. Without loss of generality, suppose $0 \in \partial \sigma_{gD}(T)$. There are two cases to consider.

Case 1: If $0 \in acc(\partial \sigma_{gD}(T))$, then there exists $(\lambda_n) \subseteq \partial(\sigma_{gD}(T))$, such that $\lim_{n \to \infty} \lambda_n = 0$, since

$$\partial(\sigma_{qD}(T)) = \partial(acc\sigma(T)) \subseteq acc\sigma(T) \setminus int\sigma(T) \subseteq \partial(\sigma(T)) \subseteq \sigma_{ap}(T)$$

we have, $\lambda_n \in \sigma_{ap}(T)$, n = 1, 2, ..., hence $0 \in acc(\sigma_{ap}(T)) = \sigma_{lgD}(T)$.

Case 2: If $0 \in iso(\partial \sigma_{gD}(T))$, since $\sigma_{gD}(T)$ is closed, then $iso(\partial \sigma_{gD}(T)) = iso(\sigma_{gD}(T))$. $0 \in iso(\sigma_{gD}(T)) = iso(acc\sigma(T))$, then $0 \in acc\sigma(T)$ and there exists $\varepsilon > 0$ such that $\lambda \notin acc(\sigma(T))$ for every λ , $0 < |\lambda| < \varepsilon$. Since $0 \in acc\sigma(T)$, there exists $(\mu_n) \subseteq \sigma(T)$ such that $\lim_{n \to \infty} \mu_n = 0$, $\mu_n \neq 0$ for all n, thus there exists certain positive integer N such that $0 < |\mu_n| < \varepsilon$ for any $n \ge N$. Let $\lambda_n = \mu_{N+1+n}$, then $\lambda_n \in iso(\sigma(T))$ n = 1, 2, ... and $\lim_{n \to \infty} \lambda_n = 0$. Since $\sigma(T)$ is closed, then

$$iso(\sigma(T)) \subseteq \partial(\sigma(T)) \subseteq \sigma_{ap}(T)$$

Then, $\lambda_n \in iso(\sigma(T)) \subseteq \sigma_{ap}(T)$ n = 1, 2, ... Since $\lim_{n \to \infty} \lambda_n = 0$, then $0 \in acc(\sigma_{ap}(T))$. So $0 \in \sigma_{laD}(T)$.

Then $\partial \sigma_{gD}(T) \subseteq \sigma_{lgD}(T)$. This proves (2). Similarly, for every $T \in \mathcal{B}(X)$ and $S \in \mathcal{B}(Y)$, $\eta(\sigma_{lgD}(T) \cup \sigma_{lgD}(S)) = \eta(\sigma_{gD}(T) \cup \sigma_{gD}(S))$. From [8], if $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$, we have

$$\eta(\sigma_{gD}(M_C)) = \eta(\sigma_{gD}(A) \cup \sigma_{gD}(B))$$

Then

$$\eta(\sigma_{lgD}(M_C)) = \eta(\sigma_{gD}(M_C)) = \eta(\sigma_{gD}(A) \cup \sigma_{gD}(B)) = \eta(\sigma_{lgD}(A) \cup \sigma_{lgD}(B))$$

Hence

$$\eta(\sigma_{lqD}(M_C)) = \eta(\sigma_{lqD}(A) \cup \sigma_{lqD}(B)) \quad (3)$$

(3) says that the passage from $\sigma_{lgD}(M_C)$ to $\sigma_{lgD}(A) \cup \sigma_{lgD}(B)$ is the filling in certain of the holes in $\sigma_{lgD}(M_C)$. But since $(\sigma_{lgD}(A) \cup \sigma_{lgD}(B)) \setminus \sigma_{lgD}(M_C)$ is contained in $\sigma_{lgD}(B) \cap \sigma_{rgD}(A)$, it follows that the filling in certain of the holes in $\sigma_{lgD}(M_C)$ should occur in $\sigma_{lgD}(B) \cap \sigma_{rgD}(A)$.

Similarly we have 2) \Box

Corollary 2.5. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$. If $\sigma_{lgD}(B) \cap \sigma_{rgD}(A)$ has no interior points, then for every $C \in \mathcal{B}(Y, X)$, we have

- 1. $\sigma_{lqD}(M_C) = \sigma_{lqD}(A) \cup \sigma_{lqD}(B)$
- 2. $\sigma_{rqD}(M_C) = \sigma_{rqD}(A) \cup \sigma_{rqD}(B)$
- 3. $\sigma_{qD}(M_C) = \sigma_{qD}(A) \cup \sigma_{qD}(B)$

Acknowledgements:

We wish to thank the referee for his valuable comments and suggestions.

References

 P. Aiena. Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer. Acad. Press, (2004).

- [2] C. Benhida, E. H. Zerouali, H. Zguitti. Spectra of upper triangular operator matrices, Proc. Am. Math. Soc. Vol 133, Num 10, pp. 3013-3020, (2005).
- [3] M. Houmidi, H. Zguitti, Propriétés spectrales locales d'une matrice carrée des opérateurs, Acta Math. Vietnam. 25, pp. 137-144, (2000).
- [4] K. B.Laursen, M. M. Neumann. An introduction to Local Spectral Theory in: London Mathematical Society Monograph, New series, Vol. 20, Clarendon Press, Oxford, (2000).
- [5] J. J. Koliha. A generalized Drazin inverse. Glasgow Math. J., 38 : pp. 367-81, (1996).
- [6] H. Zariouh, H. Zguitti. On pseudo B-Weyl operators and generalized drazin invertible for operator matrices, Linear and Multilinear Algebra, Vol 64, Issue 7, pp. 1245-1257, (2016).
- [7] E. H. Zerouali, H. Zguitti. Perturbation of spectra of operator matrices and local spectral theory, J. Math Anal Appl, 324: pp. 992-1005, (2006).
- [8] S. Zhang, H.Zhong, L. Lin. Generalized Drazin Spectrum of Operator Matrices, Appl. Math. J. Chinese Univ. 29 (2), pp. 162-170, (2014).
- [9] S. F. Zhang, H. J. Zhang, J. D. Wu. Spectra of upper-triangular operator matrices, Acta Math Sinica (in Chinese), 2011, 54: 41-60, (2011).

A. Tajmouati

Sidi Mohamed Ben Abdellah University Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco e-mail : abdelaziz.tajmouati@usmba.ac.ma

M. Abkari

Sidi Mohamed Ben Abdellah University Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco e-mail : mbark.abkari@usmba.ac.ma

and

M. Karmouni

Cadi Ayyad University, Multi-disciplinary Faculty of Safi, B. P. 4162 Sidi Bouzid Safi, Morocco e-mail : med89karmouni@gmail.com