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Abstract

In this paper, we investigate the limit points set of surjective and
approximate point spectra of upper triangular operator matricesMC =µ

A C
0 B

¶
. We prove that σ∗(MC) ∪W = σ∗(A) ∪ σ∗(B) where W

is the union of certain holes in σ∗(MC), which happen to be subsets of
σlgD(B)∩ σrgD(A), σ∗ ∈ {σlgD, σrgD} are the limit points set of sur-
jective and approximate point spectra. Furthermore, several sufficient
conditions for σ∗(MC) = σ∗(A) ∪ σ∗(B) holds for every C ∈ B(Y,X)
are given.

Subjclass [2010] : 47A10, 47A11.

Keywords : Surjective spectrum, approximate point spectrum, gen-
eralized Drazin spectrum, Single-valued extension property, operator
matrices.
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1. Introduction and Preliminaries

Let X, Y be Banach space and B(X,Y ) denote the algebra of all bounded
linear operators from X to Y . For Y = X we write B(X,X) = B(X). For
T ∈ B(X), we denote by T ∗, N(T ), R(T ), R∞(T ) =

T
n≥0R(T

n), σap(T ),
σsu(T ), σp(T ), ρ(T ) and σ(T ), respectively the adjoint, the null space, the
range, the hyper-range, the approximate point spectrum, the surjectivity
spectrum, the point spectrum, the resolvent set and the spectrum of T .

Next, let T ∈ B(X), T has the single valued extension property at
λ0 ∈ C (SVEP) if for every open neighborhood U ⊆ C of λ0, the only an-
alytic function f : U −→ X which satisfies the equation (T − zI)f(z) = 0
for all z ∈ U is the function f ≡ 0. T is said to have the SVEP if T has
the SVEP for every λ ∈ C. Obviously, every operator T ∈ B(X) has the
SVEP at every λ ∈ ρ(T ), then T and T ∗ have the SVEP at every point
of the boundary ∂(σ(T )) of the spectrum. In particular, T and T ∗ have
the SVEP at every isolated point of the spectrum. We denote by S(T ) the
open set of λ ∈ C where T fails to have SVEP at λ, and we say that T has
SVEP if S(T ) = ∅. Note that S(T ) ⊂ σp(T ) and σ(T ) = S(T )∪σsu(T ) see
[1, 4].

For a compact subset K of C, let accK, intK, isoK, ∂K and η(K) be
the set of all points of accumulation of K, the interior of K, the isolated
points of K, the boundary of K and the polynomially convex hull of K
respectively.

Let T ∈ B(X), T is said to be Drazin invertible if there exists a positive
integer k and an operator S ∈ B(X) such that

ST = TS, T k+1S = T k and S2T = S.

Which is also equivalent to the fact that T = T1⊕T2; where T1 is invertible
and T2 is nilpotent. The concept of Drazin invertible operators has been
generalized by Koliha [5]. In fact, T ∈ B(X) is generalized Drazin invertible
if and only if 0 /∈ acc(σ(T )), which is also equivalent to the fact that
T = T1⊕T2 where T1 is invertible and T2 is quasi-nilpotent. The generalized
Drazin invertible spectrum is defined by

σgD(T ) = {λ ∈ C : T − λI is not generalized Drazin invertible}

Now, set
σlgD(T ) = acc(σap(T )).
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σrgD(T ) = acc(σsu(T )).

Hence σgD(T ) = σlgD(T ) ∪ σrgD(T ).
For A ∈ B(X), B ∈ B(Y ), we denote by MC ∈ B(X ⊕ Y ) the operator
defined on X ⊕ Y by Ã

A C
0 B

!
It is well known that, in the case of infinite dimensional, the inclusion

σ(MC) ⊂ σ(A) ∪ σ(B), may be strict. This motivates serval authors to
study the defect set (σ∗(A)∪σ∗(B)) \σ∗(MC) where σ∗ runs different type
spectra [2], [3], [6], [7], [9].
The following questions arise naturally:

1. Under which conditions on A and B does σ∗(MC) = σ∗(A) ∪ σ∗(B)
for arbitrary C ∈ B(Y,X)?

2. Given A and B, for which operators C ∈ B(Y,X) does σ∗(MC) =
σ∗(A) ∪ σ∗(B)?

3. How to describe the passage of σ∗(M0) to σ∗(MC)?

Where σ∗ ∈ {σlgD, σrgD}.

In this paper, we motivated by the relationship between σ∗(MC) and
σ∗(A) ∪ σ∗(B), where σ∗ ∈ {σlgD, σrgD}. In addition, we show that the
passage from σ∗(M0) to σ∗(MC) can be described as follows:

σ∗(MC) ∪W = σ∗(M0) = σ∗(A) ∪ σ∗(B)

where W is the union of certain holes in σ∗(MC), which happen to be
subsets of σlgD(B) ∩ σrgD(A), σ∗ ∈ {σlgD, σrgD}.

2. Main results

We start this section by the following proposition.

Proposition 2.1. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then :

σlgD(M0) = σlgD(A) ∪ σlgD(B)

σrgD(M0) = σrgD(A) ∪ σrgD(B)
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Proof. λ ∈ σlgD(M0) if and only if λ ∈ acc(σap(M0)) if and only
if λ ∈ acc(σap(A) ∪ σap(B)) = acc(σap(A)) ∪ acc(σap(B)) if and only if
λ ∈ σlgD(A) ∪ σlgD(B).

By duality, we have: σrgD(M0) = σrgD(A) ∪ σrgD(B) 2
As a straightforward consequence, we have the result of H.Zariouh and

H. Zguitti [6].

Corollary 2.1. [6] Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then :

σgD(M0) = σgD(A) ∪ σgD(B)

Theorem 2.1. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then :

σlgD(A) ⊆ σlgD(MC) ⊆ σlgD(A) ∪ σlgD(B) ⊆ σlgD(MC) ∪ σlgD(B)

σrgD(B) ⊆ σrgD(MC) ⊆ σrgD(A) ∪ σrgD(B) ⊆ σrgD(MC) ∪ σrgD(A)

Proof. Without loss of generality, let µ = 0 /∈ σlgD(A) ∪ σlgD(B),
then 0 /∈ acc(σap(A)) ∪ acc(σap(B)). Thus there exists ε > 0 such that
for any λ, 0 < |λ| < ε, we have A − λI and B − λI are bounded be-
low. According to [7, Theorem 3.5], we have MC − λI is bounded below
for any λ, 0 < |λ| < ε, thus 0 /∈ acc(σap(MC)) = σlgD(MC). Therefore
σlgD(MC) ⊆ σlgD(A) ∪ σlgD(B).
If 0 /∈ σlgD(MC), then 0 /∈ acc(σap(MC)), as a result, there exists ε > 0
such that for any λ, 0 < |λ| < ε, we have MC − λI is bounded below, then
A− λI is bounded below for any λ, 0 < |λ| < ε by [7, Theorem 3.5], thus
0 /∈ σlgD(A). Therefore σlgD(A) ⊆ σlgD(MC)
Let µ = 0 /∈ σlgD(MC) ∪ σlgD(B), then 0 /∈ acc(σap(MC)) ∪ acc(σap(B)).
Thus there exists ε > 0 such that for any λ, 0 < |λ| < ε, we have MC − λI
and B − λI are bounded below. According to [7, Theorem 3.5], we have
A − λI is bounded below for any λ, 0 < |λ| < ε, thus 0 /∈ acc(σap(A)) =
σlgD(A). Therefore σlgD(A) ∪ σlgD(B) ⊆ σlgD(MC) ∪ σlgD(B).

By duality, we have:

σrgD(B) ⊆ σrgD(MC) ⊆ σrgD(M0) = σrgD(A)∪σrgD(B) ⊆ σrgD(MC)∪σrgD(A)

2

The inclusion, σrgD(MC) ⊆ σrgD(A)∪σrgD(B), may be strict as we can
see in the following example.



Generalized Drazin-type spectra of Operator matrices 123

Example 1. Let A,B,C ∈ B(l2) defined by:

Aen = en+1.

B = A∗.

C = e0 ⊗ e0.

where {en}n∈N is the unit vector basis of l2. We have σsu(A) = {λ ∈
C; |λ| ≤ 1}, then σrgD(A) = {λ ∈ C; |λ| ≤ 1}. Since MC is unitary, then
σrgD(MC) ⊆ {λ ∈ C; |λ| = 1}. So 0 /∈ σrgD(MC), but 0 ∈ σrgD(A) ∪
σrgD(B). Notes that A

∗ = B has not the SVEP. Also, we can show that
the inclusion σlgD(MC) ⊂ σlgD(A) ∪ σlgD(B) is strict. This will lead us to
a necessary condition that ensures the equality desired.

The following proposition will be needed in the sequel.

Proposition 2.2. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X).

1. If A is invertible, then 0 /∈ σlgD(MC) if and only if 0 /∈ σlgD(B).

2. If B is invertible, then 0 /∈ σrgD(MC) if and only if 0 /∈ σrgD(A).

Proof. 1) Suppose that 0 /∈ σlgD(MC), 0 /∈ acc(σap(MC)), then there
exists ε > 0 such that MC − λI is bounded below for every λ, 0 < |λ| < ε.
Since A is invertible, then there exists β > 0 such that A− λI is invertible
for every λ, |λ| < β. Let η = min(ε, β), A − λI is invertible for every
λ, |λ| < η and MC − λI is bounded below for every λ, 0 < |λ| < η. Hence
B − λI is bounded below for every λ, 0 < |λ| < η, by [9, Lemma 2.7], the
converse is similar.
By duality, we have 2). 2

Theorem 2.2. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then :

σlgD(MC) ∪ S(A∗) = σlgD(A) ∪ σlgD(B) ∪ S(A∗)

Proof. Since σlgD(MC) ⊆ σlgD(A)∪σlgD(B), then σlgD(MC)∪S(A∗) ⊆
σlgD(A)∪σlgD(B)∪S(A∗). Conversely, let λ ∈ (σlgD(A)∪σlgD(B))\σlgD(MC),
we can assume without loss of generality that λ = 0. Then 0 /∈ acc(σap(MC)),
since σlgD(A) ⊆ σlgD(MC), then 0 /∈ acc(σap(A)). Suppose that 0 /∈ S(A∗):

- If 0 ∈ σ(A), since σ(A) = σap(A) ∪ S(A∗) then 0 ∈ σap(A). As 0 /∈
acc(σap(A)) then 0 ∈ iso(σap(A)), therefore 0 ∈ iso(σ(A)), which implies
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that there exists ε > 0 such that λI −A is invertible for all λ, 0 < |λ| < ε,
since 0 /∈ acc(σap(MC)), then there exists β > 0 such that λ − MC is
bounded below for all 0 < |λ| < β. Let α = min(β, ε), then λI − A
is invertible and λI −MC is bounded below for all 0 < |λ| < α, by [9,
Lemma 2.7], we have λI−B is bounded below for all λ, 0 < |λ| < α, hence
0 /∈ acc(σap(B)), thus 0 /∈ σlgD(B). Then we have 0 /∈ σlgD(A) ∪ σlgD(B),
contradiction.

- If 0 /∈ σ(A) then A is invertible and since 0 /∈ σlgD(MC), according
to Proposition 2.2, we have 0 /∈ σlgD(B), thus 0 /∈ σlgD(A) ∪ σlgD(B), con-
tradiction.
Then (σlgD(A) ∪ σlgD(B))\σlgD(MC) ⊆ S(A∗), this finishes the proof.

2

Theorem 2.3. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then :

σrgD(MC) ∪ S(B) = σrgD(A) ∪ σrgD(B) ∪ S(B)

Proof. Since σrgD(MC) ⊆ σrgD(A)∪σrgD(B), then σrgD(MC)∪S(B) ⊆
σrgD(A)∪σrgD(B)∪S(B). Conversely, let λ ∈ (σrgD(A)∪σrgD(B))\σrgD(MC),
we can assume without loss of generality that λ = 0. Then 0 /∈ acc(σsu(MC)),
since σrgD(B) ⊆ σrgD(MC), then 0 /∈ acc(σsu(B)). Suppose that 0 /∈ S(B):

- If 0 ∈ σ(B), since σ(B) = σsu(B) ∪ S(B), then 0 ∈ σsu(B). As 0 /∈
acc(σsu(B)) then 0 ∈ iso(σsu(B)), therefore 0 ∈ iso(σ(B)), which implies
that there exists ε > 0 such that λI −B is invertible for all λ, 0 < |λ| < ε,
since 0 /∈ acc(σsu(MC)), then there exists β > 0 such that λI −MC is sur-
jective for all λ, 0 < |λ| < β. Let α = min(β, ε), then λI −B is invertible
and λI −MC is surjective for all λ, 0 < |λ| < α, by [9, Lemma 2.7], we
have λI−A is surjective for all λ, 0 < |λ| < α, hence 0 /∈ acc(σsu(A)), thus
0 /∈ σrgD(A). Then we have 0 /∈ σrgD(A) ∪ σrgD(B), contradiction.

- If 0 /∈ σ(B) then B is invertible and since 0 /∈ σrgD(MC), according
to Proposition 2.2, we have 0 /∈ σrgD(A), thus 0 /∈ σrgD(A) ∪ σrgD(B),
contradiction. 2

Corollary 2.2. 1) Let A ∈ B(X). If S(A∗) = ∅, then for every B ∈ B(Y )
and C ∈ B(Y,X), we have:

σlgD(MC) = σlgD(A) ∪ σlgD(B)
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2) Let B ∈ B(Y ). If S(B) = ∅ then for every A ∈ B(X) and C ∈ B(Y,X),
we have:

σrgD(MC) = σrgD(A) ∪ σrgD(B)

Lemma 2.1. Let T ∈ B(X). Then:

S(T ) ⊂ σlgD(T ) and S(T ∗) ⊂ σrgD(T ).

Corollary 2.3. Let (A,B) ∈ B(X)×B(Y ) and C ∈ B(Y,X). If one of the
following conditions holds:

1. int(σp(A
∗)) = ∅,

2. int(σrgD(A)) = ∅,

3. σlgD(B) ∩ σrgD(A) = ∅.

then we have

σlgD(MC) = σlgD(A) ∪ σlgD(B)

Proof. Note that S(A∗) ⊆ σp(A
∗). If int(σp(A∗)) = ∅, by Corollary 2.2,

we have σlgD(MC) = σlgD(A) ∪ σlgD(B).
If int(σrgD(A)) = ∅, as S(A∗) ⊆ σrgD(A), by Corollary 2.2 we have the
result.
According to Theorem 2.1, we have (σlgD(A) ∪ σlgD(B)) \ σlgD(MC) ⊆
σlgD(B) and from Theorem 2.2 (σlgD(A) ∪ σlgD(B)) \ σlgD(MC) ⊆ S(A∗),
since S(A∗) ⊆ σrgD(A), then (σlgD(A)∪ σlgD(B)) \ σlgD(MC) ⊆ σlgD(B)∩
σrgD(A). If σlgD(B) ∩ σrgD(A) = ∅, then σlgD(MC) = σlgD(A) ∪ σlgD(B).
2

Corollary 2.4. Let (A,B) ∈ B(X)×B(Y ) and C ∈ B(Y,X). If one of the
following conditions holds:

1. int(σp(B)) = ∅,

2. int(σlgD(B)) = ∅,

3. σlgD(B) ∩ σrgD(A) = ∅.

then we have

σrgD(MC) = σrgD(A) ∪ σrgD(B)



126 A. Tajmouati, M. Abkari, M. Karmouni

Proof. Note that S(B) ⊆ σp(B). If int(σp(B)) = ∅, by Corollary 2.2,
we have σrgD(MC) = σrgD(A) ∪ σrgD(B).
If int(σlgD(B)) = ∅, as S(B) ⊆ σlgD(B), by Corollary 2.2 we have the
result.
From Theorem 2.1, we have (σrgD(A)∪σrgD(B))\σrgD(MC) ⊆ σrgD(A) and
from Theorem 2.3 (σrgD(A)∪ σrgD(B)) \ σrgD(MC) ⊆ S(B), since S(B) ⊆
σlgD(B), then (σrgD(A) ∪ σrgD(B)) \ σrgD(MC) ⊆ σlgD(B) ∩ σrgD(A). If
σlgD(B) ∩ σrgD(A) = ∅, then σlgD(MC) = σlgD(A) ∪ σlgD(B). 2

For (A,B) ∈ B(X)× B(Y ), let LA (resp. RB) be the left (resp. right)
multiplication operator given by LA(X) = AX; (resp. RB(X) = XB),
and let δA,B(X) = AX −XB = LA(X)−RB(X) be the usual generalized
derivation associated with A and B. When A = B, we simply write δA,A =
δA. N

∞(A) =
S
n≥1N(A

n) the generalized kernel of A.
The following theorem gives an answer to Question 2.

Theorem 2.4. Let A ∈ B(X) and B ∈ B(Y ). If C is in the closure of the
set

R(δA,B) +N(δA,B) +
[

λ,µ∈C
[N∞(LA−λ) ∩N∞(RB−µ)]

then :
σlgD(M0) = σlgD(MC)

σrgD(M0) = σrgD(MC)

Proof. If C is in the closure of the set

R(δA,B) +N(δA,B) +
[

λ,µ∈C
[N∞(LA−λ) ∩N∞(RB−µ)]

then, σap(MC)\{0} = σap(M0)\{0} and σsu(MC)\{0} = σsu(M0)\{0}, see
[2, Theorem 2.2], it remains to discuss the cas of the origin. Let C ∈
N∞(LA−λ) ∩ N∞(RB−µ), because of translation stability of spectra, we
may assume λ = µ = 0. If C ∈ N(Ln

A) is a nonzero operator, then 0 ∈
σp(A) ⊆ σap(A) ⊆ σap(MC) ∩ σap(M0). On the other hand by duality, we
use the assumption C ∈ N(Rn

B) to obtain 0 ∈ σsu(B) ⊆ σsu(MC)∩σsu(M0).
Finally σap(MC) = σap(M0) and σsu(MC) = σsu(M0). 2

Remark 1. 1) Let T defined on l2(N) by T (x1, x2, ...) = (0, x1, x2, ...). Let
A = T , B = T ∗ and C = A − B, then C ∈ R(δA,B), according to theo-
rem 2.4, we have σlgD(M0) = σlgD(MC) and σrgD(M0) = σrgD(MC). But,
S(A∗) = S(B) = {λ ∈ C, |λ| < 1}. We conclude that in general there is no



Generalized Drazin-type spectra of Operator matrices 127

definite relation between the condition considered in corollary 2.2 and the
condition considered in the above theorem.

2) The closure of the setR(δA,B)+N(δA,B)+
[

λ,µ∈C
[N∞(LA−λ)∩N∞(RB−µ)]

is not the largest class for which σlgD(M0) = σlgD(MC) and σrgD(M0) =
σrgD(MC) hold. Indeed: Let A ∈ B(X) such that A3 = 0 6= A2 and
A = B. For every C ∈ B(X), we have σlgD(M0) = σlgD(MC) and
σrgD(M0) = σrgD(MC). A simple computation shows that δ5A = 0 then
R(δA) ⊆ N(δ4A). If λ ∈ C, C ∈ N(L(A−λ)2), then (λ

2 − 2λA + A2)C = 0.
Since A3 = 0, we conclude that A2C = 0 and so C ∈ N(δ4A). Then[

λ,µ∈C
[N∞(LA−λ) ∩N∞(RB−µ)] ⊆ N(δ4A)

Consequently, we have

cl(R(δA) +N(δA) +
[

λ,µ∈C
[N∞(LA−λ) ∩N∞(RB−µ)]) ⊆ N(δ4A) 6= B(X)

In [9], it was shown that the passage from σgD(M0) to σgD(MC) is
accomplished removing certain open subsets of σgD(A) ∩ σgD(B) from the
former, that is, there is equality

σgD(A) ∪ σgD(B) = σgD(M0) = σgD(MC) ∪W

whereW is the union of certain of the holes in σgD(MC) which happen to be
subsets of σgD(A)∩σgD(B). The passage from σlgD(M0) (resp. σrgD(M0))
to σlgD(MC) (resp. σrgD(MC)) is more delicate.

Theorem 2.5. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then

σlgD(MC) ∪W = σlgD(A) ∪ σlgD(B)

where W is the union of certain holes in σlgD(MC), which happen to be
subsets of σlgD(B) ∩ σrgD(A).

And

σrgD(MC) ∪W 0 = σrgD(A) ∪ σrgD(B)
where W 0 is the union of certain holes in σrgD(MC), which happen to be
subsets of σlgD(B) ∩ σrgD(A).
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Proof. First, we can claim that, for every C ∈ B(Y,X).

(σlgD(A) ∪ σlgD(B)) \ σlgD(MC) ⊆ σlgD(B) ∩ σrgD(A) (1)

σlgD(MC) ⊆ σlgD(A) ∪ σlgD(B)

Indeed, the second inclusion follows from Theorem 2.1. For the first inclu-
sion, according to Theorem 2.1, we have (σlgD(A)∪σlgD(B))\σlgD(MC) ⊆
σlgD(B) and from Theorem 2.2 (σlgD(A) ∪ σlgD(B)) \ σlgD(MC) ⊆ S(A∗),
since S(A∗) ⊆ σrgD(A), then (σlgD(A)∪ σlgD(B)) \ σlgD(MC) ⊆ σlgD(B)∩
σrgD(A).
Next we claim that, for every T ∈ B(X), we have

η(σlgD(T )) = η(σgD(T )) (2)

where η(K) denotes the polynomially convex hull of the compact subset K
of C.

Since σlgD(T ) ⊆ σgD(T ), we need to prove ∂σgD(T ) ⊆ ∂σlgD(T ). But
since int(σlgD(T )) ⊆ int(σgD(T )), it suffices to show that ∂σgD(T ) ⊆
σlgD(T ). Without loss of generality, suppose 0 ∈ ∂σgD(T ). There are
two cases to consider.

Case 1: If 0 ∈ acc(∂σgD(T )), then there exists (λn) ⊆ ∂(σgD(T )), such
that lim

n→∞
λn = 0, since

∂(σgD(T )) = ∂(accσ(T )) ⊆ accσ(T )\intσ(T ) ⊆ ∂(σ(T )) ⊆ σap(T )

we have, λn ∈ σap(T ), n = 1, 2, ..., hence 0 ∈ acc(σap(T )) = σlgD(T ).

Case 2: If 0 ∈ iso(∂σgD(T )), since σgD(T ) is closed, then iso(∂σgD(T )) =
iso(σgD(T )). 0 ∈ iso(σgD(T )) = iso(accσ(T )), then 0 ∈ accσ(T ) and there
exists ε > 0 such that λ /∈ acc(σ(T )) for every λ, 0 < |λ| < ε. Since
0 ∈ accσ(T ), there exists (µn) ⊆ σ(T ) such that lim

n→∞
µn = 0, µn 6= 0 for

all n, thus there exists certain positive integer N such that 0 < |µn| < ε
for any n ≥ N . Let λn = µN+1+n, then λn ∈ iso(σ(T )) n = 1, 2, .. and
lim
n→∞

λn = 0. Since σ(T ) is closed, then

iso(σ(T )) ⊆ ∂(σ(T )) ⊆ σap(T )
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Then, λn ∈ iso(σ(T )) ⊆ σap(T ) n = 1, 2, ... Since lim
n→∞

λn = 0, then

0 ∈ acc(σap(T )). So 0 ∈ σlgD(T ).
Then ∂σgD(T ) ⊆ σlgD(T ). This proves (2). Similarly, for every T ∈ B(X)
and S ∈ B(Y ), η(σlgD(T ) ∪ σlgD(S)) = η(σgD(T ) ∪ σgD(S)). From [8], if
(A,B) ∈ B(X)×B(Y ) and C ∈ B(Y,X), we have

η(σgD(MC)) = η(σgD(A) ∪ σgD(B))

Then

η(σlgD(MC)) = η(σgD(MC)) = η(σgD(A)∪σgD(B)) = η(σlgD(A)∪σlgD(B))

Hence
η(σlgD(MC)) = η(σlgD(A) ∪ σlgD(B)) (3)

(3) says that the passage from σlgD(MC) to σlgD(A)∪σlgD(B) is the filling in
certain of the holes in σlgD(MC). But since (σlgD(A)∪σlgD(B))\σlgD(MC)
is contained in σlgD(B) ∩ σrgD(A), it follows that the filling in certain of
the holes in σlgD(MC) should occur in σlgD(B) ∩ σrgD(A).

Similarly we have 2) 2

Corollary 2.5. Let (A,B) ∈ B(X) × B(Y ). If σlgD(B) ∩ σrgD(A) has no
interior points, then for every C ∈ B(Y,X), we have

1. σlgD(MC) = σlgD(A) ∪ σlgD(B)

2. σrgD(MC) = σrgD(A) ∪ σrgD(B)

3. σgD(MC) = σgD(A) ∪ σgD(B)
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