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Abstract

We give some characterizations of v—hyperelliptic Riemann sur-
faces of genus g > 2, that is, pairs (S,j) where S is a closed Riemann
surface of genus g and j : S — S is a conformal involution with
exactly 2g + 2 — 4~ fized points. These characterizations are given
by Schottky groups, special hyperbolic polygons and algebraic curves.
These can be seen as generalizations of the works [5/ and [11].
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Introduction

A y-hyperelliptic Riemann surface of genus g is a pair (5, j), where S is a
closed Riemann surface of genus g and j is a conformal involution of S with
exactly 2g + 2 — 4+ fixed points. Equivalently, a y-hyperelliptic Riemann
surface of genus g is a triple (S, X,7 : S — X), where S and X are closed
Riemann surfaces of genus g and +, respectively, and 7 : S — X is a degree
two holomorphic covering map. The equivalence is given by X = S/ < j >
and w : § — X the natural two fold covering induced by the action of j
on S. A O-hyperelliptic Riemann surface (S, j) consists of a hyperelliptic
Riemann surface S and its hyperelliptic involution j.

If (S, ) is a yv—hyperelliptic Riemann surface of genus g, thenj : § —» §
is called a «—hyperelliptic Riemann surface and by abuse of language we
call S a yv—hyperelliptic Riemann surface of genus g.

In general y—hyperelliptic involutions are not unique. If the genus of S is
large compared to 7y, then it is possible to get uniqueness for y-hyperelliptic
involutions (see [4]).

In this paper, we discuss Schottky uniformizations of y-hyperelliptic
Riemann surfaces which reflect the «-hyperellipticity property (see next
section). These uniformizations are called y-hyperelliptic Schottky uni-
formizations. The
O-hyperelli] ¢ Schottky uniformizations are also called hyperelliptic Schot-
tky uniformizations.

In |8}, we treated y-hyperelliptic Schottky uniformizations using differ-
ent techniques. Here we use strongly the topology of the action of involu-
tions on closed Riemann surfaces (Theorem A).

The particular case of hyperelliptic Riemann surfaces and hyperelliptic
Schottky uniformizations is done in [11]. It will follow from our results as
a particular case.

Let (S,. be a y-hyperelliptic Riemann surface of genus g > 2 such that
j has fixed points. If F' is a torsion—free Fuchsian group acting on the unit
disc U/, uniformizing S, then we can lift the involution j to a conformal
involution J. In particular, J is in the normalizer of F' in the group of
conformal automorphisms of U. We show the existence of a strictly convex
4g-sided hyperbolic fundamental polygon P for the group F', such that
J(P) = P. The fixed points of j are represented by the fixed point of J
(the center of P), the vertices of P, and the midpoints of exactly 2g — 4
sides. This result for hyperelliptic Riemann surfaces can be also found in
the thesis of D. Gallo [5].
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These types of polygons, for v greater than zero, are different than those
studied by Fricke and Keen [12|. However, for v = 0, such a polygon is a
double of a Fricke polygon.

In addition, we recall an algebraic description of y-hyperelliptic Rie-
mann surface of genus g > 2 . That is classical, but we include as a matter
of completeness. Let us say that there exist a lot of representations of -
hyperelliptic Riemann surfaces and we are only considering a few of them.

1. Definitions

Definition 1. A pair (S,j) is called a y—hyperelliptic Riemann surface of
genus g provided S is a closed Riemann surface of genus g and j : § — §
is a conformal involution with exactly 2g + 2 — 4~ fixed points.

Classically, 0—hyperelliptic Riemann surfaces are called hyperelliptic.
In this case the 0—hyperelliptic involution is the hyperelliptic one and it
is unique. For such a reason, we may just call S a hyperelliptic Riemann
surface. For v > 0 the uniqueness of j does not hold in general and a fixed
closed Riemann surface may have different y—hyperelliptic structures. In
fact, let S be a hyperelliptic Riemann surface of genus g which admits a
conformal involution k : S — S with exactly 2g — 2 fixed points. Denote by
h the hyperelliptic involution on S. Thent = hok is again a 1 —hyperelliptic
involution on S different from k. In this way, (S, k) and (S,t) are two dif-
ferent 1-hyperelliptic Riemann surfaces. If the genus ¢ is sufficiently large
in comparison with v, then one has the uniqueness of the v—liyperelliptic
involution [4]

Definition 2 ( Schottky groups). Let Cy,C'y, k=1, --,g, be 2g Jor-
dan curves on the Riemann sphere, C=cCu {0}, such that they are
mutually disjoint and bound a 2g-connected domain. Call D the common
exterior of all these curves, and suppose that for each k there exists a
fractional linear transformation Ay with the following properties

i) Ax(Cr)=C'y ;

ii) Ay maps the exterior of C) onto the interior of C'y.

The group G generated by the transformations Ay is a Kleinian group.
(The transformations Ay are necessarily loxodromic). The region D is a
fundamental domain for GG, called a standard fundamental domain for G
with respect to the generators Ax. The group G is called a Schottky group
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of genus g. The trivial group is called a Schottky group of genus zero. If G
is a Schottky group of genus g and Ay, - -, Ay is a set of (free) generators,
then the pair (G;{Ay1, -, Ag}) is called a marked Schottky group of genus
g.

In [3] it is proved that for any set of free generators Ay,---, Ay, for a
Schottky group G of genus g, there exists a standard fundamental domain
D for G with respect to the given generators.

We say that a Schottky group G is classical if we can find a set of free
generators with a standard fundamental domain bounded by circles. In the
Schottky Space, the classical ones form a open set. It is known that there
are Schottky groups which are not classical [15]. In the literature there is
only one explicit example of such a Schottky group [10]

If Q = Ugecg A(cl(D)), where cl(D) denotes the Euclidean closure of D,
then Q) is the region of discontinuity of G. The limit set of G is by definition
the complement of ) in the Riemann sphere. We will denote this set by
A(G). This set is closed and totally disconnected. If g > 2, then the limit
set is also a perfect set. For g = 1 the limit set A(G) consists of two points,
and for g = 0 the set A(G) is empty.

Definition 3. A uniformization of a Riemann surface S is a triple (2, G, 7 :
Q — S), where G is a Kleinian group with invariant component 2 ([13])
and 7 : Q) — S is a regular covering map with G as covering group. If G is
a Schottky or a Fuchsian group, then it is called a Schottky or a Fuchsian
uniformization, respectively.

It is a very well known fact that a closed Riemann surfaces has a Schot-
tky uniformization. This is known as the Retrosection Theorem [2]. The
following still an open problem. Does every closed Riemann surface has a
Schottky uniformization given by a classical Schottky group?

Definition 4. Let (S, j) be ay—hyperelliptic Riemann surface, and (Q, G, :
Q — S) an uniformization of S. We say that (Q,G,m:Q — S) isa ~-
hyperelliptic uniformization of (S, j) (or that it reflects the y—hyperellipticity
of S given by j), if there exists a conformal automorphism J : Q — Q such
that m o J = jow. In the particular case that the above is a Schottky
uniformization of S, we call it a ~y-hyperelliptic Schottky uniformization
of (S, 7) and the group G a ~y-hyperelliptic Schottky group.

Definition 5 (y—hyperelliptic polygons). Let P be a strictly convex
4g—sided hyperbolic polygon, g > 2, in the unit disc U. Then P is called a
~-hyperelliptic polygon if the following holds:
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i) P is invariant under the transformation J(z) = —z;
ii) The sum of all interior angles of P is exactly 2m;

iii) If s1,- -, s44 are the sides of P, in counterclockwise order, then there
exist linear fractional transformations Ty, - - -, Ty, fixing the unit disc
U, that is, isometries of U with the hyperbolic metric, such that:

(iii.1) Ti(s;) = s§g1+i, fori=1,--+,29 — 4;

(iii.2) Tog—ay+ot-1(S2g-ay+4t-3) = 52_g]—47+4t—1’ fort=1,---,7.
(iii.3) Tog_ay42¢(S29—ay+at—2) = 55g1_47+4t, fort=1,---,7.
(iii.4) Tag_2yt2e-1 = JTog—syy2e—1J, fort =1,---,7.

(iii.5) Tog—a2y+2t = JTag-aytaed, fort =1,--- 7.

Remark 1. If F is the group generated by the side pairings of the polygon
P in Definition 5, then Poincare’s theorem [13] asserts that F is a Fuchsian
group with P as a fundamental domain. The surface U/F is a closed
Riemann surface of genus g with an involution j, induced by J, with 2g+2—
4~ > 0 fixed points. The fixed points of j are the projection of the vertices
of P, the origin and the midpoints of the sides s; fori=1,---,29 —4~. In
particular, (U/F, j) is a y—hyperelliptic Riemann surface of genus g.

Definition 6 (y-hyperelliptic (N, M) hyperbolic polygons). Let P be
a strictly convex 4g-sided hyperbolic polygon , g > 2, in the unit disc U.
Let N and M be non—negative integers satisfying 0< N, M < ~. Then P is
called a «y-hyperelliptic (N, M) hyperbolic polygon provided the following
holds:

(i) P is invariant under the transformation J(z) = —z;
(ii) The sum of all interior angles of P is exactly 2r;

(iii) If 51, - -, 544 are the sides of P, in counterclockwise order, then there
exist 11, "IN € {L"’)’Y}) Jiy-e 'ajN € {L"':’Y}; where 1 7é iy if
t 3 s and j; # js if t # s, and there exist linear fractional transfor-
mations 11, - - -, Tay, keeping the unit disc U invariant, such that:

(iii.1) Ti(s;) = spp4s fori=1,---,2g — 4;

(ﬁi.Z) T2g_47+21_1(829_47+4t_3) = 52_;_4,7+4t_1, if t does not belong to
the set {11, - -,iN};
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(ii1.3) Tog—ay+2t-1(529-dry+4t-3) = SZgl—4q+4t—17 if t belongs to the set
{in, - in};

(iii.4) Tog—ay+2t(S2g-ay+at-2) = 32_91_4%4“ if t does not belong to the

set
{Jl)’JM}J

(ii1.5) Tog—ay+2t(S2g—an+at-2) = 5191_47“&, if t belongs to the set
{jl?' o )JM})

(ii1.6) Tog—2y+2t-1 = Jlog_ayy2t-1 J, fort =1,--- 7.
(1.7 Tog-gy+at = JIog-ayi2e J, fort =1,---,7.

Remark 2. Note that y—hyperelliptic (0,0) hyperbolic polygons are in fact
~—hyperelliptic hyperbolic polygon in Definition 5. If F' is the group gener-
ated by the side pairings of the polygon P in Definition 6, then by Poincare’s
theorem [13] F' is a Fuchsian group with P as fundamental domain. The
surface U/ F' is a closed Riemann surface of genus g with an involution j,
induced by J, with 2g + 2 — 4~ > 0 fixed points. The fixed points of j are
the projection of the vertices of P, the origin and the midpoints of the sides
s, forv=1,---,29 — 4.

We need some of the basics from quasiconformal maps. The main tool
is the Ahlfors—Bers theorem about solutions of the Beltrami equation and
continuity of parameters.

Definition 7 (Quasiconformal homeomorphisms). Let j(z) be a mea-
surable function defined .on the Riemann sphere C, with || p ||, < 1, and
f : C — C an orientation preserving homeomorphism of the Riemann

sphere. We say that f is p-quasiconformal homeomorphism if it satisfies
the following equation:

0f/0z = p(z) 0f/0z, ae.
2. Auxiliary Results

Theorem 1 (Ahlfors-Bers Theorem [2]).

(1) If p(z) is a measurable function defined on the Riemann sphere C
and it satisfies || p ||, < 1, then there exists a unique quasi-conformal
homeomorphism W of the Riemann sphere satisfying the equation

OWH [0z = p(z) OW* 9z,
with W#(0) = 0, W#(1) = 1, and W#*(o0) = oo.
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(2) If u(z) is a measurable function defined on the unit disc U, and
| £l < 1, then there exists a unique quasiconformal homeomor-
phism W, of the unit disc U satisfying the equation

oW, /0z = u(z) W, [0z,
with WE(0) =0, WH(1) = 1, and WH(i) = 4.

(3) The solutions W* and Wy, in (1) and (2) vary continuously with the
parameter t € [0, 1].

Lemma 1. Let G be a Kleinian group with invariant component /\ of the
regular region § of G. Suppose there exist yu a measurable function on A
and f: A — /A an pi—quasiconformal homeomorphism such that

1(9(2))g'(z) = w(2)g'(2), forall g€G,

then fogo f~! is again a fractional linear transformation if A has the
property that every conformal automorphism of it is a fractional linear
transformation.

The proof of this lemma is a direct computation and we do not do it
here.

Definition 8. If || p ||, <1 in Lemma 1, then we call 1 a Beltrami coef-
ficient for the group G in A.

Let 7 : S — S be a two sheeted holomorphic branched covering, where
S and S are closed Riemann surfaces of genus g and -y, respectively. Let ¢;,
i =1,---,K, be the branched values on S of the above covering. The
Riemann-Hurwitz formula [4] implies the equality

g=2(v-1)+1+4+K/2

In particular, we obtain that K must be even. Let 71, 712, 721,
72,2, Ty,15 Ty,2: M1, -+, Tk be simple loops on S satisfying the following
properties:

(1) 1,1, 7,2 712,1, 712,21 " * * 5 TIy,15 Tly,2 are homologically independent loops
on S

(2) 7; bounds a small disc around ¢;, fori =1, .- K;
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(3) mnNn; = ¢, if i #
(4) Th'nnk,t=¢, for i = lvaKv k= 1777)“/: 1a2>
(5) mka Nneo = {xx}, fork=1,---,7; and
(6) Mk Nnsy =, if k#s.
Consider a point zg in S+, where
ST‘ =‘§'_{nk,tani:k: laa’Y)t: 112a1 = 1)"'aK}7
and consider simple disjoint path aj, a; joining 7 ; and 7); to xg, respec-
tively.
The loops ak,tnk,ta,;:, wna; ! form a basis for the fundamental group of
$0=3 — {q1, - ,qx}, based at zy. Consider the two sheeted unbranched
holomorphic covering 70 . 89 — SO where S° is the lifting under 7 of

S9. Since the loops a;niar; 1 1ift to a path, the above covering is totally
determined by how the loops ak,tnk,tagi lift. We can see that ak,tnk,ta;%

lifts to a loop if and only if 7 lifts to a loop. So, the covering7: 5 — §
is totally determined by knowing how the loops 7 ¢ lift to S.

We define the symbol (n1,1,71,2,12,1, 12,2, *, 14,1, Ny,2) associated to
the above loops 71,1, 11,2, M2,1, 12,2 * *» My, 15 Ty,2, Where ng; € {0,1}. This
symbol has the following meaning

S 0 if ng ¢ lifts to a loop
*t7 1 1  otherwise

Lemma 2. Let S, S and 7 as above. Then we can find simple loops M1,

M2, M2,1, 12,2, Ty, 1s My,2, M- ** MK, Satisfying the conditions (1) to (6)
above , with associated symbol

(i) (1,0,---,0), if K =0;
(i) (0,---,0), if K > 0.

Proof : Start with a set of loops on S, 1,15 11,25 M2,15 12,2, "5 Ty 1,
Thy,2, M, * MK, satisfying the conditions (1) to (6) and associated symbol

(nl,lanl,% 21,712,251, "7,2)-

If we look at the pair (n;,n,2), for each ¢ = 1,-- -, we can see that
the possibilities for this pair are the following:
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(1
(2

(ns,1,n42
(ni,l y 44,2

) )
) )
(3) (nig,mig2)

) )

(4) (ni1,ns2

In case (3), we change our loops 7;,1,7:,2 by 752, 7; 11, respectively, as
shown in figure 1. Now, we are in the case (2).

In case (4), we change our loops 7;1,7;2 by simple loops freely homo-
topic to 1;,1, 7:,27,1, respectively, as shown in figure 2. Now, we are in case
(2).

After all these changes and some permutations, we obtain a set of simple
loops satisfying the conditions (1) to (6) and associated symbol (1,0,1,0,

--,1,0,0,0, ---,0,0).

Now, we make more changes of the following type: look at 7,1, 7;2,
Mi+1,1, Mi+1,2 With associated symbol (1,0,1,0). In this case, we change
our loops 7;,1,7:2, Mi+1,1, Mi+1,2 by simple loops free homotopics to 7; 1,
75,27i+1,2> M5,1 Ty +]1,1 and 7, +11’2, respectively, as shown in figure 3.

We continue with these changes to obtain a set of simple loops satisfying
the conditions (1) to (6) and associated symbol (1,0,0,---,0,0).

If K =0, we are done. If K # 0, then we change 71,1 and 7 by simple
loops freely homotopic to 71,171 and 75, respectively, as shown in figure 4,
and we get the symbol (0, ---,0) as desired.

s S
—->
nl‘_" 7&:

Freme 1 Clamge of Jonps i case (38)

-
<
75-.1 ﬁl""

G 2 Change of lnops mecase ()
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;
Uiy

7;', q"l,l

FIGURE 3

FiGune 4

Lemma 3. Let S and S’ be two closed Riemann surfaces of genus vy, with
K distinguished points each one, say py,---,pg on S and qi,---,qKg on

S'. Let m,1, M2, M2, 12,2, Tyt T2, T+, Tk, and By, Pra, Ba,
B2, By, By,2s B1,- -, Bk be simple closed loops on S and S, respec-
tively, satisfying the conditions (1) to (6) as before. Then there exists a
quasiconformal diffeomorphism f : S — S', with the following properties:

(1) f(”’i,j)zﬁi,j) fOI”l:Z].,"‘,’Y,' andj:112;
(“) f(nt) ~ ﬁt; fort = 1) Ty K)

(~ means freely homotopic (isotopic)).

Proof : By the topological classification of closed orientable surfaces,
we can find g : S — 5 an orientation preserving homeomorphism, such
that

(l) g(”]i,j) = /b'i,jv for 1 = 1,-- s and ] — 1’2;
(i) g(m) =P, fort =1, -, K;

(iii) g(p) = q, forl=1,.-- K.



v-Hyperelliptic Riemann Surfaces 87

Since S is compact, we can approach g by C*°—diffeomorphisms, which
turn to be quasiconformal maps. Since, two homeomorphisms which are
“near” each other are necessarily homotopic, we are done.

Remark 3. Let 7 : S — S be a two sheeted holomorphic branched cover-
ing, and let 11,1, M2, M2,1, M2,2:* *+ Ty,1, Thy,2, T, **+ Nk be simple loops on
S satisfying conditions (1) to (6). If we assume these loops to be smooth
loops, then in Lemma 3 we can assume equality instead of homotopy. From
now on, our set of loops will be assumed to be smooth.

Proposition 1. Let K be a group of fractional linear transformations that
contains a Schottky group as subgroup of finite index. Let h be any elliptic
element of K and let z and y be its fixed points. Then either x and y are
in the region of discontinuity of K or there is a loxodromic element g in G
commuting with h.

Proof : If K is torsion free, then there is nothing to check. Let us
assume K has torsion and let h be any elliptic element of K with z and y
as fixed points. If both points are in the region of discontinuity of K, we
are done. Assume y is a limit point of the group K and let j be a primitive
elliptic element in K fixing y.

The point z is a fixed point of j. In fact, if j(z) # z, then the commu-
tator [f,h] = jhj~'h™! is a parabolic element in K with y as fixed point.
This is a contradiction to the fact That K has no parabolic elements.

If g(y) = y, for some g in K, then either g is conjugate in K to a power
of j or g is a loxodromic element with z and y as fixed points. In fact, let
g in K be such that g(y) = y. The only possibility is for g to be elliptic or
loxodromic. By our assumption on y, we obtain that necessarily g(z) = z;
otherwise (g, j| will be a parabolic element of K fixing the point y. At this
point, g is either a power of j, or a loxodromic element with x and ¥ as
fixed points.

Let L be the geodesic in H® with z and y as end points. Necessarily,
the transformation j acts as the identity on L.

Let P be a convex fundamental polyhedron for K. Since ¥ is a limit
point, which is not a parabolic fixed point, it must be a point of approxi-
mation for K (see page 128 in [13]). This implies that y cannot be in the
closure of P (see page 122 in [13]).

We can find a sequence of points y, € L, converging to y, all of them
non—equivalent points under K, and a sequence g, € K, all of them dif-
ferent, such that gn(yn) = 2n € cl(P), where cl(P) denotes the Euclidean
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closure of P. Consider a subsequence such that z, converges, say to z,
gn(y) converges, say to u, and gn(a:) converges, say to t. In this way, the
points u and ¢ are limit points for the group K. Since z, € ci(P), we have
z€ cl(P). There are two possibilities for the point z, that is, either z is in
the region « discontinuity of K, or z is a parabolic fixed point (see page
128 in [13]). Since K does not have parabolic elements, z belongs to the
region of discontinuity of K. It is clear that the points z, are eliliptic fixed
points, in fact z,=gn 0 j 0 g, }(2,). This implies that z, belongs to some
edge of P. Since P has only a finite number of edges, we may assume all
the points 2z, to be on the same edge of P. Let M be the geodesic in H?
containing at edge. In particular, z belongs to the closure of M. Let
us consider the geodesics L, = gn(L) through z,, and having end points
gn(z) and gn(y). Since we have supposed g,(z) and gn(y) to converge to t
and u, respectively, the sequence L, converges either to a point or to the
geodesic with end points u and t. If L, converges to a point, then we nec-
essarily have u = t = z. This is a contradiction to the fact that z is regular
point and u is a limit point. The other possibility is that L,, converges to
a geodesic v, with end points u and ¢. In this case, since the end points of
~ are limit points and z is a regular point, we must have z in yNH3. Any
neighborhood of z contains z,,, for n sufficiently large. Since z is a regular
point, there exists a neighborhood of z which is precisely invariant by the
elements of K fixing z, which is known to be finite. We can then assume
without lost of generality that g,0jog,1(z) =2z and g,0jog,' =h. In
other words, (g,,} 0 6) 0§ 0 (g7, 0 ga) ) = j. Since gn 7 005 (zn) = zn,
gnojog,(z) =z and z, # 2, for all n, we have g, 0 j o g; ' (w) = w, for
all win . 1 particular, g,0j0g,(t) =t and gnojog, (u) = u. It
follows that {gn(z), gn(y)} = {t,u}. The facts that ¢t # u and that g,(z)
converges to t imply that g,(z) =t and gn(y) = u, for n sufficiently large.
We may assume it holds for every n. The last observation implies that
gl o gn(z) = z and g;,' 0 gn(y) = vy, for all n,m. The transformations
g} 0 gn als  keep L invariant, and for n # m this transformation cannot
be the identity on L. This implies that g,.! o g, is a loxodromic element of
K with z and y as fixed points. Since G has finite index in K, the result
follows.

A conse tence of Proposition 1 is the following. Let K be a group
of fractional linear transformations containing a Schottky group G as a
subgroup of index two. Let £ be the region of discontinuity of G (K). Let
us denote by S = Q/G, X = Q/K, the quotient Riemann surfaces obtained
by the action of G and K, respectively, and by # : Q2 — S, 71 : § — X the
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respective holomorphic (branched) coverings. On S there exists a conformal
involution j such that:

(i) X=5/<7>
(i) K =< J,G >, where J is a lifting of j to &;
(iii) The branching of 7; is exactly at the fixed points of j.

Proposition 1 asserts that there is a natural pairing of the fixed points
of j (compare to Condition (A) in |9] for general groups of conformal au-
tomorphisms). This pairing is given as follows: Let p be any fixed point of
j and let P be any lifting of p. Let T be the unique lifting of j fixing P.
Denote by @ the other fixed point of T'. Since P is a point in the region
of discontinuity of K, @ is also a point in the region of discontinuity of K.
The point () projects on S to a fixed point g of j. If ¢ = p, then there is
an element g in G with g(P) = Q. Since G has no elliptic elements, g(Q))
is different from P; otherwise, g has order two. Now the commutator of 7'
and go T o g~ ! is a parabolic element in K fixing @, a contradiction. So
we must have p # ¢. Similar arguments show ¢ is uniquely determined by
p. In that way we obtain a pairing of the fixed points of j and at the same
time a pairing of the branch values of 7.

The above shows that if [ is any simple loop on X bounding a topological
disc R, where R contains all the branch values of 7y, then ! must lift to a
loop on (G). Clearly, { lifts to two disjoint simple loops, [; and ly, on S.
We will use this information to prove the second part of Theorem B.

Let S be a closed Riemann surface of genus g > 2, and let wy,wsy, -+, w,
be a basis for the space H'9(S, C) of holomorphic 1-forms on S. As a
consequence of the Riemann—Roch Theorem [4], for any point p on S there
exists some w; which is non-zero at p. Let us consider the canonical map

p: 85— CPy_q,

where ¢(p) is given by (wi(p),w(p), -, wq(p)), in homogeneous coordi-
nates. Let z be any local chart on S, vanishing at p, then we can write the
differential w;, in this chart, as f;(z)dz, where f;(z) is an holomorphic map
in some neighborhood of the origin. In this local chart ¢ is given by

p(2) = (f1(2), -+, fo(2))-

If we change our local chart, we do not change our point in CPy_1, as
can be easily computed. Moreover, this map is analytic (see [4]).
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Theorem 2 {{4]). The holomoarzidc map ¢ 0 5 — UP,_ is one—to one
if § is a non—hyperelliptic Rieman: swiface. o8} Is an irreducible, non-
singilar algebraic curve of degree 23 — 2.

Lemma 4. Let 5 be a hypereiliptic Riemanr surface of genus 5 > 2, with
hyperelliptic Involution fr 0 5 -+ 8. a5 C is a degree two holomor-
phic (branchod) covering and A is a group of conformal automorphisms of
S, then

(i) A/ < h > is isomorphic to H, if h belongs to A; stherwise,

(i) A is isomurphic to X, where if is a finite group of fractional Inea
transformations, fixing the set {pi,---,pyg 2}, obtained as tiwe pro-
jection of the fixed points of h (the Weierstrass points of §) under
.

Proof : Since the hyperelliptic involution 1s unique, we can defice a
homomorphism
DA — Aut{C),

as follow:

Since £ 1s 1n the center of the group of conformal automorphisms of
8, for g in A we can find a fractional linear transformation ®{g) such
that m o g = ®{g) o 7. The transformation ®(g) is unique and satisfies
®{go f) = ®{g)o®(f), for f and g in A. Moreover, the kernel of @ is given
by

Kerneld — <_h » ifhis in A,
< 1> otherwise

3. Main Theorems

In this section we show some differen: representations of v—hyperelliptic
Riemann surfaces. The proof of the following theorems will be given in the
next secticns.

Theorem A . Let {S,j) be a y-hyperelliptic Riemann surface of genus
a=2

(i) If j has no fixed points, that is, ¢ = 2v — 1. then there exist a pair of
disjoint simple loops, say « and 3, satisfying:
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(i.1) Neither o nor 3 divide S;
(i.2) j(a) =5;

(i.3) a\Up divides S into two surfaces with boundary, say Sy and Ss,
each one of genus v — 1 with two deleted discs;

(i.4) j(51) = S

(ii) If j has fixed points, say p1,---,pen (N = g — 2y + 1), then there
exist disjoint simple loops, say a1, oo, - - -, apy, satisfying:

(ii.1) o; contains exactly two fixed points of j;
(i.2) j(os) = o7
(ii.3) S —U{ai;;5=1,---,1} is connected, i; € {1,---, N}, if L < N;

(ii4) S — U{as;t = 1,---, N} has two components, Sy and Sy, each
one a surface of genus y with N deleted discs;

(ii.5) j(51) = Sa.

Theorem B . Let (S,j) be a y—hyperelliptic Riemann surface of genus
g > 2. Then there exists a Schottky uniformization (Q,G,m : Q@ — S) of
S reflecting the «y=hyperellipticity of S, that is, a y—hyperelliptic Schottky
uniformization of (S, j). Moreover, if j has fixed points, then there exist free
generators for G, say Ai,---,Ag, and a lifting J of j of order two such that
the fixed points of j are the projections of the fixed points of the fractional
linear transformations of order two J and Jo A;, fori =2v+1,---,g.

Remark 4. The first part of Theorem B, for v=0, that is, the hyperelliptic
case can also be found in the paper of L. Keen [11]. We can also construct
all the v—hyperelliptic Schottky groups, up to conjugation. This is done
after the proof of Theorem B in the next section.

Corollary 1. If (S, j) is a 2-hyperelliptic Riemann surface of genus three,
then S is necessarily hyperelliptic. Moreover, the hyperelliptic involution
on S is the lifting of the hyperelliptic involution of the quotient Riemann
surface of genus two.

Remark 5. There are many different proofs of Corollary 1 in the litera-
ture. We give a different one.



92 Rubén Hidalgo

Theorem C . Let (S,j) be a y=hyperelliptic Riemann surface of genus
g > 2. Assume j acts with fixed points on S. Then there there exists a
~v—hyperelliptic polygon P with associated Fuchsian group F, uniformizing
S, such that J(z) = —z is a lifting of the involution j to the unit disc U and
J(P) = P. Moreover, the fixed points of j are represented in the polygon
P by the origin (the center of P), the vertices of P and the midpoints of
the sides s1, - -, $9g—4~ (as In definition 5).

Remark 6. The case v = 0 was already thought of by E. Whittaker [16]
and solved by D. Gallo [5]. This case can be also obtained as an easy
application of Fricke polygons.

Theorem D . Let (S,j) be a y—hyperelliptic Riemann surface of genus
g > 2, and assume j to have fixed points. Let S be the quotient Riemann
surface of genus ~v obtained by the action of j on S.

(i) If 0 < N, M < « are fixed integers, then there exists a y-hyperelliptic
(N, M) hyperbolic polygon P with associated Fuchsian group F, uni-
formizing S, such that J(z) = —z is a lifting of j to the unit disc U
and J(P) = P. Moreover, the fixed points of j are represented in the
polygon P by the origin (the center of P), the vertices of P and the
midpoints of the sides s1,- -+, $24- 4.

(ii) Let R be any -y-hyperelliptic Riemann surface of the same genus g
as S, and let r : R — R be a y-hyperelliptic involution on R (hence
with fixed points). Suppose the quotient Riemann surface R/ < r >
is conformally equivalent to S respecting the branch points. Let P be
a y=hyperelliptic hyperbolic polygon for S with side pairing transfor-
mations T1, Ty, - - -, Tyy. Then there exist integers 0 < N, M < v and
a set of indices B = {i1,--+,in,J1, " *,jm} contained in {1, --,~},
such that iy # i ( respectively j; # jn), if k # t (respectively
I # h), such that the polygon P with side pairing transformations
Li, Ly,---, Ly, is a y=hyperelliptic (N, M) hyperbolic polygon for
R, where

L— T, if "1€{l,---,29g —4~} or i does not belong to B;
") JoTy, if i belongsto the setB

In this case J(z) = —z Is a common lifting of j and r to the unit disc

U.
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Corollary 2. Let (S, j) be a y—hyperelliptic Riemann surface of genus g >
2, and assume j : § — S acts with fixed points. Let F' be any torsion—free
group uniformizing S, and let xg be a lifting of any fixed point of j to the
unit disc U. If J is the lifting of j to U with z¢ as fixed point, and N, M are
integers, 0 < N, M < -y, then there exists a 4g-sided hyperbolic polygon P
satisfying all the conditions of a y—hyperelliptic (N, M) hyperbolic polygon
(Definition 6) except the invariance under the transformation z — —z which
is replaced by J—invariance. The polygon P is a fundamental domain for
F| and the fixed points of j are represented by xy (the center of P), the
vertices of P and by the midpoints of some 2g — 4+ sides of P.

Theorem E . Algebraic Characterization Non-Hyperelliptic). Let (S,j)
be a y-hyperelliptic Riemann surface of genus g > 2 such that, S is non-
hyperelliptic. Then S can be realized as a non-singular, irreducible alge-
braic curve C of degree 29 —2 in CPy_,, invariant under J € Aut(CP,_ 1),
such that j corresponds to the restriction of J to C, with

L 0
J={ 7
( 0 —Ig )

where I, means the identity matrix of rank n.

Theorem F . (Algebraic Characterization Non-Hyperelliptic). Let (S, j)
be a ~y-hyperelliptic Riemann surface of genus g > 2, such that S is hy-
perelliptic and j is different from the hyperelliptic involution. Then S
corresponds to the Riemann surface associated to one of the following hy-
perelliptic curves:

(1) W2=2(Z%-1)(Z22 —a1) -+ (Z% — ag_1); or

(2) W2 = (22 -1)(Z* - b1)---(Z% —b,), where a; # a; if i # j, by # b,
if s #t, and a;,b; # 0,1, co.

The y-hyperelliptic involution j corresponds to the lifting of J(z) = —z
via the natural projectionn : S — C given by the action of the hyperelliptic
involution.

4. Proof of Theorems A and B

Proof of Theoremn A. Let us apply Lemma 2 to the two sheeted holo-
morphic branched covering

m: 85— 8/ <j>.
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Case 1. The involution j acts freely

Let 71,1, m,2,- 17,1, My,2 be simple loops, as given in Lemma 2, with
associated symbol (1,0, ---,0). Now, proceed to cut the surface S/ < j >
along 772 to obtain a surface of genus v — 1 with two deleted discs. The
boundary is given by nb and 7y 5. Consider two copies of such surface and
proceed to glue them by gluing 171+’ o (respectively 7y ,) of one of them to
7.2 (respectively 771+, o) of the other. This gives an explicit construction of
the surface S, and the action of j is given by interchange of the two glued
surfaces above.

Case 2. The involution j has fixed points

Let 71,1, M2, 37,15 Thy,25 M1, M2, 72N be simple loops, as given by
Lemma 2, with associated symbol (0, ---,0). Consider simple paths (all of
them disjoint) «ay, ag, - -, an, satisfying the following properties:

(i) «; connects two different branch points;
(ii) s Nay = ¢, if © # J;

(i) oz Nk = ¢, for all 4, k,t.

Now, proceed to cut S/ < j > along the paths oy, asg, -+, an to get
a surface, say S7, with boundary, say a}L, a; R ,a?t,. Consider another
copy, say Ss, and denote its boundary by «;, ay,- -+, a)y, and glue them
together by gluing aj to a; in a such way that the points where they are
glue corresponds to the same point in s/ < j >. In this way we obtain
an explicit construction of the surface S, and the action of j is given by
interchange of the two glued surfaces above.

Proof of Theorem B. Let S be a closed Riemann surface of genus g
and let j:.S — S be a conformal involution with 2g + 2 — 4~ fixed points.
Denote by m : § — S/H the natural holomorphic (branched) covering
induced by the action of the cyclic group H of order two generated by the
transformation j.

Assume first j acts freely, that is, g =2y —1. In thiscase 7: S —» S/H
is unbranched and the genus of S/H, that is +, is greater or equal to 1.
Consider on S/H a simple loop a; given by the projection of the loops
a (B) of T orem A. This loop is a non-dividing simple loop. Complete
to a set of v homologically independent disjoint simple loops aj, -, a,
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on S/H. Now, consider the loops obtained by the liftings of these loops
to S. If we remove the loop (3 from this family, then we obtain a set of g
homologically independent disjoint simple loops, 1 = @, - - -, etay, such that
w(na) = 7(na+1) = ayg1, for L =1, v — 1. This family of loops define a
Schottky uniformization (Q, G, m : @ — S) of S (Retrosection theorem), for
which the involution j lifts. It is easy to see that the Schottky group G has
free generators Ay, - -, Ag, such that Aj is a lifting of j and 4, oAzloAl_1 =
Agiyq, forl=1,---,4 — 1. In figure 5(a) it is shown the case g = 3, v = 2.
Observe that we also can construct another Schottky uniformizations by
consider a set of homologically independent simple loops 41, -, 8, on S/ H
with the property that ¢; is disjoint from the loop a; above, for j = 2,---, 7,
and 67 intersects «; transversaly at exactly one point. Now, the liftings of
the loops 6;, 1 =1, ---,7, are exactly g homologically independent disjoint
simple loops g;, j = 1,-- -, g, with the property that 7(8y;) = 7(89141) =
bi41, for I = 1,---,y =1, and j(61) = f1. The loops §;, j = 1,---,9,
define a Schottky uniformization (2,G,7 : @ — S) of S, for which the
involution j lifts. In this case we can find a lifting J of order two and a
set of free generators for G, say By, -, By, satisfying Jo By = Bjo J,
JoByodJ =By, forl=1,---,v—1. In figure 5(b) it can be seen the
case g =3, vy = 2.

Assume the involution j has fixed points. Denote by p;, i =1,---,2g+
2 — 4+, the fixed points of j. Set P, = n(p;) and H =< j >. By Theorem
A, we can find, on S/H, a set of v homologically independent disjoint
simple loops, aj, -, a,, all of them disjoint from the points P;, for all j,
such that they lift to loops on S via the branched covering 7 : S — S/H.
Now consider disjoint simple paths, also disjoint from the above loops,
say (1, -, Bg+1-2v, such that §3; connects the points Pp;_1 and P,;, for
j=1,---,9+1—2/gamma. If we consider the liftings of the loops «; and
the paths ﬂ}, fori=1,---,vandj=1,---,9—2v, weobtainon S aset of g
homologically independent disjoint simple loops, a;k, Bj1, fori=1,--- 7,
k=1,2andj=1,---,9—2v,suchthat m(a;1) = m(cy2) and j(6;1) = Bj,1.
This set of loops defines a Schottky uniformization (Q,G, 7 : Q@ — S) of S,
for which j lifts. Moreover, there is a lifting J of order two and a set of free
generators A1, -+, A2y, B1, -+, Bg—2+, for G such that Jo Ag;_j0J = Ay
and Jo Bjo = Bj‘l, fori=1,---,yand j =1,---,g —2y. In figure 5(c)
can be seen the case g = 2, v = 1. From our construction it is easy to see
our claim on the fixed points of j.
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FIGURE §

Proof of Corollary 1 By Theorem B, we can uniformize S by a Schot-
tky group GG with generators A;, Ay and Aj satisfying the following prop-
erties:

(i) JoAjoJ = Ay,
(ii) Jo Az o J = As,
where J is a fractional linear transformation of order two. The quotient

Riemann surface of genus two, obtained by the action of the 2-hyperelliptic
involution, is uniformized by the group K =< G, J >.
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Normalize the groups in such a way that the fixed points of A3z are 1
and —1, and the fixed points of A; are r and —r, for some r. To see this
normalization, consider the Lie bracket of A3 and A1, thatis, E = Az0A; —
Aj o A3. Simple computations show that E2 = J and Eoc 4;0 E = A7 1
for ¢ = 1,3. Now, normalize such that the fixed points of F are 0 and
co. In this case F(z) = —z, the fixed points of A3z are p and —p, and
the fixed points of A; are g and —gq, for some p and q. Now conjugate
with the transformation T'(z) = z/p to obtain the desired normalization.
Since the fixed points of J are the same as for Az, J becomes under this
normalization the transformation J(z) = 1/z.

The general form of a fractional linear transformation with ¢t and —t as
fixed points is given by the matrix

U =Ut
1/2 ( =-U/t u ) '
where U? = u? — 4, and u? is the square of the trace of such an element.
Since the fixed points of A, are 1/r and -1/r, we have:

A = 1/2(_;/T *er>’
o= 5 )

_ y Y
w3 7))

where X2 =22 -4 and Y2 =92 — 4.

This is an hyperelliptic Schottky group [11], with the hyperelliptic in-
volution represented by E(z) = —z.

Observe that E = A;0A; — Aj0 A;, for 1,7 € {1,2,3}, ¢ # j. Since the
group < G,J >=< Aj, Az, J > uniformizes the quotient Riemann surface
of genus two, is easy to see that F is a lifting of the hyperelliptic involution
of such a surface. This fact implies the second part of the corollary.

5. Explicit Construction of y—Hyperelliptic Schottky Groups

Let (,G,m : @ — S) be a «y-hyperelliptic Schottky uniformization of
the y—hyperelliptic Riemann surface (S, j) of genus g. It is a well known
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fact that the conformal automorphisms of the region of discontinuity of a
Schottky group are linear fractional transformations [1]. Denote by K the
group obtained by lifting the cyclic group H generated by j. Then G is
a subgroup of K of index two and, in particular, it follows that K has no
parabolic elements, is geometrically finite (so finitely generated) function
group, and has the same region of discontinuity as G.

Denote by X the surface S/H and by 7; : S — X the natural two
sheeted covering induced by H. We consider two cases, that is, when the
involution j either has fixed points or not.

5.1. The involution j has fixed points

By Theorem A, we can choose a simple loop [ on X bounding a topological
disc R containing all the branch values of 7, satisfying the following.

(1) The loop ! lifts to two disjoint simple loops /; and I on S;
(2) S - { l2} = S] U 52 U 53, where ](S]) = 52 and ](53) = 53.

As a consequence of Proposition 1, we have that the loop [ lifts to a
simple loop on §. Fix one connected component I of (w1 o 7)~(1), and
denote by Y the complement of the topological disc R, that is, X = RUY
and RNY =[. Observe that the liftings of Y on S are S; and Sy, and the
lifting of R is S3. Let £; and 2y be connected components of (m;7)~1(Y)
and (m7) " 1(R), respectively, with I as common boundary. Denote by G;
and Gy the stabilizers of ; and 0y in K, respectively. One can see that K is
necessarily the free product of G; and G (as in Klein-Maskit Combination
theorem I in [13]). Since 71 : S} — Y is one-to-one, we have that G is a
subgroup of G. In particular, G, is a Schottky group of genus 7. Let Ay,
k=1,---,7, be free-generators for G; and choose a standard fundamental
domain for it, inside §2;, with respect to these generators.

Proposition 1 gives us a natural pairing of the branch values of 7, as
we observed long before. We may assume that the branch values of 7
are Py;_1, Py, for i = 1,--+,g+ 1 — 27y, where Py; 1 is paired to Py;.
Let a;, ¢ = 1,---,9 + 1 — 27, be disjoint simple paths contained in R
such that, a; connects Py;_1 and P;. The liftings of ; to the region §
are disjoint simple loops, each one invariant under an elliptic element of
order two which interchange the two topological discs bounded by such a
loop. We can choose exactly one loop for each i in {29 such that ! and
these loops bounds a common region of connectivity g + 2 — 2. Denote
such loops by Cs and by Js the elliptic element of order two as above,



~-Hyperelliptic Riemann Surfaces 99

s=1,---,9+1—2v. The group G2 is a free product of the cyclic groups of
order two generated by those elliptic transformations. In this way we obtain
an explicit construction of K (see figure 6 for g = 2, v = 1). Algebraically,
K has the presentation

K:<Al>*...*<A7>*<J1;J12=]_>*..-*<Jg+1_27;J!]2+1_2,Y:1>,

where A; belongs to G. Since G has index two in K and J; does not
belong to G (since G is torsion free), we have that J; o J; belongs to G,
for s = 2,---,9 +1 — 2v. The group G is generated by A;, J; 0 A;0 J;
and JjoJs, i =1,---,vyand s =2,---,g+ 1 — 2. These are in fact free
generators and there is a standard fundamental domain for this generators
invariant under J; as it is shown in figure 7.

5.2. The involution j has no fixed points

We have two possibilities for K; either it is torsion free or has elliptic
elements.

O

“Cl Ox

Fioure 6. The group i
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O
O /J.A‘J.

FIGURE 7. The group G

5.2.1. The group K is torsion free

Since K cannot have parabolic elements, K is necessarily purely loxo-
dromic, geometrically finite, finitely generated function group, with the
same region of discontinuity as a Schottky group. As a consequence of the
classification of finitely generated function groups [14], we obtain that K
is necessarily a Schottky group of genus v. Let Ay, ---, A, be any set of
free generators for K. Since G has order two in K, then either A; belongs
to G or A? does it. Clearly, some of the A; cannot be in G, otherwise
K = G. We may assume A, does not belong to G. If some A; does not
belong to G (j < ), then we replace A; by A; o A, which now belongs
to (7. After these changes we still having a set of free generators for K,
but now A; belongs to G, for i = 1,---,4 — 1. Let us consider the group
L generated by the elements Aq,---, A,_1, A,YAlA,;l, cee A,YAW_]A;l and
A?Y. The group L is a normal subgroup of index two of K and contained in
G. As a consequence, the groups G and L are the same. Choose a standard
fundamental domain D for K with respect to the above generators. We
obtain a standard fundamental domain for G with respect to the above
generators as D U A, (D) (see figure 8 in the case g = 3, v = 2).
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FIGURE 8. The groups K and ¢ in the torsion free case

5.2.2. The group K has torsion

In this case, every elliptic element has order two, the product of any two of
them is an element of GG, and they commute with some loxodromic elements
of G.

The region of discontinuity of K is connected (the same as for G) and
K is a finitely generated, geometrically finite function group. By the classi-
fication of finitely generated function groups, K is constructed from cyclic
loxodromic groups and cyclic groups generated by involutions, in such a
way that every such involution commutes with some loxodromic element
of the resulting group. One can check that such a group K is obtained in
the following way. let Jy, I3, -+, Ix, be a finite family of index set, such
that v = ord(J1) + ord(I1) + 20rd(I2) + - - - + kord(I;), where ord(B) de-
notes the cardinality of B. Write J1 = {j1,--,4s}, Is = {t51, ", 4y 105) }-
We consider a loxodromic element A, , for each j, € Ji, s involutions
Tiy il 5 Tig sy and s loxodromic elements C; , G, m,s» Such that
Cigmr ©Tigmr 0 Cy, M mr+1, T+ 1 modulo s, for each iy, € I, and
such that there is a fundamen’cal domain P, for the group generated by
these transformations, as shown in figure 9.

By changing C; by C, ..r0T;, ..r+1, if necessary, we may assume it
belongs to G. We may also change A;, by A;, oT;, 1, some s, to assume
that it also belongs to G. Observe that for each of the above changes we
can modify our domain P in such a way that we get a new fundamental
domain as in figure 9 for the new generators.

sm,]’”

9, m,T
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Frstme & The ghanp &

Let ¢ be the smallest s for which ord{l;) is not zero. Now it is easy
to see that (G is generated (and free generated) by the elements: A; ,
Cipro A 0Ciin, Gy gy T o Tiy 0 Tin o Ty g = 1,407,
my = 1,8, v, = 1, Iy, ft = 2,4, fl =1L g=1-1
s=1t -k, l=F+1,---,k (See figure 10 in the case g = 3, vy = 2).

In this way we get all possible v+—hyperelliptic Schottky groups, up to
conjugation.

(N (2) ()

Fusvnge 100 Thee g & il £ Ten g - Aoard = - 2
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6. Proof of the Theorems C, D, E and F
In this section, we give the proofs of the resting theorems.

Remark 7. Observe that the second part of the above Corollary is also a
consequence of Theorem A (part (i) with v = 2) and a theorem of Haas
and Susskind [6].

Proof of Theorem C We construct a particular 4g—sided y-hyperelliptic
polygon in the unit disc U. We apply Lemmas 2 and 3, and Ahlfors—Bers
theorem to obtain a torsion free Fuchsian group F, uniformizing S, and such
that J(z) = —z is a lifting of the v-hyperelliptic involution j to U. Using
the continuity arguments of ¢y, for a Beltrami coeflicient p (Ahlfors—Bers
theorem), we show that F has a y-hyperelliptic polygon as fundamental
domain.

Construction of a y—hyperelliptic polygon with 4g sides

Subdivide the unit disc U by lines R, -, Hy, through the origin, such
that the angle between R; and R;; ) is 2n/4g. Set ) be the real axis. See
figure 11 in the case of g = 2.

FIGURE 11. Configuration of the lines 1y, 16, 1ty 12y, genns tw
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For each r, 0 < r < 1, choose points r;, —r; in R; such that | r; |= 7,
and construct the strictly convex non-Euclidean polygon P, with vertices
r; and —r;, for 1 =1,---,2g. See figure 12.

~

'
RIS R

Freure 12 The polygon P i genns two

The interior angle «, at any vertex of P, strictly increases from 0 to
7w — 27 /4g as r decreases from 1 to 0. In fact, for given r, consider one of
the triangles A = (0, 7;, 7:41). The area of A is equal to 7 — 27 /4g — «,.
Since the area of A goes to zero in a decreasing way as r approaches zero,
the angle . must approach in an increasing way n — 27 /4g.

As a consequence, the sum of all the interior angles of P,, 6, = 4ga.,
strictly increases from 0 to 4g(w — 27 /4g) as r decreases from 1 to 0. Since
g > 2, we have that 4g(m — 27/4g) > 27. By continuity, there exists a
nnique 7y for which 6,, = 2m. Set P, = P*. We label the sides of P* by
1, 81, (in counterclockwise order).

Let M} be the elliptic element of order two keeping invariant the geodesic
containing the side s} of P* and fixing the midpoint of s}, fort=1,---,2g,
and set L(z) = ¢"/9z. Define fractional linear transformations T}, for
i1=1,---,2g, as follow (see figure 13):



T,;
T2*g~ 4v+2t—1
T2*9747+ 2t
ng—2«/+2t-1
T2*g—27+2t
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= JoM], for
_ *
= LoMy, 4193 for
. *
= L @] M29_4,7+2L_2, f()r
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= J o] T2*974'Y+2t O J, f()r

Continuity Arguments

S'. _ (S:)"
s gt
y > (s')

.
Spe — { soy!

g = 3 and 5

1=1,---,2g9 — 4.
b=1,---,7.
=1, .
t=1,--,7.
b=1,,7.

Let F* be the group generated by the fractional linear transformations 7},
for i =1,---,2g. Poincare’s theorem [13], asserts that F™* is a torsion free
Fuchsian group with P* as fundamental domain and with the following

presentation:
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F* = <717, - T huilgug =1 >, where
’y * *

L = HI[T29—27+25, T3g_9y12s-1);
§=
’y g all *

ly = H [F29—4"/+23’ T‘Zg—4’y+2s—l])

$=1
uy = Tig—ti’y(T?*g—M—l)_l,”'a(Tg)_lTE(Tf)#lv

uy = (T2*g747)_1T2*gf4’y—17'"aTg(TE)_lel:

where [A,B|= Ao Bo A7 1o B71.

From the above construction, we see that F* is an index two (so nor-
mal) subgroup of the Fuchsian group < J, F* >, where J(2) = —z. A
fundamental domain for such group is given by the convex non-Euclidean
polygon Fy determined by the sides 7, -, s3,, and RN P* (see figure 14).

Ircere L The polygow £y i pens two
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The transformations JoTY, . Jo T3, 4y, 155 aq415" s L2g_9, and J
generate the group < J, F* >. These transformations are the side pairing
of the polygon Fj (see figure 15).

Figure 15. The side pairings of I for ¢ = 3 and v =1

The transformation J(z) = —z induces a y-hyperelliptic involution j*
on the closed Riemann surface U/F™*, of genus g, whose quotient by j* is
the closed Riemann surface U/ < J, F* >, of genus 7,' with branch values
the projection of the fixed points of j*.

By Lemma 2, we can find a set of smooth simple loops on U/ < J, F* >
and S = S/ < j >, respectively, satisfying the properties described in
Lemma 2. As a consequence of Lemma 3, we can find a quasiconformal
homeomorphism

f:U/ <JF*>= 8,

sending the special loops on U/ < J, F* > onto those on S, and the branch
points on U/ < J, F* > onto the branch points on S.

The map f defines on Fj a function u(z) (locally, u(z) = f;/f.), and
we can extend it to all of the unit disc U using the group < J, F’* >. The
Beltrami coefficient i constructed in this way is a Beltrami coefficient for
< J,F* > and, in particular, for F™*. Let W), be the unique solution of the
Beltrami equation

oW, /0% = OW,. )z,
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normalized by W, (0) = 0, W,(1) = 1 and W, (i) = i (Ahlfors—Bers theo-
rem). We obtain the following:

(i) WyoF*o (Wu)_l = F is a Fuchsian group;
(if) Wyodo (WM)‘1 =J;
)
)

(iii) F uniformizes the Riemann surface S

(iv) Jis a lift of j to the unit disc U.

Let us rename the vertices of P* by a1(0),- -, a4¢(0), in counterclock-
wise order such that, a1(0) = ro. Let 0 < t < 1, and consider tu,
which is again a Beltrami coefficient for the group < J, F* >. Define
Fr=WyoF*o (Wt“)‘1 which is a Fuchsian group, isomorphic to F*, and
uniformizing a closed Riemann surface S; of genus g. The map W;, cor-
responds to the unique solution of the Beltrami equation for the Beltrami
coefficient ty:. In this notation Fy = F* and F} = F. Define P, as follows.

(i) Set a; = Wiu(a;(0)), fori=1,---,4g.

(ii) Let s;(t) be the geodesic arc joining a;(t) to a;41(t), ifi=1,---,4g—1,
and let s44(t) be the geodesic arc joining ase(t) to ay(t).

(i) The side s;(t) is oriented from a;(t) to a;41(t).
his way we obtain a closed polygonal curve v, = s1(t) U - - - U s44(t).
(iv) Define the angle a;(t) at a;(t) as follows.

(iv.1) a;(t) =0 if a;(t) € s;—1(t) (see figure 16).

ou‘__l(t)

[QTHUTT
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(iv.2) a4(t) = 7 if a;-1(t), a;(t) and a;41(t) lie in the same geodesic and
a,;_l(t) < a,;(t) < a,;+1(t) (see ﬁgure 17)

a;., (k)

Fiaure 17

(iv.3) If we are not in one of the above cases, we consider 7;(t) = s;-1(t) U
si(t) with the orientation given above. Then define «;(t) to be the
angle measured from s;_1(t) to s;(t) at a;(t) at the left side of ~;(t)
(see figure 18).

Qiu(*)

a; &)

i (8) (b) otV = O

[BTHRTN TS



110

Rubén Hidalgo

Claim.

(1)
(2)

The limit of any convergent sequence of strictly convex polygons
is either a convex polygon or a geodesic.

The closed polygonal curve v, defined above is J-invariant, for
J(z) = —=z.

This a classical result and we do not prove it here. Define by P; the
polygon bounded by the curve 7, (not necessarily a regular one) set

A = {t € |0,1];~; is the boundary of a v —hyperelliptic polygon }.

(i)
(i)

(i)

The set A is not empty since ¢ = 0 belongs to A.

Let ty € A. If t is close tg, then the continuity of Wy, on ¢
implies that +; is close to y;,. Since -y;, bounds an strictly convex
hyperbolic polygon, If we chose t close enough to ¢y, then =, also
will bound a strictly convex hyperbolic polygon. It is easy to
see, by the construction, that P, is J-invariant, and that the
fractional linear transformations

Tl(t) = Wtﬂ' (o] 71; o] (Wtu)_l

identify the sides of F; in the same combinatorial way as the frac-
tional linear transformations 7} identify the sides of P;*. This
implies that the sum of the angles of P; must be of the form 2k,
for some integer k. Using the fact that Zg ; @i(t) is a contin-

ms function on t, and that Z?i 1 @i(to) = 2m, we obtain that

?i 1 i(t) = 2m. The same continuity argument shows that for
t very near to tg, we must have 0 < «;(t) < m. Thus, v is a
~-hyperelliptic polygon. As a consequence, the set A is an open
subset of the closed interval (0,1] = {t;0 <t < 1}.

Let t,, a sequence of points in A converging tot. For n sufficiently
large t, is very near to t, so by similar continuity argument as
in (i), P, is very near to P;,. The above Claim asserts that P, is
either a convex polygon or a geodesic. Assume P, is a geodesic,
then the group F;, = W, o F* o (W,,)"! keeps invariant such a
geodesic. In particular, the limit set of F; is contained in the
set of end points of this geodesic. Thus, F; is an elementary
group. This a contradiction, since by construction the group
I} uniformizes a closed Riemann surface of genus g. It follows
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that P, is in fact a convex hyperbolic polygon. Since the sides
of this polygon are paired in the same combinatorial way as the
sides of Fp, the sum of the angles of P; must be of the form
2kw, for some integer k. The continuity of E;‘i  i(t) and the
fact that Eg] a;(t,) = 27 implies that E;‘i yai(t) = 2m. The
J—invariance of P, the fact that a;(t) > 0,fori=1,---,4g, and
the above observation on the sum of the interior angles imply
that 0 < a;(t) < 7. As a consequence, P, is a y-hyperelliptic
polygon, and A is also a closed subset of [0, 1].

Now, (i), (ii) and (iii) imply that A = [0,1]. In particular, F' has a
~-hyperelliptic polygon as a fundamental domain.

Proof of Theorem D

(i) The proof is the same as for theorem C.

(ii) Let P be a ~v-hyperelliptic polygon for a Fuchsian group F
uniformizing the surface S as in the hypotheses. Choose in-
tegers N, M such that, 0 < N, M < «, and integers iy, -, 1y,
J1,° "+, Jm such that ix # 4; (respectively j, # j,) if k # | (respec-
tively if r # s). Define the side pairings T;(N, M, 14y, - ,in,
J1,,im) = T'; as follow:

(a) T, =T, fori=1,---,2g — 4.

if ¢ does not belong to

{ir, -y in}

JoT5y 4y42t-1 otherwise

Tog—ay+2t-1
!
(b) T'2g—4y+2t-1 =

if tdoes not belong to
{j]) T 7jM}5
Jo Ty 4y4ot otherwise

d) T'90_9ys1ty = J 0 Tag_ays1ny © J, for I(t) of the form 2t — 1 or 2t.
g—27+i(t) g—4y+1(t)

Tos_
(c) T'og—ays2t = 2g-dy+2

Apply Poincare’s theorem to the polygon P and the side pairing
defined above to obtain a torsion free Fuchsian group
F(i1,-+-,iN,J1,-*,Jm), Which is a normal subgroup, of index two,
of < J, F >, uniformizing a closed Riemann surface of genus g. We
obtain in this way 22”7 non-conjugated (in < J,F' >) torsion free
Fuchsian groups . This is exactly the number of non-equivalent two
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sheeted coverings of a closed Riemann surface of genus v with the
same branch locus.

Proof of Corollary 2 Let S, j: S — S, F, J: U — U and zg be
as in @ hypotheses and let mg : U — S be the universal covering
of the surface S with F' as covering group. Denote by pg the point
mr(xg). By Theorem D asserts we can find a y-hyperelliptic (N, M)
hyperbolic polygon P with associated Fuchsian group G, uniformizing
S, such that 0 is a lifting of pg and with B(z) = —z a lifting to U
of j. Since G and F uniformize the same Riemann surface S, there
exists a fractional linear transformation H, fixing the unit disc U
such that, mp o H = mg. Since H(0) must be equivalent with xg,
we can find an element f in F such that, f~1(z¢) = H(0). As a
conse: ence, f o H(0) = ¢ and f o H also makes the diagram, in
figure 3, commutative. Thus, we may assume that H(0) = x,.

(i) Ho Bo H™! is a fractional linear transformation of order two
fixing ¢ and keeping the unit disc U invariant. Since there is
only one such a transformation, we obtain Ho Bo H™! = J.

(ii) H(P) is a hyperbolic polygon as desired.

Proof of Theorem E If V is finite dimensional vector space and h :

V — V is an isomorphism of order two, then we have a decomposition
V=Wt@W~, where

Wt ={veV;h(v)=v} and W™ = {v € V;h(v) = —v}.

In our case, V = HY%(S, C) and h is the isomorphism induced by the
~y-hyperelliptic involution j : S — S. We need to check the right di-
mensions of W* and W~. The subspace W+ corresponds to the holo-
morp] : differential forms on S/ < j >, that is, H%(S/ < j >, C),
which as dimension 7. Since the space H:%(.S, C) has dimension g,
the space W™ has dimension g — 7. Choose basis wy, - - -, w., for W+
and w441, -+, wy for W™. Now we can apply Theorem 2.

Proof of Theorem F Apply Lemma 4 to the group A generated
by the yhyperelliptic involution j : S — S and h : § — S is the
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hyperelliptic one. If j # h, then A is the lift of a cyclic group of order
two. Up to normalization, we may assume that group to be generated
by J(z) = —=z.

The Weierstrass points of S are projected onto a set R, consisting of
exactly 2¢g + 2 points, invariant under the involution J. We have the
following possibilities:

(i) If 0 and oo belong to the set R, then the surface S is represented
by the hyperelliptic curve

W?=Z2(Z* - 1)(Z* —a1) - (2% —ag-1),
where a; # a; if © # j and a; # 0,1,00. Here R consists of the
points 0, oo, 1, —1, a1, -+, aq_1.

(ii) If 0 and oo are not in this set of points, then the surface S is
represented by the hyperelliptic curve

W?= (22 - 1)(Z% = b)) --- (2% - b,),
where b; # bs if s # ¢ and b; # 0,1,00. Here R consists of the
points 1, —1, by,- -, bg.

The hyperelliptic involution is given by
W —- W
7z — Z [

The Marked Schottky Space of Genus g and the I'“Hyperelliptic
Schottky locus

In this section, we define the marked Schottky space. We describe a
locus of those marked Schottky groups which nniformize y—hyperelliptic
Riemann surfaces and reflect their y-hyperellipticity. This part is di-
rect consequence of Theorem B.

Definition 9. Let (Gy; Ay, ---, Ag) and (Gq; By, -- -, By) be two marked
Schottky groups of genus g. We say that they are equivalent if there
exists a linear fractional transformation H satisfying

HoA;=B;0oH, fori=1,---,g.

We define the Marked Schottky Space of genus g, denoted by Sy, as
the set of equivalence classes of marked Schottky groups of genus g.
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To a loxodromic transformation A we have three related objects; its
repelling fixed point 7(A), its attracting fixed point a(A) and the
square of its trace (up to a sign) t(A). The transformation A is
uniquely determinated by such a triple.

We have a map
®:8, - C¥3

This map is given as follow. Let (G; A;,- -, Aq) be a marked Schottky
group of genus g. We can find a unique equivalent marked Schottky
group such that 7(4;) =1, a(A;) = —1 and 7(A43) = —a(A;). In this
way, the map ® is defined by

(t(Al), Tty t(Ag), a(Ag), ’I‘(A3), a(A3), veey
B(G; Ay, Ay) =
(G0 dg) r(Ag),a(4;))
= (tla'"7tgaa2,r3aa3a"'1rgaag)'

It is very well known that the image under ® of the marked Schottky
space of genus g is an connected open set of C3973.

D. He al [7] have shown that the marked Schottky space of genus g
is also a domain of holomorphy.

Using 1e above normalization and Theorem C, we get the following
parametrization of y—hyperelliptic Schottky groups in the Schottky
marked space. Observe that in the particular case of v = 0 we obtain
the same parametrization given by L. Keen in [11].

Theorem 3.

(1) The sublocus of the marked Schottky space defined by the (3g—
+ '2 equations

to; = taiy1;
ToiT2i+1 = 1,
a%azy1 = 1;

fori=2,---,(g—1)/2, consists of Schottky groups which repre-
sent closed Riemann suifaces having a conformal automorphism
of order two acting freely. The involution above is represented

by
0 i
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The sublocus of the marked Schottky space of genus g defined
by the g + v — 2 equations

r;=—a;, for i=3,---,9— 27

tg—oy+i = tg—yti, for i=1,--- 7
Tg-2y+i = —Tg—nti, for i=1,--- 7;
Qg-2y+i = —Qg—nti, for i=1,--- ]

consists precisely of those marked Schottky groups which repre-
sent closed Riemann surfaces having a conformal automorphism
of order two with 2(g — 2y + 1) > 4 fixed points. The above
involution is represented by

=(s %)

The sublocus of the marked Schottky space of genus g defined
by the 3y — 2 equations

to; = 9.1, for 1=1,-,
T2iT2i-1 = T, for i=1,,7
a9;a9;—-1 = T, for i=1,-,7;

consists precisely of those marked Schottky groups which repre-
sent closed Riemann surfaces having a conformal automorphism
of order two with two fixed points.

The above involution is represented by

0 irl/2
J =
i/r/2 0
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