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Abstract 

We give sorne characterizations of ")'-hyperelliptic Riemann sur·­
faces of genus g ~ 2, that is, pairs (S,j) where Sisa closed Riemann 
surface of genus g and j : S --> S is a conforma[. involution with 
exactly 2g + 2 - 4')' fixed points. These characterizations ar·e given 
by Schottky groups, special hyperbolic polygons and algebmic wr·ves. 
These can be seen as generalizations of the works (5/ and /11}. 
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Introduction 

A 1-hyperelliptic Riemann surface of genus gis a pair (S,j), where Sisa 
closed Riemann surface of genus g and j is a conforma! involution of S with 
exactly 2g + 2 - 41 fixed points. Equivalently, a 1-hyperelliptic Riemann 
surface of genus g is a triple (S, X, 1r : S--+ X), where S and X are closed 
Riemann surfaces of genus g and 1, respective! y, and 1r : S --+ X is a degree 
two holomorphic covering map. The equivalence is given by X = S j < j > 
and 1r : 8 --+ X the natural two fold covering induced by the action of j 
on 8. A 0-hyperelliptic Riemann surface (S, j) consists of a hyperelliptic 
Riemann surface 8 and its hyperelliptic involution j. 

If (S, j) is a 1-hyperelliptic Riemann surface of genus g, then j : S --+ S 

is called a 1-hyperelliptic Riemann surface and by abuse of language we 
call S a 1-hyperelliptic Riemann surface of genus g. 

In general 1-hyperelliptic involutions are not uní que. If the genus of S is 
large compared to /, then it is possible to get uniqueness for 1-hyperelliptic 
involutions (see [4]). 

In this paper, we discuss Schottky uniformizations of 1-hyperelliptic 
Riemann surfaces which reflect the 1-hyperellipticity property (see next 
section). These uníformizations are called 1-hyperelliptic Schottky uni­
formizations. The 
0-hyperelliptic Schottky uniformizations are also called hyperelliptic Schot­
tky múformizations. 

In [8], we treated 1-hyperelliptic Schottky uniformizations using differ­
ent techniques. Here we use strongly the topology of the action of involu­
tions on closed Riemann surfaces (Theorem A). 

The particular case of hyperelliptic Riemann surfaces and hyperelliptic 
Schottky uníformizations is done in [11]. It will follow from our results as 
a particular case. 

Let (8, j) be a 1-hyperelliptic Riemann surface of genus g 2: 2 such that 
j has fixed points. If F is a torsion-free Fuchsian group acting on the unít 
disc U, uniformizing 8, then we can lift the involution j to a conforma! 
involution J. In particular, J is in the normalizer of F in the group of 
conforma! automorphisms of U. We show the existence of a strictly convex 
4g-sided hyperbolic fundamental polygon P for the group F, such that 
J(P) = P. The fixed points of j are represented by the fixed point of J 
(the center of P), the vertices of P, and the midpoints of exactly 2g- 41 
sides. This result for hyperelliptic Riemann surfaces can be also found in 
the thesis of D. Gallo [5]. 
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These types of polygons, for -y greater than zero, are different than those 
studied by Fricke and Keen [12]. However, for -y= O, such a polygon is a 
double of a Fricke polygon. 

In addition, we recall an algebraic description of -y-hyperelliptic llie­
mann surface of genus g �~� 2 . That is classical, but we include as a matter 
of completeness. Let us say that there exist a lot of representations of -y­
hyperelliptic Riemann surfaces and we are only considering a few of them. 

l. Definitions 

Definition 氮 A pair (S,j) is called a -y-hyperelliptic Riemarm sulface of 
genus g províded S is a closed Riemann surface o[ genus g and j 㨠S ____. S 
is a conforma] involution with exactly 2g ⬠2 - 4-y fixed points. 

Classically, 0-hyperelliptic Riemann surfaces are called hyperelliptic. 
In this case the 0-hyperelliptic involution is the hyperelliptic one and it 
is unique. For such a reason, we may just call S a hyperelliptic Riemann 
surface. For -y 㸠O the uniqueness of j does not hold in general and a fixed 
closed Riemann surface may have different -y-hyperelliptic structures. In 
fact, Jet S be a hyperelliptic Riemann sulface o[ genus g which admits a 
conforma] involution k 㨠S 彟彟⸠ S with exactly 2g- 2 fixed points. Denote by 
h the hyperelliptic involution on S. Then t 㴠 hok is again a 1-hyperelliptic 
involution on S different from k. In this way, (S, k) and (S, t) are two dif­
ferent 1-hyperelliptic Riemann surfaces. If the genus g is sufficiently large 
in comparison wíth '"'(, then one has the llniqueness o[ the -y-llyperelliptic 
involution {4} 

Definition 2 ( Schottky groups). Let Ck,C'k, k= 1, · · · ,g, be 2g Jor­
dan curves on the Riemann sphere, 䌠㴠 C U { oo}, such that they are 
mutually disjoint and bound a 2g-connected domain. Call D the common 
exterior o[ all these curves, and suppose that for each k there exists a 
fractionallinear transformation Ak with the following properties 

ii) A k maps the exterior of Ck onto the interior of C' k. 

The group G generated by the transformations Ak is a Kleinian group. 
(The transfmmations Ak are necessarily loxodromic). The region D is a 
fundamental domain for G, called a standard fundamental domain for G 
with respect to the generators A k. The group G is called a Schottky group 



80 Rubén Hidalgo 

of genus g. The tri vial group is called a Schottky group o[ genus zero. If G 
is a Schottky group of genus g and A1, · · ·, A9 is a set of (free) generators, 
then the pair ( G; {A 1 , · · · , A9 }) is called a marked Schottky group of genus 
g. 

In {3} it is proved that for any set of free generators A1, · · ·, A9 , for a 
Schottky group G of genus g, there exists a standard fundamental domain 
D for G with respect to the given generators. 

We say that a Schottky group G is classical if we can find a set o[ free 
generators with a standard fundamental domain bounded by circles. In the 
Schottky Space, the classical ones form a open set. It is known that there 
are Schottky groups which are not classical {15}. In the literature there is 
only one explicit example of such a Schottky group {lO} 

IfD, = UAEcA(cl(D)), where cl(D) denotes the Euclidean closure of D, 
then n is the region of discontinuity of G. The limit set of G is by definition 
the complement of n in the Riemann sphere. We will denote this set by 
1\(G). This set is closed and totally disconnected. If g 2 2, then the limit 
set is also a perfect set. For g = 1 the limit set /\( G) consists of two points, 
and for g = O the set /\( G) is empty. 

Definition 3. A uniformization of a Riemann surface Sisa triple (n, G, 1r : 

n ---+ S), wl1ere G is a Kleinian group with invariant component n ([13}) 
and 1r : n ---+ S is a regular covering map with G as covering group. If G is 
a Schottky or a Fuchsian group, then it is called a Schottky or a Fuchsian 
uniformization, respectively. 

It is a ve1y well known fact that a closed Riemann surfaces has a Schot­
tky uniformization. This is known as the Retrosection Theorem [2}. The 
following still an open problem. Does every closed Riemann smiace has a 
Schottky uniformization given by a classical Schottky group? 

Definition 4. Let (S, j) be a-y-hyperelliptic Riemann surface, and (n, G, 1r : 

n ---+ S) an uniformization of S. We say that (n, G, 1r : n ---+ S) is a -y­

hyperelliptic uniformization of (S, j) ( or that it reflects the -y-hyperellipticity 
of S given by j ), if there exists a conformal automorphism J : n ---+ n such 
tl1at 1r o J = j o 1r. In the pa1iicular case that the above is a Schottky 
uniformization of S, we call it a -y-hyperelliptic Schottky uniformization 
uf (S, j) and the group G a -y-hyperelliptic Schottky group. 

Definition 5 ('Y-hyperelliptic polygons). Let P be a strictly convex 
4g-sided hyperbolic polygon, g 2 2, in the unit disc U. Then P is called a 
-y-l1yperelliptic polygon if the following lwlds: 



ꄭ䡹灥牥汬楰瑩挠剩敭慮渠卵牦慣敳 

椩 偩猠楮癡物慮琠畮摥爠瑨攠瑲慮獦潲浡瑩潮 䨨稩 = ⵺㬠
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楩椩 If 卉ⲷ랷Ⱐ猀㐹 are 瑨攠獩摥猠潦 倬 楮 捯畮瑥牣汯捫睩獥 order, 瑨敮 瑨敲攠
數楳琠汩湥慲 晲慣瑩潮慬 瑲慮獦潲浡瑩潮猠T1 , · · · , 吲本 晩硩湧 瑨攠畮楴 摩獣 
唬 瑨慴 楳Ⱐ楳潭整物敳 潦 唠睩瑨 瑨攠桹灥牢潬楣 浥瑲楣Ⱐ獵捨 瑨慴㨠

(iii.l) 呩⠠獩⤠= 猻ꄀ㤀
㄀⭩锠景爠i = 1, · · ·, 2g- 4¡; 

⡩楩⸲⤠吲札㐧⤧⬲琭氨猲札㐧⤧⬴琭㌩ = s;¡9
1
_ 47+4t-l• 景爠t = 1, · · · ,¡. 

⡩楩⸳⤠吲札㐧⤧⬲琨匲札㐧⤧⬴琭㈩ = 猻ꄀ9
㄀
开㐷⬴璕 景爠t = 1, · · · ,¡. 

⡩楩⸴⤠吲札㈧⤧⬲琭氠= 䩔㉧ⴴ✩✫㉴ⴱ䨬 景爠t = 1, · · · ,¡. 

⡩楩⸵⤠吲札㈧⤧⬲琠= 䩔㉧ⴴ⵹⬲搬 景爠琠= 1, · · ·, ¡. 

Remar k l. If 䘠楳 瑨攠杲潵瀠generated 批 瑨攠獩 摥 灡楲楮杳 潦 瑨攠灯汹杯渠
倠楮 䑥晩湩瑩潮 㔬 瑨敮 偯楮捡牥❳ 瑨敯牥洠笱㍽ 慳獥牴猠瑨慴 䘠楳 a 偵捨獩慮 
杲潵瀠睩瑨 倠 as a 晵湤慭敮瑡氠摯浡楮⸠ 周攠srn-face 唠1 䘠楳 a 捬潳敤 
剩敭慮渠獵牦慣攠潦 来湵猠朠睩瑨 慮ⴀ楮癯汵瑩潮 j, 楮摵捥搠批 J, 睩瑨 2g + 2-
4¡ > O 晩硥搠灯楮瑳⸠周攠晩硥搠灯楮瑳 潦 j are 瑨攠灲潪散瑩潮 潦 瑨攠癥牴捥猠
潦 倬 瑨攠潲楧楮 慮搠瑨攠浩摰潩湴猠潦 瑨攠獩 摥猠卩 景爠i = 1, · · · , ㉧ - 4¡. 䥮 
灡牴楣畬慲Ⱐ⡕ 1 䘬 j) 楳 a ꄭ桹灥牥汬楰瑩挠剩敭慮渠srn-face 潦 来湵猠朮 

Definition 6 {r-hyperelliptic ⡎ⰠM) hyperbolic polygons). 䱥琠倠扥 
a 獴物捴汹 捯湶數 㑧⵳楤敤 桹灥牢潬楣 灯汹杯渠, 朠2: 2, 楮 瑨攠畮楴 摩獣 售 
䱥琠丠慮搠䴠 扥 湯渭湥条瑩癥 楮瑥来牳 獡瑩獦祩湧 体⸠丬 䴠 匮 ¡. 周敮 倠楳 
捡汬敤 a ꄭ桹灥牥汬楰瑩挠⡎ⰠM) 桹灥牢潬楣 灯汹杯渠灲潶楤敤 瑬ㅥ 景汬潷楮朠
桯汤猺 

⡩⤠偩猠楮癡物慮琠畮摥爠瑨攠瑲慮獦潲浡瑩潮 䨨稩 = ⵺㬠

⡩椩 周攠sum 潦 慬氠楮瑥物潲 慮杬敳 潦 偩猠數慣瑬礠271"; 

⡩楩⤠If 獢 · · ·, 猀㐹 are 瑨攠獩摥猠潦 倬 楮 捯畮瑥牣汯捫睩獥 order, 瑨敮 瑨敲攠
數楳琠i1. · · ·, ÍN E {1, · · · ,¡}, j1, · · · ,jN E {1, · · ·, ¡}, 睨敲攠Ít 1- 椀㠠楦 
t 1- 猠慮搠楴 1- j 㠠楦 琠1- 猬 and 瑨敲攠數楳琠汩湥慲 晲慣瑩潮慬 瑲慮獦潲관
浡瑩潮猠T1, · · · , 吲㤀Ⱐ步数楮朠瑨攠畮楴 摩獣 唠楮癡物慮琬 獵捨 瑨慴㨠

⡩楩⹬⤠呩⡳椩 = 猻ꄀ㤀
㄀⭩锠景爠i = 1, · · ·, 2g- 4¡; 

⡩楩⸲⤠吲札㐧⤧⬲琭氠( 猲札㐀㜀⬴琭㌩ = 猺㮡开㐷⬀㐀琭氬 楦 琠摯敳 湯琠扥汯湧 瑯 
瑨攠獥琠{ i 1 , · · · , iN}; 
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(iii.3) T2g-4r+2t-l(S2g-4')'+4t-3) = s-¡g
1
_ 41+4t-l> ift belongs to the set 

{i1,···,iN}; 

(iii.4) T2g-4r+2t(s2g-4 1+4t-2) = s;¡g1
_ 41+4t> if t does not belong to the 

set 

{jl>···,JM}; 

(iii.5) T2g-4r+2t(s2g-4')'+4t-2) = s-¡g
1
_ 41+4t> if t belongs to the set 

{j1,···,jM}; 

(iii.6) T2g-2r+2t-l = JT2g-4r+2t-l J, for t = 1, · · ·, ¡. 

(iii.7 T2g-2r+2t = JT2g-4r+2t J, for t = 1, · · · ,¡. 

Remar k 2. Note that ¡-hyperelliptic (0, O) hyperbolic polygons are in fact 
¡-hyperelliptic hyperbolic polygon in Definition 5. H F is tbe group gener­
ated by the si de pairings of the polygon P in Definition 6, then by Poincare 's 
tbeorem {13} F is a F'uchsian group with P as fundamental domain. The 
surface U/ F is a closed Riemann surface of genus g witb an involution j, 
induced by J, witb 2g + 2- 4¡ >O fixed points. The fixed points of j are 
the projection of the vertices of P, tbe origin and the midpoints of the si des 
si, for i = 1, · · · , 2g - 4¡. 

We need sorne of the basics from quasiconformal maps. Tbe main too] 
is the Ahlfors-Bers tbeorem about solutions of tbe Beltrami equation and 
continuity of parameters. 

Definition 7 ( Quasiconformal homeomorphisms). Let J.L( z) be a mea­
surable function defined on the Riemann spbere e, witb 11 J.L lloo < 1, and 
f : e ____, e an orientaticm . preserving homeomorpbism of tbe Riemann 
spbere. We say tbat f is ¡.L-quasiconformal homeomorphism if it satisfies 
the following equation: 

8Jj8z=J.L(z)8f/8z, a.e. 

2. A uxiliary Results 

Theorem 1 {Ahlfors-Bers Theorem [2]). 

(1) H J.L(z) is a measurable function defined on tbe Riemann sphere e 
and it satisfies 11 J.L llcx, < 1, then tbere exists a unique quasi-conformal 
lwmeomorpbism Wl' of the Riemann sphere satisfying the equation 

awJl ;az = J.L(z) awJl ;az, 

with Wll(O) =O, Wll(1) = 1, and Wll(oo) = oo. 
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(2) If J-L(z) is 愠measurable function defined on the unit disc U, and 
11 f1 lloo < ㄬ then there exists 愠unique quasiconformal homeomor­
phism WJL of the unit disc U satisfying the equation 

awJL¡a:z = J-L(z) awJL;az, 

with WJL(O) 㵏Ⱐ圱䰨ㄩ 㴠ㄬ and WJL(i) 㴠椮 

(3) The solutions wtJL and WtJL in (1) and (2) vary continuously with the 
parameter tE 嬰Ⱐ1]. 

䱥浭愠 氮 Let G be 愠Kleinian group with invariant component !'::, of the 
regular region n of G. Suppose there exist f1 愠measurable function on !'::, 
and 昺 㘠 --t 㘮 an J-L--quasiconformal homeomorphism such that 

J-L(g(z))g'(z) 㴠J-L(z)g'(z), for all g E G, 

then f 漠g 漠¡-I is again 愠 fractional linear transformation if 㘮 has the 
property that every conforma] automorphism o[ it is 愠fractional linear 
transformation. 

周攠灲潯映潦 瑨楳 汥浭愠楳 愠摩牥捴 捯浰畴慴楯渠慮搠睥 摯 湯琠摯 楴 
桥牥⸠

䑥晩湩瑩潮 㠮 If 11 f1 lloo < ㄠin 䱥浭愠 1, then we cajl f1 愠Beltrami coef­
ficient for the group G in 

䱥琠1r : S --t S 扥 愠瑷漠獨敥瑥搠桯汯浯牰桩挠扲慮捨敤 捯癥物湧Ⱐ睨敲攠
S 慮搠S 慲攠捬潳敤 剩敭慮渠獵牦慣敳 潦 来湵猠g 慮搠¡, 牥獰散瑩癥汹⸠䱥琠qi, 

i = ㄬ ···,K, 扥 瑨攠扲慮捨敤 癡汵敳 潮 S 潦 瑨攠慢潶攠捯癥物湧⸠周攠
剩敭慮渭䡵牷楴稠景牭畬愠[4] 業灬楥猠瑨攠敱畡汩瑹 

g 㴠㈨ꄭㄩ + ㄠ+ 䬯㈠

䥮 灡牴楣畬慲Ⱐ睥 潢瑡楮 瑨慴 K 浵獴 扥 敶敮⸠䱥琠r¡ 1 ⰱⰠr¡ 1 ⰲⰠr¡2 , ㄀Ⱐ

犡㈬㈬ 뜠뜠뜬 r¡"f,I, 犡∯ⰲ㸠犡ㄬ 뜠뜠뜬 r¡K 扥 獩浰汥 汯潰猠潮 S 獡瑩獦祩湧 瑨攠景汬潷楮朠
灲潰敲瑩敳㨠

(1) 犡䤬䤬犡䤬㈬犡㈬䤬犡㈬㈬랷뜬犡∧ⱬ㹲ꄢ㄀ⰲ 慲攠桯浯汯杩捡汬礠楮摥灥湤敮琠汯潰猠
潮 S· , 

⠲⤠r¡i 扯畮摳 愠獭慬氠摩獣 慲潵湤 qi, 景爠i = ㄬ ···,K; 
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(4) T/i n T/k,t = cp, for i = 1, ···,K; 欽 1, · · ·, ¡; 琠= 1, 2; 

(5) T/k,I nr¡k,2 = {xk}, for 欽 1, · · · ,¡; and 

( 6) T/k,t n T/s,l = cp, if k i= S. 

Consider a point xo in §•, where 

§• =S- {r¡k,t,T/i: k= 1, ... ⲡ㭴 = 1, 2;i = 1, ... ,K}, 

and consider simple disjoint path o:k,t, o:i joining T/k,t and T/i to xo, respec­
tively. 

The loops o:k,tT/k,to:¡;), o:ir¡io:¡ 1 forma basis for the fundamental group of 

s':'.o=s-{ ql' ... 'qK }, based at Xo. Consider the two sheeted unbranched 
holomorphic covering 1r0 : SO ---+ So, where S0 is the lifting under 7f of 
s':'.o. Since the loops o:ir¡io:¡ 1 lift to a path, the above covering is totally 
determined by how the loops �o�:�k�,�t�T�/�k�,�t�o�:�J�;�,�~� lift. We can see that o:k,tT/k,to:J;,l 

lifts to a loop if and only if T}k,t lifts to a loop. So, the covering 1r : S ---+ S 
is totally determined by knowing how the loops T/k,t lift to S. 

We define the symbol ( n1,1, n1,2, n2,1, n2,2, · · ·, n1 ,1, n1 ,2) associated to 
the above loops T/1,1, T/1,2, T/2,1, T/2,2, · · · ,r¡1 ,1, r¡1 ,2, where nk,t E {0, 1}. This 
symbol has the following meaning 

if nk,t lifts to a loop 
otherwise 

Lemma 2. Let S, S and 1r as above. Then we can find simple loops r¡1,1, 
T/1,2, T/2,1, T/2,2, · · · ,r¡1 ,1, r¡1 ,2, r¡1, ·· · ,r¡K, satisfying the conditions ⠱⤠to ⠶⤠
above , with associated symbol 

⡩⤠( 1 , O, · · · , O), if 䬠 = O; 

⡩椩 (0, ... '0), if /{ > o. 

Proof: Start with a set of loops on 匬 T/1,1, T/1,2, T/2,1, T/2,2,···,r¡1 ,1, 
r¡,,2, r¡1, · · ·, T/K, satisfying the conditions (1) to (6) and associated symbol 

If we look at the pair (ni,l, ni,2), for each i = 1, · · ·, ¡, we can see that 
the possibilities for this pair are the following: 
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(1) (ni,I, ni,2) = (0, O); 

(2) (ni,I, ni,2) = (1, O); 

(3) (ni,l,ni,2) = (0, 1); 

(4) (ni,l,ni ,2) = (1 , 1). 

In case (3), we change our loops TJi ,b TJi,2 by T/i ,2• �r�¡�i�~�l�,� respectively, as 
shown in figure l. Now, we are in the case (2). 

In case ( 4), we change our loops TJi, 1, TJi, 2 by simple loops freely horno­
tapie to T)i,l, T)i,2T/i,l, respectively, as shown in figure 2. Now, we are in case 
(2). 

After all these changes and sorne permutations, we obtain a set of simple 
loops satisfying the conditions (1) to (6) and associated symbol (1, O, 1, O, 
... , 1, o, o, o, . .. , o, 0). 

Now, we make more changes of the following type: loo k at TJi,l, T/i,2, 

T/i+l,l, T/i+1,2 with associated symbol (1,0,1,0). In thls case, we change 
our loops TJi,I, T)i,2, TJi+l,b TJi+1,2 by simple loops free homotopics to T)i,l, 

T)i,2T/i+1,2, T)i,l r¡i+\,1 and �r�¡�i�~�\�_ �2 �,� respectively, as shown in figure 3. 
We continue with these changes to obtain a set of simple loops satisfying 

the conditions (1) to (6) and associated symbol (1, O, O, ···, O, 0). 
If K= O, we are done. If K -:f. O, then we change T)l ,l and T/1 by simple 

loops freely homotopic to T/1 ,1 T/1 and T/1, respectively, as shown in figure 4, 
and we get the symbol (0, ·· ·, O) as desired. 
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Lemma 3. Let S and S' be two closed Riemann surfaces of genus "(, with 
K distinguished points each one, say P1, · · · , p K on S and q1, · · · , qK on 
S'. Let T]1,1, r/1,2, T)2,1, T)2,2,···,r)¡,1, T)¡,2, T)1,···,T)K, and fh,b fh,2, fJ2,1, 

f-J"l,"l, ... , {31 ,1 , {31,"1., {31 , ... , f3K be simple closed loops on S and S', respec­
tively, satisfying the cunditions (1) to (6) as befare. Then there exists a 
quasiconformal diffeomorphism f : S -+ S', with the following properties: 

(i) J(r]i,j) �~� f3i,j, for i = 1, · · ·, "(; and j = 1, 2; 

(ii) f(rJ 1 ) �~� {31 , for t = 1, ... , K; 

(iii) f(p1) = q1, for l = 1, ... , K. 

�c�~� means freely humotupic (isotopic)). 

Proof : By the topological classification of closed orientable surfaces, 
we can find g : S -+ S' an orientation preserving homeomorphism, such 
that 

(i) g(rJi,j) = f"li,j, for í = 1, · · ·, "(; and j = 1, 2; 

(ii) g(rlt) = {31 , for t = 1, ... , K; 

(iii) g(p1) = q1, for l = 1, ... , K. 
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卩湣攠S 楳 捯浰慣琬 睥 捡渠慰灲潡捨 g 批 䌀〰ⵤ楦晥潭潲灨楳浳Ⱐ睨楣栠
瑵牮 瑯 扥 煵慳楣潮景牭慬 浡灳⸠卩湣攬 瑷漠桯浥潭潲灨楳浳 睨楣栠慲攠
≮敡爢 敡捨 潴桥爠慲攠湥捥獳慲楬礠桯浯瑯灩挬 睥 慲攠摯湥⸠

Remark 3. 䱥琠7f : S ⴭ⬠S be 愠two sheeted holomorphic branched 捯癥犭
ing, 慮搠let 犡ㄬㄬ 犡ㄬ㈬ 犡㈬ㄬ 犡㈬㈬ 뜠뜠뜠Ⱐ犡㜀ⰱⰠ犡㜀ⰲⰠ犡ㄬ 뜠뜠뜠Ⱐr¡K be simple loops on 
S satisfying conditions (1) 瑯 (6). If we 慳獵浥 these loops 瑯 be smooth 
loops, then in 䱥浭愠 3 we can 慳獵浥 敱畡汩瑹 instead of homotopy. 䘧牯洠
now on, 潵爠set of loops will be assumed to be smooth. 

Proposition l. 䱥琠K be 愠group of fractionallinear transf01mations that 
contains 愠Schottky group 慳 subgroup of finite index. Let h be 慮礠elliptic 
element of K 慮搠let x 慮搠y be its fixed points. Then either x 慮搠y 慲攠
in the region of discontinuity of K 潲 there is 愠loxodromic element g in G 
commuting with h. 

Proof 㨠If K 楳 瑯牳楯渠晲敥Ⱐ瑨敮 瑨敲攠楳 湯瑨楮朠瑯 捨散欮 䱥琠畳 
慳獵牮攠K 桡猠瑯牳楯渠慮搠汥琠h 扥 慮礠敬汩灴楣 敬敭敮琠潦 K 睩瑨 x 慮搠y 
慳 晩硥搠灯楮瑳⸠If 扯瑨 灯楮瑳 慲攠楮 瑨攠牥杩潮 潦 摩獣潮瑩湵楴礠潦 K, 睥 
慲攠摯湥⸠䅳獵牮攠y 楳 愠汩浩琠灯楮琠潦 瑨攠杲潵瀠K 慮搠汥琠j 扥 愠灲業楴楶攠
敬汩灴楣 敬敭敮琠楮 K 晩硩湧 y. 
周攠灯楮琠x 楳 愠晩硥搠灯楮琠潦紮 䥮 晡捴Ⱐ楦 j(x) -=f. x, 瑨敮 瑨攠捯浭疭

瑡瑯爠[j, 桝 = jhj-Ih- 1 楳 愠灡牡扯汩挠敬敭敮琠楮 K 睩瑨 y 慳 晩硥搠灯楮琮 
周楳 楳 愠捯湴牡摩捴楯渠瑯 瑨攠晡捴 周慴 K 桡猠湯 灡牡⹢潬楣 敬敭敮瑳⸠

If g(y) = y, 景爠獯牮攠g 楮 K, 瑨敮 敩瑨敲 g 楳 捯湪畧慴攠楮 K 瑯 愠灯睥爠
潦 j 潲 g 楳 愠汯硯摲潭楣 敬敭敮琠睩瑨 x 慮搠y 慳 晩硥搠灯楮瑳⸠䥮 晡捴Ⱐ汥琠
g 楮 K 扥 獵捨 瑨慴 g(y) =y. 周攠潮汹 灯獳楢楬楴礠楳 景爠g 瑯 扥 敬汩灴楣 潲 
汯硯摲潭楣⸠䉹 潵爠慳獵浰瑩潮 潮 y, 睥 潢瑡楮 瑨慴 湥捥獳慲楬礠g(x) 㴠x; 
潴桥牷楳攠孧Ⱐj] 睩汬 扥 愠灡牡扯汩挠敬敭敮琠潦 K 晩硩湧 瑨攠灯楮琠y. 䅴 瑨楳 
灯楮琬 g 楳 敩瑨敲 愠灯睥爠潦 j, 潲 愠汯硯摲潭楣 敬敭敮琠睩瑨 x 慮搠y 慳 
晩硥搠灯楮瑳⸠
䱥琠L 扥 瑨攠来潤敳楣 楮 H 3 睩瑨 x 慮搠y 慳 敮搠灯楮瑳⸠乥捥獳慲楬礬 

瑨攠瑲慮獦潲浡瑩潮 j 慣瑳 慳 瑨攠楤敮瑩瑹 潮 L. 
䱥琠P 扥 愠捯湶數 晵湤慭敮瑡氠灯汹桥摲潮 景爠K. 卩湣攠y 楳 愠汩浩琠

灯楮琬 睨楣栠楳 湯琠愠灡牡扯汩挠晩硥搠灯楮琬 楴 浵獴 扥 愠灯楮琠畦 慰灲潸榭
浡瑩潮 景爠K ⡳敥 灡来 ㄲ㠠楮 嬱㍝⤮ 周楳 業灬楥猠瑨慴 y 捡湮潴 扥 楮 瑨攠
捬潳畲攠潦 P ⡳敥 灡来 ㄲ㈠楮 嬱㍝⤮ 
坥 捡渠晩湤 愠獥煵敮捥 潦 灯楮瑳 Yn E L, 捯湶敲杩湧 瑯 y, 慬氠潦 瑨敭 

湯渭敱畩癡汥湴 灯楮瑳 畮摥爠K, 慮搠愠獥煵敮捥 9n E K, 慬氠潦 瑨敭 摩暭
晥牥湴Ⱐ獵捨 瑨慴 9n(Yn) 㴠Zn E cl(P), 睨敲攠cl(P) 摥湯瑥猠瑨攠䕵捬楤敡渠
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closure of P. Consider a subsequence such that Zn converges, say to z, 
Yn(Y) converges, say to u, and Yn(x) converges, say to t. In this way, the 
points u and t are limit points for the group K. Since Zn E cl(P), we have 
zE cl(P). There are two possibilities for the point z, that is, either z is in 
the region of discontinuity of K, or z is a parabolic fixed point ( see page 
128 in [13]). Since K does not have parabolic elements, z belongs to the 
region of discontinuity of K. It is clear that the points Zn are elliptic fixed 
points, in fact Zn=Yn ojo g;;- 1 (Zn)· This implies that Zn belongs to sorne 
edge of P. Since P has only a finite number of edges, we may assume al! 
the points Zn to be on the same edge of P. Let M be the geodesic in H 3 

containing that edge. In particular, z belongs to the closure of M. Let 
us consider the geodesics Ln = Yn(L) through Zn, and having end points 
Yn(x) and Yn(y). Since we have supposed Yn(x) and Yn(Y) to converge to t 
and u, respectively, the sequence Ln converges either to a point or to the 
geodesic with end points u and t. If Ln converges toa point, then we nec­
essarily have u= t = z. This is a contradiction to the fact that z is regular 
point and u is a limit point. The other possibility is that Ln converges to 
a geodesic 1, with end points u and t. In this case, since the end points of 
1 are limit points and z is a regular point, we must have z in 1 n H 3 . Any 
neighborhood of z contains Zn, for n suffi.ciently large. Sin ce z is a regular 
point, there exists a neighborhood of z which is precisely invariant by the 
elements of K fixing z, which is known to be finite. We can then assume 
without lost of generality that Yn o j o g;;- 1 ( z) = z, and Yn o j o g;;- 1 = h. In 

h d ( -1 ) . ( -1 ) -1 . s· . -1 ( ) ot er wor s, Y m o Yn o ] o Y m o Yn = ] . 1nce Yn o J o Yn Zn = Zn, 
Yn ojo g;;- 1(z) = z, and Zn 1- z, for all n, we have Yn ojo g;;- 1(w) = w, for 
all w in 1· In particular, Yn ojo g;;- 1(t) = t and Yn ojo g;;- 1(u) =u. It 
follows that {gn(x),gn(y)} = {t,u}. The facts that t 1- u and that Yn(x) 
converges to t imply that Yn(x) = t and Yn(Y) =u, for n suffi.ciently large. 
We may assume it holds for every n. The last observation implies that 
�g�~ �1� o Yn(x) = x and �g�~ �1� o Yn(Y) = y, for al! n, m. The transformations 
g;;1

1 o Yn also keep L invariant, and for n 1- m this transformation cannot 
be the identity on L. This implies that �g �7�~ �1� o Yn is a loxodromic element of 
K with x and y as fixed points. Since G has finite index in K, the result 
follows. 

A consequence of Proposition 1 is the following. Let K be a group 
of fractional linear transformations containing a Schottky group G as a 
subgroup of index two. Let n be the region of discontinuity of G (K). Let 
us denote by S= 0/G, X= 0/ K, the quotient Riemann surfaces obtained 
by the action of G and K, respectively, and by 1r : n ---+ S, 1r1 : S ---+ X the 
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respective holomorphic (branched) coverings. On S there exists a conforma! 
involution j such that: 

(i) x = s¡ < j >; 

(ii) K=< J, G >, where J is a lifting of j to !1; 

(iii) The branching of 1r1 is exactly at the fixed points of j. 

Proposition 1 asserts that there is a natural pairing of the fixed points 
of j (compare to Condition (A) in [9] for general groups of conforma! au­
tomorphisms). This pairing is given as follows: Let p be any fixed point of 
j and let P be any lifting of p. Let T be the unique lifting of j fixing P. 
Denote by Q the other fixed point of T. Since P is a point in the region 
of discontinuity of K, Q is also a point in the region of discontimúty of K. 
The point Q projects on S to a fixed point q of j. If q = p, then there is 
an element g in G with g(P) = Q. Since G has no elliptic elements, g(Q) 
is different from P; otherwise, g has order two. Now the commutator of T 
and g oTo g-1 is a parabolic element in K fixing Q, a contradiction. So 
we must have p # q. Similar arguments show q is uniquely determined by 
p. In that way we obtain a pairing of the fixed points of j and at the same 
time a pairing of the branch values of 7fJ. 

The above shows that if l is any simple loop on X bounding a topological 
disc R, where R contains all the branch values of 1r1, then l must lift to a 
loop on O(G). Clearly, llifts to two disjoint simple loo.ps, l 1 and l2 , on 8. 
We will use this information to prove the second part of Theorem B. 

Let S be a closed Riemann surface of genus g 2 2, and let w¡, w2, · · ·, w9 
be a basis for the space H 1•0 (S, C) of holomorphic 1-forms on S. As a 
consequence of the Riemann-Roch Theorem [4], for any point pon S there 
exists sorne Wi which is non-zero at p. Let us consider the canonical map 

<p:S-+CP9-1, 

where <p(p) is given by ( w1 (p), w2 (p), · · · , w 9 (p)), in homogeneous coordi­
na tes. Let z be any local chart on S, vanishing at p, then we can write the 
differential wi, in this chart, as fi(z)dz, where fi(z) is an holomorphic map 
in sorne neighborhood of the origin. In this local chart <p is given by 

<p(z) = (h(z), .. ·, f9 (z)). 

If we change our local chart, we do not change our point in CP 9 -1, as 
can be easily computed. Moreover, this map is analytic (see [4]). 
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Theorem 2 ([4]). The lwlornor,'Jhic n:;a¡; 1.(' S -t CP �;�¡�~ �1� is one-to one 
if S is a �n�o�n�-�.�~�.�~�y�p�e�r�e�1�1�i�p�t�i�·�.�:� RJemanr1 sw·í&.c2. ;<S) is an �i�r�r�e�d�'�_�i�~�i�b�l�c�,� non­
singular algebraic curve o: de_;;·ec. 2g - 2. 

Lemma 4. Let S be a, ;1yperellipt.ic RierJ.a!1n surface of genus :;¡ ? 2, wiíh 
hyperelliptic �i�n�>�.�~�o�l�u�t�i�o�n� h : S --• S. If n : S ---> C is a degree tvm holomor­
phic (branchcd) covering anr.l Á is a group o! conFxmal automorpllisms of 
S, then 

(í) A/ < h > is isomorphic to H, J h belaPgs l;o A; ')tl:re!--;vise, 

(ii) A is isomurphic w H, where H is a finite group of fractiona1 �l�~�n�e�a�1� 

transf01mations, fixing the set {PI, · · · , P2g+2}, obtained as t.be prr>­
jection of the fixed points of h (the Weierstrass points of S; under 
?T. 

Proof : Since the hyperelliptic involution 1s unique, we can áefine a 
homomorphism 

<I>: A -t Aut(é), 

as follow: 
Since h is in the center of the group of conformal automorphisms of 

S, for g in A we can find a fractional linear transformation <I>(g) such 
that Jr o g = <I>(g) o Jr. The transformation <I>(g) is unique and satisfies 
<I>(g o J) = <I> (g) o <I>(J), for f and g in A. Moreover, the kernel of <I> is given 
by 

{ 
< h > 

K ernel<I> = < 1 > 

3. Main Theorems 

if h is in A, 
otherwise 

In this section we show sorne different representations of ¡-hyperelliptic 
lliemann surfaces. The proof of the following theorems will be given in the 
next sections. 

Theorem A . Let (S, j) be a ¡-hyperelliptic lliemann smface of genus 
g? 2. 

(í) If j has 110 fi.:-..ed puints, that Í6, g = 2¡- 1, then there exist a pair of 
di¡;juint simple loops, ¡;ay a and fj, satisfying: 
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(i.l) Neither a nor {3 divide S; 

(i.2) j(a) = {3; 
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(i.3) a U {3 divides S into two surfaces with boundazy, say SI and S2, 

each one of genus 1 - 1 with two deleted discs; 

(i.4) j(SI) = S2. 

(ii) H j has fixed points, say PI,··· ,P2N (N = g- 2r + 1), then there 
exist disjoint simple loops, say ai, a2, · · · , a N, satisfying: 

(ii.l) Di contains exactly two fixed points of j; 

(ii.2) j(ai) = a¡I; 

(ii.3) S-U{ Dij; j = 1, .. ·, l} is connected, Íj E {1, .. ·,N}, ifl < N; 

(ii.4) S - U{ ai; i = 1, ···,N} has two components, SI and S2, each 
one a surface of genus 'Y with N deleted discs; 

(ii.5) j(SI) = S2. 

Theorem B . Let (S,j) be a 1-hyperelliptic Riemann surface of genus 
g 2:: 2. Then there exists a Schottky uniformizatioz1 (D, G, 1r : n _____. S) of 
S reflecting the �~�-�h�y�p�e�r�e�l�l�i�p�t�i�c�i�t�y� of S, that is, a 1-hyperelliptic Schottky 
uniformization of (S, j). Moreover, if j has fixed points, then there exist free 
generators for G, say AI, · · ·, A9 , anda lifting J of j of arder two such that 
the fixed points of j are the projections of the fixed points of the fractional 
linear transformations of arder two J and Jo Ai, for i = 2r + 1, · · ·, g. 

Remark 4. The B.rst part ofTheorem B, forr=O, that is, the hyperelliptic 
case can also be found in the paper of L. Keen [11}. We can also construct 
all the 1-hyperelliptic Schottky groups, up to conjugation. This is done 
after the proof of Theorem B in the next section. 

Corollary l. H (S, j) is a 2-hyperelliptic Riemann smface of genus three, 
then S is necessarily hyperelliptic. Moreover, the hyperelliptic involution 
on S is the lifting of the hyperelliptic involution of the quotient Riemann 
surface of genus two. 

Remark 5. There are many different proofs of Corollary 1 in the litera­
ture. We give a different one. 
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Theorem C . Let ( 8, j) be a ¡-byperelliptic Riemann surface of genus 
g 2 2. Assume j acts with flxed points on 8. Tben tbere tbere exists a 
¡-byperelliptic polygon P with associated Puchsian group F, uniformizing 
8, such that J(z) = -z is a lifting ofthe involution j to tbe unit disc U and 
J(P) =P. Moreover, tbe flxed points of j are represented in the polygon 
P by tbe origin (tbe center of P ), tbe vertices of P and tbe midpoints o[ 
tbe sides s1, · · · ,s2g-4"f (as in deflnition 5). 

Remark 6. The case¡ = O was all·eady thought of by E. Vv'hittaker {16} 
and solved by D. Gallo [5}. Tbis case can be also obtained as an easy 
application of F'ricke polygons. 

Theorem D. Let (8,j) be a ¡-byperelliptic_Riemann surface of genus 
g 2 2, and assume j to bave flxed points. Let 8 be tbe quotient Riemann 
surface of genus ¡ obtaíned by the action of j on 8. 

(i) If O :::; N, M :::; ¡ al'e flxed integers, then there exists a ¡-byperelliptic 
(N, M) byperbolic polygon P with associated Fucbsian group F, uni­
formizing S, such that J(z) = -z is a lifting of j to the unit disc U 
and J(P) = P. Moreover, the ii.:l(ed points of j are represented in tbe 
polygon P by the origin (tl1e center of P ), the vertices of P and the 
midpoints of the sides s1, · · ·, S2g-4T 

(ii) Let R be any ¡-byperelliptic Riemann sw-face of the same genus g 
as S, and Jet r : R ----+ R be a ¡-byperelliptic involution on R (bence 
with iixed points). Suppose !he quotient Riemann surface R/ < r > 
is conf01mally equivalent to 8 respecting tbe branch points. Let P be 
a ¡-hyperelliptic hyperbolic polygon for 8 with side pairing transfor­
matíons T1, T2 , · · ·, T29. Tben tbere exist integers O :::; N, M :::; ¡ and 
a set of índices B = { i 1 , · · . , iN , j 1, ... , j M} contained in { 1, ... , ¡}, 
sucl1 tbat Ík f. it ( respectively j¡ f. Jh), if k f. t (respectively 
l f. h), such tl1at tl1e polygon P witb side pairing transformations 
L1, L2, · · ·, L29 , is a ¡-byperelliptic (N, M) hyperbolic polygon for 
R, wl1ere 

if i E {1, · · ·, 2g-4¡} or i does not belong to B; 
if belongs to the setB 

In tbis case J(z) = -z is a common lifting o[ j and r to tbe unit disc 
U. 
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Corollary 2. Let (S, j) be a ¡-hyperelliptic Riemann surface o[ genus g :2: 
2, and assume j : S---+ S acts with fixed points. Let F be any torsion-free 
group uniformizing S, and Jet xo be a lifting of any fixed point of j to the 
unit disc U. If J is the lifting of j to U with xo as fixed point, and N, M are 
integers, O S N, M S ¡, then there exists a 4g-sided hyperbolic polygon P 
satisfying all the conditions of a ¡-hyperelliptic (N, M) hyperbolic polygon 
(Definition 6) except the invariance under the transformation z ---+ -z which 
is replaced by J -invariance. The polygon Pis a fundamental domain for 
F, and the fixed points of j are represented by x0 (the center of P ), the 
vertí ces of P and by the midpoints of so me 2g - 4¡ si des of P. 

Theorem E. Algebraic Characterization Non-Hyperelliptic). Let (S,j) 
be a ¡-hyperelliptic Riemann surface of genus g :2: 2 such that, S is noil­
hyperelliptic. Then S can be realized as a non-singular, irreducible alge­
braic curve e of degree 2g-2 in CP g-1, invariant under J E Aut(CP g-1}, 
such that j corresponds to the restriction of J to e, witll 

J = ( ¡"! o ) 
O -I(g-"f) 

where In means the identity matrix o[ rank n. 

Theorem F . (Algebraic Characterization Non-Hyperelliptic). Let (S, j) 
be a ¡-hyperelliptic Riemann surface of genus g 2 2, such that S' is lly­
perelliptic and j is different from the l1yperelliptic involution. Tl1en S 
corresponds to the Riemann surface associated to one of the following hy­
perelliptic curves: 

(1) W 2 = Z(Z2 - l)(Z 2 - al)··· (Z2 - ag- 1); or 

(2) W 2 = (Z2 - l)(Z 2 - b1) · · · (Z2 - bg), where ai =/= aj ifi =/= j, bt =/= b8 
if s =/= t, and ai, bj =/=O, 1, oo. 

The ¡-hyperelliptic involution j corresponds to the lifting of J(z) = -z 
vi a the natural projection 1r : S---+ C given by the action of the hyperelliptic 
involution. 

4. Proof of Theorems A and B 

Proof of Theorem A. Let us apply Lemrna 2 to the two sheeted holo­
morphic branched covering 

1f : s---+ s¡ < j > . 
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Case l. The involution j acts freely 

Let 1JI,I, 1)1,2, · · ·, 1)"1,1, r¡"/,2 be simple loops, as given in Lemma 2, with 
associated symbol (1, O,···, 0). Now, proceed to cut the surface S/ < j > 
along r¡1,2 to obtain a surface of genus r- 1 with two deleted discs. The 
boundary is given by r¡t 2 and �r�¡�~ �2 �.� Consider two copies of such surface and 

proceed to glue them by gluing r¡t2 (respectively �r�¡�~ �2 �)� of one of them to 

�r�¡�~ �2� (respectively r¡t2) of the other. This gives an explicit construction of 
the surface S, and the action of j is given by interchange of the two glued 
surfaces above. 

Case 2. The involution j has fixed points 

Let 1JI,b 1)1,2, · · · ,r¡"/,I, 1)"1,2, 1JI, 1)2, · · · ,1J2N be simple loops, as given by 
Lemma 2, with associated symbol (0, · · ·, 0). Consider simple paths (all of 
them disjoint) a1, a2, · · · , a N, satisfying the following properties: 

(i) ai cunnects two different branch points; 

(iii) ai n 1Jk,t = cp, for all i, k, t. 

Now, proceed to cut S/ < j > along the paths a1, a2, · · ·, aN to get 
a surface, say S1, with boundary, say ai, at, · · · , a t. Consider another 
cupy, say s2, and denote its boundary by a}' a2' ... 'af,¡, and glue them 
together by gluing at toa¡ in a such way that the points where they are 
glue corresponds to the same point in sj < j >. In this way we obtain 
an explicit construction of the surface S, and the action of j is given by 
interchange of the two glued surfaces above. 

Proof of Theorem B. Let S be a closed lliemann surface of genus g 
and let j : S ___. S be a conformal involution with 2g + 2 - 4r fixed points. 
Denote by 1r : S ___. S/ H the natural holomorphic (branched) covering 
induced by the action of the cyclic group H of order two generated by the 
transformation j. 

Assume first j acts freely, that is, g = 21 - l. In this case 1r : S ___. S j H 
is unbranched and the genus of SjH, that is /, is greater or equal to l. 
Consider on S/ H a simple loop a1 given by the projection of the loops 
a (/3) of Theorem A. This loop is a non-dividing simple loop. Complete 
to a set of r homologically independent disjoint simple loops a1, · · . , a"' 
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on S/ H. Now, consider the loops obtained by the liftings of these loops 
to S. If we remove the loop {3 from this family, then we obtain a set of g 
homologically independent disjoint simple loops, r¡1 =o:,···, eta9 , such that 

7r(T/2t) = 7r(T/2l+I) = O:t+l, for l = 1, · · ·, 1- l. This family of loops define a 
Schottky uniformization (0, G, 1r :O___. S) of S (Retrosection theorem), for 
which the involution j lifts. It is easy to see that the Schottky group G has 
free generators A¡,···, A 9 , such that A¡ is a lifting of j and A1 oA 21 oA! 1 = 

A21+1, for l = 1, · · · ,1-1. In figure 5(a) it is shown the case g = 3,1 = 2. 
Observe that we also can construct another Schottky uniformizations by 
consider a set of homologically independent simple loops 81, · · · , 81 on S/ H 
with the property that Ój is disjoint from the loop o:1 above, for j = 2, · · ·, 1, 
and Ó¡ intersects o:¡ transversaly at exactly one point. Now, the liftings of 
the loops 8i, i = 1, · · ·, 1, are exactly g homologically independent disjoint 
simple loops {3j, j = 1, · · · , g, with the property that 1r (f32t) = 1r (f32t+ 1) = 

Ót+l, for l = 1, · · · ,1- 1, and j({3¡) = {3¡. The loops {3j, j = 1, · · · ,g, 
define a Schottky uniformization (0, G, 1r : O -----> S) of S, for which the 
involution j lifts. In this case we can find a lifting J of arder two and a 
set of free generators for G, say B 1 , · · · , B9 , satisfying J o B 1 = B 1 o J, 
Jo B21 o J = B2t+l, for l = 1, · · · ,1- l. In figure 5(b) it can be seen the 
case g = 3, 1 = 2. 

Assume the involution j has fixed points. Denote by Pi, i = 1, · · ·, 2g + 
2- 41, the fixed points of j. Set Pi= 1r(pi) and H =< j >. By Theorem 
A, we can find, on S/ H, a set of 1 homologically independent disjoint 
simple loops, o:¡, · · · , o:1 , all of them disjoint from the points Pj, for all j, 
such that they lift to loops on S vi a the branched covering 1r : S -----> S/ H. 
Now consider disjoint simple paths, also disjoint from the above loops, 
say {3¡,···,{39+1-2¡, such that {3j connects the points P2j- 1 and P2j, for 
j = 1, · · · , g + 1 - 2/ gamma. If we consider the liftings of the loops o:i and 
the paths f3], for i = 1, · · · ,1 andj = 1, · · · ,g-21, we obtain on S a set of g 
homologically independent disjoint simple loops, o:i,k, f3j,l, for i = 1, · · · , 1, 
k = 1, 2 and j = 1, · · ·, g- 21, such that 1r( o:i,l) = 1r(o:i,2) and j({3j,l) = {3j,l· 
This set of loops defines a Schottky uniformization (0, G, 1r :O___. S) of S, 
for which j lifts. Moreover, there is a lifting J of arder two and a set of free 

generators A¡,···, A21 , B¡, · · ·, Bg-2¡, for G such that Jo A2i-l o J = A2i 

and Jo Bjo = Bj\ for i = 1, · · · ,1 and j = 1, · · · ,g- 21. In figure 5(c) 
can be seen the case g = 2, 1 = l. From our construction it is easy to see 
our claim on the fixed points of j. 
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Proof of Corollary 1 By Theorem B, we can uniformize S by a Schot­
tky group G with generators A1, A2 and A3 satisfying the following prop­
erties: 

(i) Jo A 1 o J = A2, 

(ii) Jo A3 o J = A3, 

where J is a fractional linear transformation of order two. The quotient 
R.iemann surface of genus two, obtained by the action of the 2-hyperelliptic 
involution, is uniformized by the group K=< G, J >. 
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Normalize the groups in such a way that the fixed points of A3 are 1 
and -1, and the fixed points of A1 are r and -r, for sorne r. To see this 
normalization, consider the Lie bracket of A3 and A1 , that is, E= A3oA1 -

Al o A3. Simple computations show that E 2 = I andE o Ai o E= A¡ 1 , 

for i = 1, 3. Now, normalize such that the fixed points of E are O and 
oo. In this case E(z) = -z, the fixed points of A3 are p and -p, and 
the fixed points of A1 are q and -q, for sorne p and q. Now conjugate 
with the transformation T(z) = zjp to obtain the desired normalization. 
Since the fixed points of J are the same as for A3, J becomes under this 
normalization the transformation J(z) = 1/ z. 

The general form of a fractionallinear transformation with t and -t as 
fixed points is given by the matrix 

where U2 = u2
- 4, and u2 is the square of the trace of such an element. 

Since the fixed points of A2 are 1/r and -1/r, we have: 

112 ( X -Xr) 
-Xjr x ' 

1/2 ( -~r -~/r ) ' 

A3 = 1/2 ( _Yy -YY ) , 

where X 2 = x2 - 4 and Y2 = y2 - 4. 
This is an hyperelliptic Schottky group [11], with the hyperelliptic in­

volution represented by E(z) = -z. 
Observe that E= Ai o Aj- Ajo Ai, for i, j E {1, 2, 3}, i -:f. j. Since the 

group < G, J >=< A1, A3, J > uniformizes the quotient Riemann surface 
of genus two, is easy to see that E is a lifting of the hyperelliptic involution 
of such a surface. This fact implies the second part of the corollary. 

5. Explicit Construction of 1-Hyperelliptic Schottky Groups 

Let (0, G, 7T : O -o S) be a 1-hyperelliptic Schottky uniformization of 
the 1-hyperelliptic Riemann surface (S,j) of genus g. It is a well known 
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fact that the conforma! automorplúsms of the region of discontinuity of a 
Schottky group are linear fractional transformations [1]. Denote by K the 
group obtained by lifting the cyclic group H generated by j. Then G is 
a subgroup of K of index two and, in particular, it follows that K has no 
parabolic elements, is geometrically finite (so finitely generated) function 
group, and has the same region of discontinuity as G. 

Denote by X the surface S j H and by 1r1 : S -+ X the natural two 
sheeted covering induced by H. We consider two cases, that is, when the 
involution j either has fixed points or not. 

5.1. The involution j has fixed points 

By Theorem A, we can choose a simple loop l on X bounding a topological 
disc R containing all the branch values of 1r1, satisfying the following. 

(1) The loop llifts to two disjoint simple loops l1 and l2 on S; 

(2) S- {h, l2} = S1 U S2 U S3, where j(SI) = S2 and j(S3) = S3. 

As a consequence of Proposition 1, we have that the loop l lifts to a 
simple loop on n. Fix one connected component l of (1r1 o 7r)- 1(l), and 
denote by Y the complement of the topological disc R, that is, X = R U Y 
and R n Y= l. Observe that the liftings of Y on S are S1 and S2, and the 
lifting of R is S3 . Let 0 1 and 02 be connected components of (1r11rt 1(Y) 
and (7ri7r)- 1(R), respectively, with las common boundary. Denote by G1 
and G2 the stabilizers of 01 and 02 in K, respective! y. One can see that K is 
necessarily the free product of G1 and G2 (as in Klein-Maskit Combination 
theorem I in [13]). Since 1r1 : S1 -+ Y is one-to-one, we have that G1 is a 
subgroup of G. In particular, G1 is a Schottky group of genus ¡. Let Ak, 
k= 1, · · ·, ¡, be free-generators for G1 and choose a standard fundamental 
domain for it, inside nl, with respect to these generators. 

Proposition 1 gives us a natural pairing of the branch values of 1r1, as 
we observed long before. We may assume that the branch values of 1r1 
are P2i-1, P2i, for i = 1, · · ·, g + 1 - 2¡, where P2i-l is paired to P2i· 
Let o:i, i = 1, · · · , g + 1 - 2¡, be disjoint simple paths contained in R 
such that, o:i connects P2i-l and P2i· The liftings of o:i to the region n 
are disjoint simple loops, each one invariant under an elliptic element of 
order two which interchange the two topological discs bounded by such a 
loop. We can choose exactly one loop for each i in n2 such that l and 
these loops bounds a common region of connectivity g + 2 - 2¡. Denote 
such loops by C8 and by J 8 the elliptic element of order two as above, 
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s = 1, · · ·, g + 1-21. The group G2 is a free product of the cyclic groups of 
arder two generated by those elliptic transformations. In this way we obtain 
an explicit construction of K (see figure 6 for g = 2, 1 = 1). Algebraically, 
K has the presentation 

where Ai belongs to G. Since G has index two in K and Ji does not 
belong to G (since G is torsion free), we have that JI o J8 belongs to G, 
for s = 2, · · ·, g + 1 - 21. The group G is generated by Ai, JI o Ai o JI 
and JI o J8 , i = 1, · · ·, 1 and s = 2, · · ·, g + 1 - 21. These are in fact free 
generators and there is a standard fundamental domain for this generators 
invariant under JI as it is shown in figure 7. 

5.2. The involution j has no fixed points 

We have two possibilities for K; either it is torsion free or has elliptic 
elements. 

r;:O 
o 

F¡c;uJtE G. Tlll' ~'""" /\ 
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¡;O 
o 

FIGURE 7. The ~r<lliJl G 

5.2.1. The group K is torsion free 

Since K cannot have parabolic elements, K is necessarily purely loxo­
dromic, geometrically finite, finitely generated function group, with the 
same region of discontinuity as a Schottky group. As a consequence of the 
classification of finitely generated function groups [14], we obtain that K 
is necessarily a Schottky group of genus ¡. Let A1, · · ·, A1 be any set of 
free generators for K. Since G has order two in K, then either Ai belongs 
to G or Al does it. Clearly, sorne of the Ai cannot be in G, otherwise 
K = G. We may assume A1 does not belong to G. If sorne Aj does not 
belong to G (j < ¡), then we replace Aj by Ajo A1 which now belongs 
to G. After these changes we still having a set of free generators for K, 
but now Ai belongs to G, for i = 1, · · ·, ¡- l. Let us consider the group 
L generated by the elements A1, · · ·, A¡-l, A1 A1A1l, · · ·, A1 A1 _ 1A1 1 and 
A;. The group Lis a normal subgroup of index two of K and contained in 
G. As a consequence, the groups G and L are the same. Choose a standard 
fundamental domain D for K with respect to the above generators. We 
obtain a standard fundamental domain for G with respect to the above 
generators as D U A1 (D) (see figure 8 in the case g = 3, ¡ = 2). 
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FIGURE: 8. Thr t':roups k and (,' iu l.br tnrsiorr frt'l' nLc;P 

5.2.2. The group K has torsion 

In this case, every elliptic element has arder two, the product of any two of 
them is an element of G, and they commute with sorne loxodromic elements 
ofG. 

The region of discontinuity of K is connected ( the same as for G) and 
K is a finitely generated, geometrically finite function group. By the classi­
fication of finitely generated function groups, K is constructed from cyclic 
loxoclromic groups and cyclic groups generated by involutions, in such a 
way that every such involution commutes with sorne loxodromic element 
of the resulting group. One can check that such a group K is obtained in 
the following way. let J1, h, · · ·, Ik, be a finite family of index set, such 
that ¡ = ord(JI) + ord(II) + 2ord(I2) + · · · + kord(h), where ord(B) de­
notes the cardinality of B. Write J1 = {j1, · · ·, JJ }, ls = { Ís,1, · · ·, Í 8 ,J(8 )}. 

We consider a loxodromic element AJn' for each Jn E J1, s involutions 
Ti 1, ... , Ti 8) and S loxoclromic elements ci 1, ... , ci 8) such that 

Ci·.·.:·,r o Ti.,rn~;=; Ci~.~,r = Ti.,rn,r+I, r + 1 modul~·:: for each'i:',m E ! 8 , and 
such that there is a fundamental domain P, for the group generated by 
these transformations, as shown in figure 9. 

By changing ci.,rn,T by ci.,rn,T o Tis,rn,r+1, if necessary, we may assume it 
belongs to G. We m ay al so change A Jn by A Jn o Ti., 1 ,1 , sorne s, to assume 
that it also belongs to G. Observe that for each of the above changes we 
can modify our domain P in such a way that we get a new fundamental 
domain as in figure 9 for the new generators. 
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Let t Le the smallest s for which ord(I8 ) is not zero. Now it is easy 
to see that G is generated (and free generated) by the elements: A]n' 

cit,I,l o Ajn o cit,I,l, ci.,,.,.,r., Tit,I,l o Tit,/¡•l Tit,!,l o Til,/¡>91' n = 1, ... 'J, 
rn.- = 1, .. ·, s, 1'8 = 1, .. ·, ! 8 , ft = 2, .. ·, t, J¡ = 1, .. ·, l, g¡ = 1, .. ·, ]¡, 

s = t, ···,k, l = t + 1, ···,k. (See figure 10 in the case g = 3, 1 = 2). 
In this way we get all possible ~-hyperelliptic Schottky groups, up to 

conjugation. 

e, 

(1) (1) 
l3) 
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6. Proof of the Theorems C, D, E and F 

In this section, we give the proofs of the resting theorerns. 

Remar k 7. Observe that the second part of the above Corollruy is also a 
consequence of Theorem A (part (i) with ¡ = 2) and a theorem of Haas 
and Susskind {6}. 

Proof of Theorem C We construct a particular 4g-sided ¡-hyperelliptic 
polygon in the unit disc U. We apply Lemmas 2 and 3, and Ahlfors-Bers 
theorem to obtain a torsion free Fuchsian group F, uniformizing S, and such 
that J(z) = -z is a lifting of the ¡-hyperelliptic involution j to U. Using 
the continuity arguments of t¡.l, for a Beltrami coeffi.cient f.l (Ahlfors-Bers 
theorem), we show that F has a ¡-hyperelliptic polygon as flmdamental 
domain. 

Construction of a ¡-hyperelliptic polygon with 4g sides 

Subdivide the unit disc U by lines R 1, · · · , R2y through the origin, such 
that the angle between Ri and R+J is 2w/4g. Set R 1 be the real axis. See 
figure 11 in the case of g = 2. 

1 
1 
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For each T, O < T < 1, choose points Ti, -Ti in R; such that 1 Ti 1= T, 

and construct the strictly convex non-Euclidean polygon Pr with vertices 
Ti and -Ti, for i = 1, · · ·, 2g. See figure 12. 

·. 

' ' . . 
~ --:., --. ----- ><: --------"! - - -) 

' 
' ' ' 

' 
' < 

/1 1 ~ •••• 

,-.., 
............ 1- - --

·.' ., 

Fl<:llllE 12 TIH' polyp,ur• /', iu f,!;I'IIIIS lwn 

: 

The interior angle Or at any vertex of Pr strictly increases from O to 
n- 2n /4g as r decreases from 1 to O. In fact, for given T, consider one of 
the triangles b. = (0, Ti, Ti+d· The area of b. is equal to 7r- 2n/4g- ar. 
Since the area of b. goes to zero in a decreasing way as T approaches zero, 
the angle ar must approach in an increasing way n - 2n / 4g. 

As a consequence, the sum of all the interior angles of Pr, er = 4gar, 
strictly increases from Oto 4g(n- 2n /4g) as T decreases from 1 toO. Since 
g 2: 2, we have that 4g( 7r - 2n / 4g) > 2n. By continuity, there exists a 
1mique ro for which ero = 2n. Set Pro = p•. We label the sides of p• by 
si, · · · , s~9 (in counterclockwise order). 

Let Mt be the elliptic element of order two keeping invariant the geodesic 
containing the side si of P* and fixing the midpoint of si, for i = 1, · · ·, 2g, 
and set L(z) = e1ri/9 z. Define fractional linear transformations Tt, for 
i = 1, · · · ,2g, as follow (see figure 13): 
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JoMt , for í = 1, . .. ' 2g- 4¡. 

L 0 M2g-4"(+2t-3, for t. = 1, . . . ,¡. 

Lo M2g - 4'r+2t-2' for t = 1, ... ,¡. 

J 0 T29 -4'Y+2t-l 0 J, for /, = 1, ... ,¡. 

Jo T,;9 _ 4"f+2t o J, for t = 1, ... ,¡. 
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Let F* be the group generated by the fractional linear transformations T/, 
for i = 1, · · · , 2g. Poincare's theorem [13], asserts that F* is a torsion free 
Fuchsian group with p• as fundamental domain and with the following; 
presentation: 
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U2 (T2g-4"¡rlr;g-4"f-l, ... , r;(rn-lrt, 
where [A, B J = A o B o A- 1 o B -l . 

From the above construction, we see that F* is an index two (so nor­
mal) subgroup of the Fuchsian group < J, F* >, where J(z) = -z. A 
flmdamental domain for such group is given by the convex non-Euclidean 
polygon Pó deterrnined by the sides sj, · · ·, s2

9
, and RnP* (see figure 14). 
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'T'h f . J T* - T.* "'* T.* . J ~ e trans ormat10ns o 1 , ···,Jo 29 _ 4"1, 1 29 _ 4'Y+l' · · ·, 29 _ 2"1 ana 
genera te the group < J, F* >. These transformations are the si de pairing 
of the polygon P0 (see figure 15). 

FIGURE 15. Thr side pairi11gs of /'~ for y= 3 aiHl '! = 1 

The transformation J(z) = -z induces a 1-hyperelliptic involution j* 
on the closed Riemann surface U/ F*, of genus g, wh~se quotient by j* is 
the closed Riemann surface U/ < J, F* >, of genus 1, with branch values 
the projection of the fixed points of j*. 

By Lemma 2, we can find a set of smooth simple loops on U j < J, F'* > 
and S = S/ < j >, respectively, satisfying the properties described in 
Lemma 2. As a consequence of Lemma 3, we can find a quasiconformal 
homeomorphism 

J: u¡ < J, F* >--+ s·, 
sending the specialloops on U/ < J, F* > onto those on S, and the branch 
points on u¡ < J, F* > onto the branch points on S. 

The map f defines on P0 a function f..l(z) (locally, f..l(z) = f 2 / fz), and 
we can extend it to all of the unit disc U using the group < J, F* >. The 
Beltrami coefficient f..l constructed in this way is a Beltrami coefficient for 
< J, F* > and, in particular, for F*. Let W~< be the unique solution of the 
Beltrami equation 
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normalized by WJ.L(O) = O, WJ.L(1) = 1 and WJ.L(i) = i (Ahlfors-Bers theo­
rem). We obtain the following: 

(i) WJ.L o F* o (WJ.L)- 1 = F is a Flichsian group; 

(ii) WJ.L oJo (WJ.Lt 1 = J; 

(iii) F uniformizes the Riemann surface S; 

(iv) J is a lift of j to the unit disc U. 

Let us rename the vertices of P* by a¡ (0), · · ·, a49 (0), in counterclock­
wise order such that, a¡ (O) = ro. Let O ::; t ::; 1, and consider t¡.L, 
which is again a Beltrami coeffi.cient for the group < J, F* >. Define 
Ft = WtJ.L o F* o ( WtJ.L) -l which is a Flichsian group, isomorphic to F*, and 
uniformizing a closed Riemann surface St of genus g. The map WtJ.L cor­
responds to the unique solution of the Beltrami equation for the Beltrami 
coeffi.cient t¡.L. In this notation Fo = F* and F¡ = F. Define Pt as follows. 

(i) Set ai(t) = WtJ.L(ai(O)), for i = 1, · · ·, 4g. 

(ii) Let si(t) be the geodesic arcjoining ai(t) to ai+l (t), if i = 1, · · ·, 4g-1, 
and let s49 (t) be the geodesic are joining a49 (t) to a 1(t). 

(iii) The side si(t) is oriented from ai(t) to ai+l(t). 

his way we obtain a closed polygonal curve 'Yt = s¡(t) U··· U s 49 (t). 

(iv) Define the angle O:i ( t) at ai( t) as follows. 

(iv.1) o:i(t) =O if ai(t) E si-J(t) (see figure 16). 

aL.,.1 tt.) 

s._ l-lJ 
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(iv.2) ai( t) = 7f if ai-I ( t), ai( t) and ai+I ( t) lie in the same geodesic and 
ai-I(t) < ai(t) < ai+I(t) (see figure 17). 

S¡.., \t.) 

O¡.,~~) 
S¡ti.J 

FH:trnr;; 17 

(iv.3) If we are not in one of the above cases, we consider ri(t) = Si-I(t) U 
si ( t) with the orientation given above. Then define o:i ( t) to be the 
angle measured from Si-l ( t) to Si ( t) at ai ( t) at the left si de of /i ( t) 
(see figure 18). 

5;.,1~\ 

(d.) 

( b) 

S¡ltl 

O¡ l*) 

oi;ltl-=0 
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Claim. 

(1) The limit of any convergent sequence of strictly convex polygons 
is either a convex polygon or a geodesic. 

(2) The closed polygonal curve 'Yt defined above is J -invariant, for 
J(z) = -z. 

This a classical result and we do not prove it here. Define by Pt the 
polygon bounded by the curve 'Yt (not necessarily a regular one) set 

A = { t E [O, 1]; 'Yt is the boundary of a "( -hyperelliptic polygon } . 

(i) The set A is not empty since t =O belongs toA. 

(ii) Let to E A. If t is close to, then the continuity of WtJL on t 
implies that 'Yt is el ose to 'Yto. Since 'Yto bounds an strictly convex 
hyperbolic polygon, If we chose t close enough to to, then 'Yt also 
will bound a strictly convex hyperbolic polygon. lt is easy to 
see, by the construction, that Pt is J-invariant, and that the 
fractional linear transformations 

identify the sides of Pt in the same combinatoria! way as the frac­
tional linear transformations Tt identify the sides of Pt. This 
implies that the sum of the angles of Pt must be of the form 2kn, 
for sorne integer k. Using the fact that "Lt!1 ai(t) is a contin­
uous function on t, and that "Lt!1 ai(to) = 2n, we obtain that 
"Lt!1 ai(t) = 2n. The same continuity argument shows that for 
t very near tu to, we must ha ve O < ai ( t) < 1r. Thus, 'Yt is a 
"(-hyperelliptic polygon. As a consequence, the set A is an open 
subset of the closed interval [O, 1] = { t; O ::; t ::; 1}. 

(iii) Let f 11 a sequence of points in A converging to t. For n sufficiently 
large t11 is very near to t, so by similar continuity argument as 
in (i), Ptn is very near to Pt. The above Claim asserts that Pt is 
either a convex polygon or a geodesic. Assume Pt is a geodesic, 
then the group Ft = WtJL o F* o (WtJLt 1 keeps invariant such a 
geodesic. In particular, the limit set of Ft is contained in the 
set of end points of this geodesic. Thus, Ft is an elementary 
group. This a contradiction, since by construction the group 
Ft uniformizes a closed R.iemann surface of genus g. It follows 
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that Pt is in fact a convex hyperbolic polygon. Since the sides 
of this polygon are paired in the same combinatoria! way as the 
sides of Po, the sum of the angles of Pt must be of the form 
2k7r, for sorne integer k. The continuity of "Lt!I ai(t) and the 
fact that "Lt!I ai(tn) = 27r implies that "Lt!I ai(t) = 27r. The 
J-invariance of Pt, the fact that ai(t) >O, for i = 1, · · ·, 4g, and 
the above observation on the sum of the interior angles imply 
that O < ai(t) < 1r. As a consequence, Pt is a ¡-hyperelliptic 
polygon, andA is also a closed subset of [0, 1]. 

Now, (i), (ii) and (iii) imply that A = [0, 1]. In particular, F has a 
¡-hyperelliptic polygon as a fundamental domain. 

Proof of Theorem D 

(i) The proof is the same as for theorem C. 

(ii) Let P be a ¡-hyperelliptic polygon for a Fuchsian group F 
uniforrnizing the surface S as in the hypotheses. Choose in­
tegers N,M such that, O::; N, M::;¡, and integers ÍJ,···,iN, 
JI,···, JM such that ik =F Í¡ (respectively Jr =F Js) if k =F l (respec­
tively if r#s). Define the side pairingsTi(N,M,ii,···,iN, 
JI,··· ,jM) = T'i as follow: 

(a) T'i =Ti, for i = 1, · · ·, 2g- 4¡. 

(b) 
{ 

T2g-47 +2t-I 

T'2g-4"(+2t-I = J 'T' 
o .l2g-4"(+2t-I 

if t does not belong to 
{ii,···,iN}, 

otherwise 

2g-4"(+2t-

if t does not belong to 
{JI, ... ,JM }, (e) T I - { T2g-4"(+2t 

Jo T2g-4"f+2t otherwise 

(d) T'2g-2"f+l(t) = JoT2g-4"f+l(t)oJ, for l(t) ofthe form 2t-1 or 2t. 

Apply Poincare's theorem to the polygon P and the side pairing 
defined above to obtain a torsion free Fuchsian g,roup 
F(ib···,iN,JI,···,jM), which is a normal subgroup, of index two, 
of < J, F >, uniforrnizing a closed Riemann surface of genus g. We 
obtain in this way 22"~ non-conjugated (in < J, F >) torsion free 
Fuchsian groups . This is exactly the number of non-eqwvalent two 
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sheeted coverings of a closed Riemann surface of genus 1 with the 
same branch locus. 

Proof of Corollary 2 Let S, j :S- S, F, J: U- U and xo be 
as in the hypotheses and let 1r F : U - S be the rmiversal covering 
of the surface S with F as covering group. Denote by Po the point 
7rF(x0). By Theorem D asserts we can find a 1-hyperelliptic (N, M) 
hyperbolic polygon P with associated Fuchsian group G, rmiformizing 
S, such that O is a lifting of Po and with B(z) = -z a lifting to U 
of j. Since G and F rmiformize the same Riemann surface S, there 
exists a fractional linear transformation H, fixing the rmit disc U 
such that, 7rF oH = 7rc. Since H(O) must be equivalent with xo, 
we can find an element f in F such that, ¡-1(xo) = H(O). As a 
consequence, f o H(O) = xo and f oH also makes the diagram, in 
figure 18, commutative. Thus, we may assume that H(O) = xo. 

(i) HoBo H-1 is a fractional linear transformation of order two 
fixing xo and keeping the unit disc U invariant. Since there is 
only one such a transformation, we obtain HoBo H- 1 =J. 

(ii) H(P) is a hyperbolic polygon as desired. 

Proof of Theorem E If V is finite dimensional vector space and h : 
V- Visan isomorphism of order two, then we have a decomposition 
V = w+ EB w-, where 

w+ ={vE V;h(v) = v} and w- ={vE V;h(v) = -v}. 

In our case, V= H 1•
0 (S, C) and h is the isomorphism induced by the 

1-hyperelliptic involution j : S- S. We need to check the right di­
mensions of w+ and w-. The subspace w+ corresponds to the holo­
morphic differential forms on S/ < j >, that is, H 1•0 (S/ < j >, C), 
which has dimension ¡. Since the space H 1•0 (S, C) has dimension g, 
the space w- has dimension g- ¡. Choose basis w1' ... 'W¡ for w+ 
and W¡+1' ... 'Wg for w-. Now we can apply Theorem 2. 

Proof of Theorem F Apply Lemma 4 to the group A generated 
by the 1hyperelliptic involution j : S - S and h : S ---t S is the 
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hyperelliptic one. If j # h, then A is the lift of a cyclic group of order 
two. Up to normalization, we may assume that group to be generated 
by J(z) = -z. 

The Weierstrass points of S are projected onto a set R, consisting of 
exactly 2g + 2 points, invariant under the involution J. We have the 
following possibilities: 

(i) If O and oo belong to the set R, then the surface S is represented 
by the hyperelliptic curve 

W 2 = Z(Z2
- 1)(Z2

- a¡)··· (Z2
- ag-1), 

where ai # aj if i # j and ai # O, 1, oo. Here R consists of the 
points O, oo, 1, -1, a¡,··· ,ag-1· 

(ii) If O and oo are not in this set of points, then the surface S is 
represented by the hyperelliptic curve 

w2 = (Z2 - 1)(Z2 - b¡) ... (Z2 - b9 ), 

where bt # b8 if s # t and bj # O, 1, oo. Here R consists of the 
points 1, -1, b¡, · · ·, b9 . 

The hyperelliptic involution is given by 

{ ~: -W} z . 

The Marked Schottky S pace of Genus g and the r -Hyperelliptic 
Schottky locus 

In this section, we define the marked Schottky space. We describe a 
locus of those marked Schottky groups which uniforrrúze ¡-hyperelliptic 
Riemann surfaces and refiect their ¡-hyperellipticity. This part is di­
rect consequence of Theorem B. 

Definition 9. Let (G1 ; Ah···, A9 ) and (G2 ; B 1 , · · ·, B 9 ) be twomarked 
Schottky groups of genus g. We say that they are equivalent if there 
exists a linear fractional transformation H satisfying 

H o Ai = Bi oH, fori = 1, · · ·, g. 

We define the Marked Schottky S pace of genus g, denoted by S 9 , as 
the set of equivalence classes of marked Schottky groups of genus g. 
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Toa loxodromic transformation A we have three related objects; its 
repelling fixed point r(A), its attracting fixed point a(A) and the 
square of its trace (up to a sign) t(A). The transformation A is 
uniquely determinated by such a triple. 

We have a map 
«~>: Sg ~ c3g-3_ 

This map is given as follow. Let (G; Al>···, A9 ) be a marked Schottky 
group of genus g. We can find a unique equivalent marked Schottky 
group such that r(AI) = 1, a(A1) = -1 and r(A2) = -a(A2). In this 
way, the map «1> is defined by 

(t(AI), ... , t(A9 ), a(A2), r(A3), a(A3), ... , 
r(A9 ),a(A9 )) 

It is very well known that the image under «1> of the marked Schottky 
space of genus g is an connected open set of C 39- 3 

o 

D. Hejhal [7] have shown that the marked Schottky space of genus g 
is also a domain of holomorphy. 

Using the above normalization and Theorem C, we get the following 
parametrization of 1-hyperelliptic Schottky groups in the Schottky 
marked space. Observe that in the particular case of 1 =O we obtain 
the same parametrization given by L. Keen in [11]. 

Theorem 3. 

(1) The sublocus of the marked Schottky space defi.ned by the (3g-
3)/2 equations 

t2i 

T2iT2i+l 

a2ia2i+l = 1; 

for i = 2, · · · , (g- 1) /2, consists of Schottky groups which repre­
sent closed Riemann smfaces having a conformal automorphism 
of order two acting freely. The involution above is represented 
by 

J=(o i ) 
i o 
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(2) The sublocus of the marked Schottky space of genus g defined 
by the g + 1 - 2 equations 

ri = -ai, for i = 3, o o o, g- 21; 
tg-2¡+i = t9 _ 7 +i, for i = 1, o o o, 1; 

r 9 _ 27+i = -r9 _ 7 +i, for i = 1, o o o, 1 ; 

a9 _ 27+i = -a9 _ 7 +i, for i = 1, o o o, 1; 
consists precise] y of those marked Schottky groups which repre­
sent closed lliemann surfaces having a conforma] autommphism 
of arder two with 2(g - 21 + 1) 2: 4 fixed pointso The above 
involution is represented by 

(3) The sublocus of the marked Schottky space of genus g defined 
by the 3r - 2 equations 

t2i t2i-}, for i = 1, o o o,,; 
T2iT2i-l r, for i = 1, o o o,,; 

a2ia2i-I r, for i = 1, o o o,,; 

consists precise] y of those marked Schottky groups which repre­
sent closed lliemann surfaces having a conforma] automorphism 
of arder two with two fixed pointso 

The above involution is represented by 

J= ) o 
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