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Abstract

Let S be a semigroup, let H be an abelian group which is uniquely
2-divisible, and let σ be an involutive automorphism of S. We express
the solutions f : S → H of the following variant of the quadratic
functional equation

f(xy) + f(σ(y)x) = 2f(x) + 2f(y), x, y ∈ S,

in terms of bi-additive maps and solutions of the symmetrized additive
Cauchy equation.
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1. Set up, notation and terminology

Throughout the paper we work in the following framework and with the
following notation and terminology. We use it without explicit mentioning.

S is a semigroup [a set equipped with an associative composition rule
(x, y) 7→ xy], σ : S → S is an homomorphism satisfying σ ◦ σ = id, and
(H,+) denotes an abelian group which is uniquely 2-divisible, i.e., for any
h ∈ H the equation 2x = h has exactly one solution x ∈ H.

A function a : S → H is said to be additive if

a(xy) = a(x) + a(y) for all x, y ∈ S.(1.1)

A function f : S → H is abelian, if

f(xπ(1)xπ(2) · · ·xπ(k)) = f(x1x2 · · ·xk)

for all x1, x2, . . . , xk ∈ S, all permutations π of k elements and all k =
2, 3, . . . . Any abelian function f is central, meaning f(xy) = f(yx) for all
x, y ∈ S.

By N (S,H, σ) we mean the set of the solutions θ : S → H of the
homogeneous equation

θ(xy)− θ(σ(x)y) = 0, x, y ∈ S.

We recall that the Cauchy difference Cf of a function f : S → H is
defined by

Cf(x, y) := f(xy)− f(x)− f(y), x, y ∈ S.

If f : S → H is a function, then Jf : S → H and ϕf : S → H are
defined by

2f(x) := Jf (x) + Cf(x, x) and ϕf (x) := f(σ(x)x)

for all x ∈ S.

2. Introduction

The purpose of the present paper is to solve the following variant of the
quadratic functional equation

f(xy) + f(σ(y)x) = 2f(x) + 2f(y), x, y ∈ S,(2.1)
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where f : S → H is the unknown function. The difference between (2.1)
and the quadratic standard functional equation

f(xy) + f(xσ(y)) = 2f(x) + 2f(y), x, y ∈ S,(2.2)

is that the new equation (2.1) has, on the second term, f(σ(y)x) while
the old one (2.2) has f(xσ(y)). On abelian semigroups the functional Eqs.
(2.1) and (2.2) coincide, and their solutions are known see e.g. [10] and
[13,Chapter 13], so the contributions of the present paper to the theory of
quadratic functional equations lie in the non-abelian case.

A special case of (2.1) is the symmetrized additive Cauchy equation

f(xy) + f(yx) = 2f(x) + 2f(y), x, y ∈ S.(2.3)

Eq. (2.3) is a non-commutative version of the additive equation (1.1),
because it reduces to (1.1) if S is abelian. On groups the solutions of (2.3)
are according to [13, Proposition 2.17] the same as those solutions f of
Jensen’s functional equation f(xy) + f(xy−1) = 2f(x) for which f(e) =
0. Example 12.4 in [13] present a non-abelian solution of (2.3) on the 3-
dimensional Heisenberg group H3(R). Therefore the functional equation
(2.1) has in general non-abelian solutions.

Similar functional equations that have also been studied are

f(xy) + f(σ(y)x) = 2f(x)f(y), x, y ∈ S,(2.4)

f(xy) + f(σ(y)x) = 2f(x)g(y), x, y ∈ S,(2.5)

f(xy) + f(σ(y)x) = 2f(x), x, y ∈ S.(2.6)

The complex-valued solutions of (2.4) were determined by Stetkær in
[14], while the complex-valued solutions (f, g), where S is a possibly non-
abelian group or monoid, of (2.5) and the solutions f : S → H of (2.6)
were obtained by the authors in [3] and [4], respectively. It turns out
that, like on abelian groups, only multiplicative and additive functions
occur in the solution formulas of (2.4), (2.5) and (2.6). We will prove that
these contrast the solutions of the functional equation (2.1), where the
non-abelian phenomena like solutions of (2.3) may occur. For other similar
functional equations we refer to [1,2,5,7-9,11,12,16].

One of the main results is that the solutions for the variant (2.1) of the
quadratic functional equation can be expressed in terms of bi-additive maps
and solutions of the symmetrized additive Cauchy equation (Theorem 5.4),
so that the form of the solutions generalizes the case where S is abelian, see
e.g. [10,Theorem 3] and [13, Theorem 13.6]. Thus the contribution by our
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paper of new knowledge is an extension of earlier results from the abelian
to the non-abelian case because (2.3) becomes (1.1) if S is abelian.

As applications, two important results (Corollaries 5.3 and 5.6 about
Drygas’ type equation

f(xy) + f(σ(y)x) = 2f(x) + f(y) + f(σ(y)), x, y ∈ S,

are presented. Our solution formulas contain the abelian ones as special
cases.

Finally, we note that the results about Whitehead’s functional equation

f(xyz) = f(xy) + f(xz) + f(yz)− f(x)− f(y)− f(z), x, y, z ∈ S,

(2.7)

given in [15] play an important role in finding solutions to the functional
equation (2.1).

3. Results about Whitehead’s functional equation (2.7)

The following lemma lists pertinent basic properties of any solution f :
S → H of (2.7). For the notation Jf , see Section 1.

Theorem 3.1. Let f : S → H be a solution of (2.7). In that case

(a) Cf : S × S → H is bi-additive.

(b) Jf : S → H satisfies (2.3).

(c) If f is central, then Jf is additive.

(d) Let s ∈ Hom(S, S). If f ◦ s = f, then Jf ◦ s = Jf .

Proof. (a) and (b) can be found in [15]

(c) Let f be central. To get that Jf is central it suffices to prove that
so is x 7→ Cf(x, x). That is an easy task. The rest follows from (b).

(d) By the definition of Jf it suffices to prove that Cf(s(x), s(x)) =
Cf(x, x) for all x ∈ S, and that follows from the definition of Cf. 2
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4. Connections between (2.1) and (2.7)

Lemma 4.1 below derives one connection between (2.1) and (2.7), viz.,
Lemma 4.1. If f : S → H satisfies (2.1), then it also satisfies (2.7).

Proof. Making the substitutions (xy, z), (σ(z)x, y), and (x, yz) in (2.1),
we get respectively

f(xyz) + f(σ(z)xy) = 2f(xy) + 2f(z),

f(σ(z)xy)) + f(σ(yz)x) = 2f(σ(z)x) + 2f(y),

f(xyz) + f(σ(yz)x) = 2f(x) + 2f(yz).

Subtracting the middle identity from the sum of the other two we find
that

2f(xyz) = 2f(xy) + 2f(yz) + 2f(x) + 2f(z)− 2f(σ(z)x)− 2f(y).

Replacing here f(σ(z)x) by 2f(x) + 2f(z) − f(xz) and using the fact
that H is uniquely 2-divisible, we get (2.7). 2

In the following lemma, we derive another connection between (2.1) and
(2.7).

Lemma 4.1. If f : S → H satisfies (2.1), then ϕf = Jf .

Proof. The proof is a small computation, based on (2.1).

ϕf (x)− Jf (x) = f(σ(x)x)− [2f(x)− Cf(x, x)]

= f(σ(x)x) + f(xx)− f(x2)− [2f(x)− f(x2) + 2f(x)]

= 2f(x) + 2f(x)− 4f(x) = 0.

2

5. Results about (2.1)

We start with Lemma 5.1, in which we derive some properties of the solu-
tions of (2.1).

Lemma 5.1. If f : S → H satisfies (2.1), then
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a) f ◦ σ = f.

b) Cf(x, σ(y)) = −Cf(y, x) for all x, y ∈ S.

c) ϕf is a solution of (2.1).

d) ϕf ∈ N (S,H, σ), and ϕf ◦ σ = ϕf .

Proof. (a) Let x, y ∈ S be arbitrary. Using (2.7) and (2.1), we obtain

f(σ(y)xy) = f(σ(y)x) + f(σ(y)y) + f(xy)− f(σ(y))− f(x)− f(y)

= f(σ(y)y) + [f(xy) + f(σ(y)x)]− f(σ(y))− f(x)− f(y)

= f(σ(y)y) + f(x) + f(y)− f(σ(y)).

On the other hand, we have

f(σ(y)xy) = 2f(xy) + 2f(y)− f(xy2)

= 2f(xy) + 2f(y)− [2f(xy) + f(y2)− f(x)− 2f(y)]
= 4f(y)− f(y2) + f(x)

= f(σ(y)y) + f(x).

So f(y)− f(σ(y)) = 0 for all y ∈ S, i.e., f ◦ σ = f.

(b) Let x, y ∈ S be arbitrary. By help of (a) and (2.1), we get that

Cf(x, σ(y)) = f(xσ(y))− f(x)− f(σ(y))

= f(σ(x)y)− f(x)− f(y)

= 2f(y) + 2f(x)− f(yx)− f(x)− f(y)

= f(y) + f(x)− f(yx)

= −Cf(y, x).

In (c) and (d) we use a couple of times that ϕf = Jf (Lemma 4.2).

(c) Recalling the definition of Jf (Section 1) we get that 2f(x) =
Cf(x, x) + ϕf (x), so by linearity it suffices to show that the function
x 7→ Cf(x, x) is a solution of (2.1). And that is a simple computation,
based on the bi-additivity of Cf and (b).
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(d) We read from Theorem 3.1(b) that ϕf (xy) + ϕf (yx) = 2ϕf (x) +
2ϕf (y) for all x, y ∈ S. Comparing this with (c) gives the first statement of
(d). That ϕf ◦ σ = ϕf is a special instance of Theorem 3.1(d). 2

In the following theorem, we determine the central solutions f : S → H
of the functional equation (2.1). For abelian case it generalizes many results
(see, e.g., [10,Theorem 3] and [13, Theorem 13.6]).

Theorem 5.2. The central solutions f : S → H of (2.1) are the functions
of the form

f(x) = Q(x, x) + a(x),

where Q : S×S → H is an arbitrary symmetric, bi-additive map such that
Q(x, σ(y)) = −Q(x, y) for all x, y ∈ S, and where a : S → H is an arbitrary
additive map such that a ◦ σ = a.

Proof. Assume that f : S → H is a central solution of (2.1). Since f is
central, then Cf is symmetric and ϕf is additive (Theorem 3.1 (c)). So f
has the desired form by the decomposition 2f(x) = Cf(x, x)+ϕf (x). Take
Q = 1

2Cf and a = 1
2ϕf .

The other direction of the proof is trivial to verify. 2

As a consequence of Theorem 5.2, we have the following result on the
central solutions of the functional equation

f(xy) + f(σ(y)x) = 2f(x) + f(y) + f(σ(y)), x, y ∈ S,(5.1)

which reveals a connection between (5.1) and (2.1) and contains the solution
of Drygas’ equation on commutative semigroups.

Corollary 5.3. The central solutions f : S → H of (5.1) are the functions
of the form

f(x) = Q(x, x) + a(x),(5.2)

where Q : S×S → H is an arbitrary symmetric, bi-additive map such that
Q(x, σ(y)) = −Q(x, y) for all x, y ∈ S, and where a : S → H is an arbitrary
additive map.
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Proof. It is easy to check that any function f of the form (5.2) is central
and satisfies (5.1). Conversely, assume that f is a central solution of (5.1).
Let fe and fo denote the σ-even and the σ-odd parts of f, i.e.,

fe =
f + f ◦ σ

2
and fo =

f − f ◦ σ
2

.

Simple computations show that fe is a central solution of (5.1). Hence
fe is a central solution of (2.1). From Theorem 5.2, we see that there exist
a symmetric, bi-additive map Q : S × S → H with Q(x, σ(y)) = −Q(x, y)
for all x, y ∈ S, and an additive map a1 : S → H with a1 ◦σ = a1 such that

fe(x) = Q(x, x) + a1(x), x ∈ S.

On the other hand, since fo = f − fe, fo is also a solution of (5.1), so
that fo is a solution of the variant (2.6) of Jensen’s functional equation.
According to [4, Theorem 3.2], we see that fo is additive. Therefore f =
fe+fo has the required form with a = a1+fo and this completes the proof.
2

Now we treat the general case where the solution f : S → H need not
be central.

Theorem 5.4. The general solution f : S → H of (2.1) is

f(x) = Q(x, x) + ψ(x), x ∈ S,(5.3)

whereQ : S×S → H is an arbitrary bi-additive map such thatQ(x, σ(y)) =
−Q(y, x) for all x, y ∈ S, and where ψ : S → H is an arbitrary solution
of the symmetrized additive Cauchy equation such that ψ ◦ σ = ψ and
ψ ∈ N (S,H, σ).

Proof. Let f : S → H be a solution of (2.1). Using the decomposition
2f(x) = Cf(x, x) +ϕf (x), Theorem 3.1 and Lemma 5.1, we see that f has
the desired form. Take Q = 1

2Cf and ψ = 1
2ϕf .

The other direction of the proof is trivial to verify. 2

Remark 5.1. Theorem 5.4 is a non-abelian version of e.g. [10,Theorem 3]
and [13, Theorem 13.6]. Indeed, if S is abelian, then any solution of the
symmetrized additive Cauchy equation reduces to an additive function and
so the condition ψ ∈ N (S,H, σ) becomes ψ = ψ ◦ σ.
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In view of Theorem 5.4, we obtain the following result about solution,
that need not be central, of Drygas’ type equation (5.1) on any semigroup.

Corollary 5.2. The general solution f : S → H of (5.1) is

f(x) = Q(x, x) + ψ(x) + a(x), x ∈ S,

whereQ : S×S → H is an arbitrary bi-additive map such thatQ(x, σ(y)) =
−Q(y, x) for all x, y ∈ S, ψ : S → H is an arbitrary solution of the sym-
metrized additive Cauchy equation such that ψ◦σ = ψ and ψ ∈ N (S,H, σ),
and where a : S → H is an additive function such that a ◦ σ = −a.

Proof. As the proof of Corollary 5.3 with the necessary changes. 2
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