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Abstract 

Por bilincar control .systerns x = Ax + uBx, x E R 2 , A and B 
2 x 2 matrices, neccssary and sufficient conditions are gzven for the 
contro//ability on R 2 -{0}. The method is through Lie theory, andfol­
low.~ the program outlincd by this thcory whzch consist.~ zn finding first 
thc connectcd subgroups of thc group Gl(2) of al/ invertib/c matrzces 
which are tran.sitzve on R 2 - {0}, and then look at thc subscmzgroups 
of thesc subgroups which are transitivc. A detailcd and nearly sclf 
containcd cxpo.sition of thc dctermination of thc transitivc subgmups 
zs prc.~entcd. Jt turns out that they are Gt+(2), S'l(2) and thc commu­
tatzve group of nonzero complex numbers. Contro//ability zs analysed 
by con.sidering thesc groups separatc/y. In thc case of S'l (2) the con­
trollability is decidcd with thc aid of a rc.su/t of {15} about scmigroups 
in semi-simple Lic groups. A self containcd proof spccific for S'l(2) 
z.~ prcscntcd. Thzs case by case analysis rccovcrs thc nccc.s.sary and 
sufficicnt conditions givcn by Lepe and loó and Tuan (.~ec {10}). 
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l. Introduction 

The rontrollability problem of control systems prowd to be OIH' of thP diffi­
cult problems in the geometric theory of control systems. IndePd, if for thP 
linear systems there are simple criteria, such as the Kalman rank condition 
( see for example [20]), for nonlinear systems there are ouly a few si t uations 
where simply verified necessary and sufficient conditions are available. At 
this regare! we mention the already classical results by .JurdjPvic and Suss­
mann [11], about right invariant systems on compact LiP ¡?;roups aud by 
Lobry [14] (see also [16]), about systems whose vector fields have a dense 
set of recurren! points. For these systems the Líe al¡?;ebra rank condítiou 
turns out to be a necessary and sufficient condition for controllability in 
case it is assumed that the system is analytic. \Vith the devPlopuwnt of 
a geometric theory of semigroups (see the books �[�7�]�,�[�~�]�)�.� new methods in 
the study of controllability of invariant systems on LiP groups WPre dis­
covered. By applying one of these methods Hilgert, Hofmann and Lawson 
[6] studied controllability on salvable and nilpotent LiP ¡?;roups. obtaining 
a necessary and sufficient condition in the latter case. Controllability in 
nilpotent groups were studied also by Ayala [1], using different methods. 

The purpose of this paper is to present a detailed analysis of the con­
trollability of a two dimensional bilinear system 

( 1.1) x = Ax ⬠uBx 

with unrestricted control u ER. Here x E R 2 and A and B are 2 x 2 
matrices. The controllability of general d X d bilinear systems were studied 
elsewhere with partial answers. Sufficient conditions were ¡?;Íven in the 
seminal paper by .Jurdjevic and Kupka [12], which were afterwards extended 
to controllability on semi-simple Lie groups (see [4, S, U. 19]). By piecing 
together these results with the determination of the transitive groups on 
Rd-{O} (see [2, :m, further sufficient conditions are achieved. The specific 
case of two dimensional systems were studied by Lepe and complemented 
.Joó and Tuan (see [10]). Here we take a different route from these authors 
and anal y se the cases according to the Lie alge bra genera ted by the matrices 
A and B. At the final we recover the necessary and sufficient conditions 
given in [10]. 

In our approach to controllability, we consider piecewise constant con­
trols. Then it is well known that ( 1.1) is controllahle if and only if the 
semigroup 
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of transitive groups. Two groups in this class are conjup;ate to each 
other by an invertible matrix which is given by the choice of different 
basis in R 2 . 

lt is not hard to check that these algehras and groups ar<:' indeed tran­
sitive on R 2 - {0}. We have 

for 砣传

and 

( �~� �-�~�y� ) ( �~� ) ( �~� ) for 礣传

so that the orbit of (1, O) under Sl(2) is R 2 - {0}. Consequently this 
group and Gf+(2) ::) Sl(2) are transitive on R 2 - {0}. The transitivity of 
S0(2) x R+1 follows from 

for vE R 2 - {O} where ⠩ is the angle between 瘠and (1, 0). 
The proof that these are the only transitive groups requires some lem­

mas. We start with the following well known fact about two dimensional 
subalgebras of sl(2). 

Lemma 2.1. 䱥琠g e sl(2) 扥 a 獵扡汧敢牡 睩瑨 dim g = 2. 周敮 瑨敲攠
數楳瑬椠a 扡汩楬椠⠳ 潛 R 2 獵捨 瑨慴 瑨攠浡瑲楣敬椠潛 瑨攠汩湥慲 浡灬椠楮 g 睩瑨 
牥獰散琠瑯 ꄳ are 潛 瑨攠form 

( �~� �~�a�)� 
Proof. Since dim g = 2, gis salvable. Let us check that gis not abelian. 
Put 

(2.1) H = ( �~� �~ �1� ) , P = ( �~� �~� ) , 儠= ( �~� �~� ) · 

These matrices form a basis of sl( 2 ). Their brackets are giv<:'n by 

[H,P] = ㉐Ⱐ [H,Q] = ⴲ儬 [P,Q] 㵈⸠
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LPt X and X' be such that [X, X'] = O and write X =aH+ bP + cQ and 
X'= a'H + b'P + c'Q. ThPn 

[X, X']= (be'- cb')H + 2(ab'- ba')P + 2(ca'- ac')Q. 

The condition [X, X']= O implies that be'= cb', ab' = ba' and ca'= ac' so 
that X and X' can not be linearly independent. This shows that there are 
no abelian two dimensional subalgebras in sl(2) so that gis not abelian. 

Hence there is a basis {X, Y} of g such that [X, Y] =Y. Also, by the 
Theorem of Lie on salvable Lie algebras, there exists a basis of C 2 such 
that the complexifications of the elements of g are written in this basis as 

In this representation, the diagonal entries of Y are zero because [X, Y] = 
Y. Therefore, Y 2 =O so that there exists a basis ji of is of R 2 such that 
with respect to (3, Y is upper triangular with zeros on the main diagonal. 
Using again the fact that [X, Y] = Y one gets quickly that X is also upper 
triangular with respect to ¡i showing the lemma. O 

The line spanned by the first element in the basis ¡i daimed by this 
lemma is invariant under g. Hence this lemma shows at once that there 
are no two dimensional transitive subalgebras contained in sl(2). Since one 
dimensional subalgebras are not transitive (becausP dim(gx) :::; dim g), and 
di m sl ( 2) = 3 we get 

Corollary 2.2. sl(2) ís the only of its subalgebras which is transitive. O 

We look now at the transitive subalgebras which are not contained in 
sl(2). Every 2 x 2 matrix A can be written as 

A= A- -1 + -1 ( 
tr A ) tr A 
2 2 

so that gl(2) decomposes as 

(2.2) gl(2) = sl(2) ttJ Rl. 

We use the notation z = Rl to indicate the center of gl( 2 ). Because of this 
decomposition of gl(2), any subspace V C gl(2) containing z decomposes 
as V= z ffl (sl(2) n V). With this in mind, we have the following lemma 
which characterizes the two-dimensional transitive subalgebras which con­
tain z. 
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Lemma 2.3. Take X E sl(2) anrl suppose that g = RX cb z is transíti\·e. 
Then gis ísomorphíc to so(2) cb z. 

Proof. The assumption that gis transitive implies that. X ⺡㭯 and sinre 
trX =O, its real .Jordan ranonical form is onP of the followinp; 

( 
愠 O ) 
O -a ( 

o 1 ) o o 

In t.he first two cases the matrices in g are upper �t�r�i�a�n�~�u�l�a�r� in a ssuitable 
basis of 刀㈠ so that g cannot hP transitivP. lt remains thP third casf', but 
thPn gis isomorphic to so(2) as claimed. O 

Corollary 2.4. The two dínwnsíona/ transitive subalgebras are ísomorphíc 
to so(2) d·J z. 

Proof. Let g be transitive with di m g = 2. lf g n:: ⺡㬠{O} tlwn we 
arP in the situation of the above lemma lwcanse di m z = l. Otlwrwise, Iet. 
1r be the projection of gl (:2) onto si (2) according to the decomposition 
( 2.2 ). Then di m 1r (g) = 2 so that the elemPnts of 1r ( g) are u pper 
triangular matrices in some basis by Lemma 2.1. This impliPs that the 
elPliiPnts of g are also upper triangular so that g is not transitive. 

Concerning the three dimensional subalgebras containing z, WP ha.VE· 

Lemma 2.5. Suppose that g = h ft; z where h ís a subalgebra ofsl(2) o[ 
dimension 2 and z is as above. Then g is not transitive. 

Proof. By Lemma 2.1 there is a basis such that the elements of h are 
upper triangular. In this basis, the Plements of g are also npper triangular 
so that this algebra is not transitive. O 

Now, let g be a transitive algebra with dimg = 3. By the abovP lemma, 
z is not contained in g and since dim z = 1 it happens that g n z = {O} 
which implies that 

gl( 2) = g ffl z. 

However, sl(2) is the only subalgebra which complements z. In fact, taking 
the basis {H, P, Q} as in (2.1), the fact that g complements z <'nsures the 
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existence of reals h, p and q such that H' = H + hl, P' = P + pl and 
Q' = Q + ql are in g. The brackets between these matrices are 

[H',P'] = 2?, [H',Q'] = -2Q, [P',Q'] = H 

so that si( 2) e g, and these algebras coincide beca use they ha ve the same 
dimf'nsion. We havf' thus that 

Lemma 2.6. sl(2) is the only three dimensional transítíve Líe algebra. O 

With this lemma Wf' con elude the proof that gl( 2 ), si( 2) and so(2) ftl R 
are the only transitive subalgebras. In fact, if gis transitive then dim g 2: 2. 
If dim g = 2 then gis (isomorphic to) so(2) EB z by Corollary 2.4. The last 
lemma shows that g = sl(2) if dimg = 3, and it rf'mains only gl(2) which 
is four dimensional. 

3. Semigroups in 8/(2) 

As mentioned in the introduction, the controllability of the control system 
is equivalent to the transitivity of the semigroup .'h. which has nonempty 
in the connected Lie subgroup Gr.. We study here the transitivity on 
R 2 - {O} of a semigroup S with non void interior in Sl(2), which is one of 
thf' transitive groups of the previous section. 

DPnote by RP 1 the real one dimensional projectivf' linf', which is the 
set of one dimensional subspaces of R 2 , and for v E R 2 - {O} let [v] be 
the subspace it spans. We have that 51(2) acts transitively on RP1 by 
g[v] = [gv], g E Sl(2), v E R 2

- {0}. A subsemigroup S of Sl(2) is said 
to be transitive on RP1 if for every u, v E R2 - {O} therf' exists g E S 
satisfying g[u] = [v]. The main goal of this section is to show that if S e 
Sl(2) is a subsemigroup with interior points and transitive on RP1 then 
it is the whole Sl(2). This rf'sult is a particular instance of [1-'>, Theorem 
4.2] (see also[l8, Theorem 6.2]), and we adapt here the general proof to our 
spPcific situation. Wf' start with the following lemma which shows that a 
proper sernigroup cannot contain rotations in its interior. 

Lemma 3.1. Let S e Sl(2) be a semigroup and suppose that thPre ís 
X E sl(2) wíth purely immaginary eígenvalues, and su eh that exp X ís in 
intS. Then S= Sl(2). 
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Proof. The fact that the eigenvalues of X are purely immaginary, imply 
that its real .Jordan form is 

so that 

ex (tX) = ( c?s (ta) 
p sm ( ta) 

-sin (ta) ) 
cos (ta) · 

Since exp X E intS, there exists t such that exp (tX) E intS and ta is 
rational. Putting h = exp (tX), we have that hn E intS for every integer 
n > O. However, hn = 1 for some n hecause ta is rational. Hence 1 E intS, 
which implies that S = Sl(2) hecause in any connected topological group 
the semigroup generated by a neighborhood of the identity is the whole 
group. O 

We show now that proper semigroups of Sl(2) do not contain unipotent 
elements ei ther. 

Lemma 3.2. Let S be a subsemigroup ofS/(2). Suppose that there exists 
a nilpotent element X such that g = expX E intS. Then S= Sl(2). 

Proof. 
of X is 

If X = O there is nothing to prove. Otherwise the .Jordan form 

( ~ ~ ) . 
Since g E intS and the exponential map is continuous there exists E > O 
small enough such that 

exp Y = exp ( ~( ~ ) E int(S). 

The eigenvalues of Y are ±i.JE so the claim follows from the previous 
lemma. O 

Lemma 3.3. Let S be a subsemigroup of Sl(2) with intSf::-0 and assume 
that S is transití ve on RP1 . Take v E R 2 - {O}. Then there exist w E R 2 

and hE intS such that { v, w} is a basis and ín thís basís h ís wrítten as 

h = ( ri 11~ 1 ) for some 11 > O. 
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Proof. Take g E 楮瑓✠such that g[P] = [n]. For its E:'XÍstPnre, pick 
h1 E 楮瑓⸠Sin re 匠 is transitive on RP 1

, thHP exists h㈠ E S' such that 
h2 ht[ u] = [1•] so that 朠= h2 h1 lwlongs to 椠nt S and fixes [ 1']. �~� ow, let 
甠E R 2 be such that { 瘬 u} is a basis. Sinre 7' is an eigenv<>ctor for .fJ, in 
this basis the matrix of 朠is of the form 

with 愬 bE R and 慦伮 Clearly, 最2 E 楮瑓 and its matrix in tlw basis { 11, u} 
IS 

2 ( 昮䰠 攠 ) 朠 = o Jl-1 

with 攠E R and 瀮 >O. If 䨮氠= 1 then g㈠= exp 夠with 

so Lemma :3.2 implies that S= 匀✀氨㈩Ⱐand S certainly coutains the daimed 
diagonal element. Otherwise, let w = 甫 c/(p.-1 - ꅴ⤱✮ Than the matrix 
of 栠= 最2 in the basis { 瘬 w} has the desired form. o 

This lemma: shows that the assumption that 匠 is transitivP on RP1 

implies that every vector is an eigenvector of a diagonalizable Plem0nt in 
楮瑓⸠The next lemma improves this by showing that any direction is 
actually a principal eigenvector for some matrix in 楮瑓⸠This fact is crucial 
in the proof of the main result of this section, namely that S= Sl(2) if S 
is transitive on RP1 . 

Lemma 3.4. 坩瑨 瑨攠湯瑡瑩潮猠and 慳獵浰瑩潮猠潦 瑨攠慢潶攠lemma 
瑡步 vE R 2 - {0}. 周敮 瑨敲攠數楳瑳 眽传 and hE 楮瑓 in 獵捨 a 睡礠瑨慴 
f3 = { 瘬 w} is a 扡獩猠and 瑨攠matrix 潦 栠睩瑨 牥獰散琠¡:J is 

睩瑨 瀮 > l. 
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Proof. 䱥琠笠v, 睽 扥 慳 楮 瑨攠污獴 汥浭愮 䅬氠瑨攠浡瑲楣敳 慲攠牥晥牲敤 
瑯 瑨楳 桡獩献 
䙩牳琠睥 潢獥牶攠瑨攠景汬潷楮朠摥捯浰潳楴楯渠⡬睡獡睡 摥捯浰潳楴楯温 

潦 最ㄠ䔠S/(2) 睨楲栠獡瑩獦楥猠枡孶崠㴠孷崺 周敲攠慲攠

獵牨 瑨慴 

⠠漠ⴱ ⤠gl 㴠 ㄠ 〠 栱渱⸠

䥉䰠晡捴Ⱐ�s�i�:�-�~�r�e� 最ㄠv = a w 景爠獯 浥 a=O 慮搠摥琠最ㄠ
瑨慴 

ㄠ瑨敲攠楳 b 䔠删 獵牨 

gl 㴠⠠�~� -1 ) -a 
b 

漠
a-1 ) ( �~� J )· 

䅮慬潧潵獬礬 楦 g2 䔠S/(2) 慮搠最㈀孷崠= 嬱❝ 睥 桡癥 瑨慴 g2 摥捯浰潳敳 
慦瑥爠汷慳慷愠慳 

睩瑨 h2 慮搠n2 潦 瑨敜獡浥 景牭 慳 栀ㄠ慮搠渀ㄠ牥獰敲瑩癥汹⸠
乯眠 睥 ꄾ牯癥 瑨攠汥浭愮 
䱥琠h 䔠 intS 桥 慳 楮 䱥浭愠 ㌮㌮ If JL > ㄠ瑨敲攠楳 湯瑨楮朠瑯 摯⸠

佴桥牷楳攬 睥 捡渠瑡步 传< JL < ㄠ獭慬氠敮潵杨 批 瑡歩湧 h" 楮獴敡搠潦 
h 慮搠JLn 楮獴敡搠潦 JL, n ㈺ 传扩朠敮潵杨⸠卩湣攠睥 慲攠慳獵浩湧 瑨慴 
S 楳 瑲慮獩瑩癥 潮 RP1 瑨敲攠慲攠g1 ,g2 䔠 S 獵捨 瑨慴 g¡[v] = 孷崠慮搠
最2孷崠㴠孶崮 坥 桡癥 瑨慴 g2 hg1 䔠intS 桥捡畳攠桅 intS. 呡歩湧 汷慳慷愠
摥牯浰潳楴楯湳 潦 最ㄠ慮搠g2 慳 慨潶攠睥 桡癥 

健牦潲浩湧 瑨攠灲潤畲瑳 潮 瑨攠物杨琠桡湤 獩摥 睥 来琠

〠 )h1n¡. 
Jl 
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This equaJity can be rewritten as g2hg1 = hn with 

and �n�=�(�~� �~�)�·� 
(In fact, if a is a diagonal matrix and b has the same form as n above, 
then a-1 ba is like b so that the diagonal matrix can be put on the left by 
ba =a (a-1 ba) ). 

We ha ve that h is the product of three diagonal matrices so it is diagonal. 
Taking ¡1 small enough we get 

h= ( >. o ) o >. -1 

with >. > l. That is, 

g2hg¡ = ( �~� * ) E intS with >. > l. >. -1 

Now we can change the basis as in the end of proof of Lemma 3.:l to 
get the desired diagonal matrix. O 

As a last comment befare the proof of the main theorem of this section 
we observe the following two facts: 

l. Let (a, b) e R be an interval with b > a > l. Then there exists 
T0 > O such that (To, oo) e Un2'1 (a", b") 

'2. Let (e, d) be an interval with O< e< d < 氮 Then there exists E > O 
such that (O, e) e Un2'1(c",dn) 

The second fact is a consequence of the first, which follows from an+l < 
bn, n > n0 for sorne n0 , i.e., �~�:� < �~�'� which follows from �(�~�)�n� ___,O. 

Theorem 3.5. Let S e Sl('2) be a subsemigroup with interior points. 
Suppose that S is transitive on 剐 ㄀⸠Then S= Sl('2). 

Proof. By Lemma :3.4 there are a basis {v, w} ofR 2 and hE intS which 
is written in this basis as 
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with 11 > l. We also have that there exists g E intS such that gw = >.w 

with).. >l. In the basis {v, w} we can write gas 

= ( >.-1 o ) 
g * ).. . 

Since h, g E intS their powers and powers of their neighhorhoods are in 
intS'. By 1. above there exists Tu > O such that for all t > 1(¡ 

( 
f O ) . e O ri E mt.J 

There is also * such that 

( �t�~�I� �~� ) E intS. 

Therefore there exist in the interior of S elements which can he written 
as 

and the theorem follows from Lemma 3.:2. o 

In the analysis of the bilinear systems we prove controllability by show­
ing the non existence of a compact invariant subset on RP 1 which ensures 
that S= Sl(2) according to the following corollary. 

Corollary 3.6. Let S be a subsemigroup of S'l(2) with intS,P0. Then 
S=Sl (2) if and only if there exists a proper compact subset C e RP 1 , 

with intC-=J0, which is S -invariant, that is, gC e C for all g E S. 

Proof. For x E RP 1 consider the compact subset el(S'x) of RP 1
. We 

ha ve that el( S x) is S -invariant and there exists a proper compact invariant 
subset, as in the statement, if and only if el( S J:) is proper for sorne x. 
Suppose that el(Sx) = RP 1 for every x E RP 1 . Then S is transitive on 
RP 1 . In fact, the subset 

s-1 = {g- 1 
: g E S} 

is also a semigroup with nonempty interior in Sl(2). Hence for all y E RP 1
, 

s- 1 y is a subset with non void interior in RP 1 . Since SJ· is dense, we ha ve 
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that s-1 y 渠5x=0. Picking z E s-1 y 渠Sx, there are h1 ,h2 E S such that 
z = h¡1 y and z = h2x. Therefore y= h1h2 x and S is transitive. 

Therefore there are no proper compact invariant suhsets if and only if 
S is transitive on RP1 . By the theorem, this last condition is equivalent 
toS= Sl('2). o 

Remark: An invariant control set is a compact invariant set C e RPㄠ

such that cl(Sx) 㴠e for all X E C. 䥴 is proved in [1.5] that there is just 
one invariant control set. This invariant control set turns out to be the 
only invariant compact suhset. 

Another consequence of Theorem ;3,.5 is that a semigroup S e Sl(2), 
with intS-=/-0, is transitive on R ㈠ⴀ {O} if ancl only if S = Sl(2) hecause 
transitivity on R 2 - {O} implies transitivity on RP1 . 

4. Semigroups in Gf+(2) 

In contrast to Sl(2), there are proper semigroups with non void interior in 
C;t+(2) which are transitive on RP㄀⸠ This happens for instance with the 
semigroup 

{g E Gt+(2): det g 2:: 1 }. 

In arder to look at the semigroups with nonempty interior in Gt+(2), 
consider the onto mapping ㅲ 㨠Gt+(2)-+ Sl(2) given hy 

㝲 (g) 㴠 ⠠yTetg) ⴱ g. 

This is a homomorphism of groups and a matrix g E ker ㅲ if and only if 
g 㴠 Al for some A E R ⬮ Thus ker ㅲ is isomorphic to the multiplicative 
group of positive reals. Let S e Gt+('2) be a semigroup. Then ㅲ (S) is also 
semigroup, and int1r (S) -=/-0 in Sl(2) in case intS-=/-0 in Gl(2) hecause ㅲ is 
an open mapping. The following proposition gives information ahout the 
semigroups in Gl(2) which project onto Sl(2). 

Proposition 4.1. Let S e Gt+(2) be a semigroup with intS-=/-0, and sup­
pose that ㅲ (S) 㴠 Sl(2). Then there exists a semigroup r e R+, with 
intf-=/-0 such that 

S 渠ker ㅲ 㴠爠.l. 
Moreover, S= Gt+(2) if and only if there are 䄀㄀ⰠA2 䔠删⬠with 䆡 㸠ㄠand 
A2 㰠1 such that A11 and A2l belong toS. 
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Proof. We ha ve that S n ker1r is a ( possihily empty) semigroup berause 
this is an intersertion of a semigroup with a group. Hence it is enough to 
show that it has non void interior. Take g E intS. Sinre 7r (S) = Sl(2) 
there exists hE S' such that 1r(h) = 1r(g)- 1 • We have that gh E intS and 
1r(gh) = 1r(g)1r(h) =l. This shows that i11tS n ker7r#0 whirh implies that 
the interior of S n ker 1r is not empty. 

For the last statement, we apply the remarks prereding Theorem :L5. 
First of all, the existenre of .A 1 > 1 in r ensures that there is an element 
bigger tha11 1 in íntr. In fact, take a E intr. Then -Ai'a E i111r for every 
11 2 l. Taking n big enough, we get -A]'a > 1 in intr as claimed. Now, 
we ha ve that R = exp ( R + ), henre the fart that the interior of r rontains 
some b > 1 implies that there exists Tu > 1 su eh that the interval ( T0 , oo) is 
rontained in intr. Similarly, there exists T1 > 1 surh that (0, l/T1 ) e intr. 
So that there exists .A E intf with _A-l E intr whirh shows that 1 E intf 
and r = R+. 

Now, take g E G/+(2). Then 1r(g) E 1r(S) so that there exists hE S 
surh that g = )\/¡ for SO!llE' )\ > o. Sinre ker 7r e S we have that g E S 
concluding the proof. O 

5. Controllability in the case Gr. = S'/(2) 

As we ha ve seen the int( Sr,) is nonempty in G¿,. In the rase of bilinear 
systems of dimension 2, GE = S/(2) if and only if the Lie a.lgebra generated 
�b�y�~�=� {A, B} is sl(2). So we start by looking at this condition. 

Lemma 5.1. Take A, B E sl(2). Then 

l. Suppose that det B > O. Then det[A, B] :::; O and tl1e equalíty holds if 
and only if A ís a multíple of B. Moreover, {A, B, [A, B]} is linearly 
índependent if and only if det[A, B] < O. 

2. Assume that det B =O. Then det[A, B] :::; O wíth equalíty if and only 
if[A, B] = .A B. Moreover, the set {A, B, [A, B]} is independent if and 
only if det[A, B] < O. 

3. A and B generate sl(2) if and only if det[A, B]#O. 
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Pro o f. 

l. If det B > O then in a suitable basis of R 2 

and B is skew-symmetric. Write A = A1 + A2 with A1 skew and A2 

symmetric. Then A1 is a multiple of B so that 

[A, B] = [A2, B]. 

Being the bracket of a skew by a symmetric matrix [A, B] is symmet­
ric, so that det[ A, B] ::; O because its trace is zero. A direct compu­
tation shows that [A 2 , B] is not a multiple of A2 unless A 2 = O. This 
implies the independence of the matrices A, B and [A, B]. 

"2. 1f det B = O we can assume that 

and A=(a b )· e -a 

Thus 

[A,B] = �(�~�e� "2ea). 

Therefore det[A, B] = -e2 ::; O with equality if and only if [A, B] = 

2aB. From these expressions it is clear that A, B and C are indepen­
dent if c:¡iO. 

3. In view of the previous items, it remains to check only the case where 
det A and det B are < O. In a suitable hasis 

A=(a O) 
O -a 

and 

with -x2 - yz < O, a:¡iO, and we have 

[A, B] = ( _gaz �"�2�~�y� ) . 

Hence det[A, B]:¡iO if and only if yz:¡iO. lt is readily seen that if 
yz = O then A, B and [A, B] are triangular so that this set is not 
independent. On the other hand one checks easily the independence 
of A, B and [A, B] if yz:¡iO. 
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This condudes the proof of the lemma. O 

From this lemma we get immediately the following criteria for checking 
if the Lie algebra generated by A and Bis sl(2). 

Corollary 5.2. Take A, BE sl(2). The followíng condítíons are equívalent 

l. The Lie algehra generated �b�y�~�=� {A, R} is sl(2). 

:2. A, B and [A, B] are linearly independent. 

:3. det[A, B]:¡i:O. o 

Now, we look at the controllability of bilinear systems of tlw form ;i: = 
(A + uB ).r. We are interested in conditions on t he matricf's A and B 
which we assume to generate sl( 2). As we ha ve sef'n in Corollary 3.6 the 
system is controllable if and only if its semigroup does not leave invariant 
any proper compact subset of the projective space RP1 . The existence or 
not of these invariant sets will be detected by looking at the trajectories 
of the corresponding linear systems. Recall that if C is a matrix with 
trC = O, its characteristic polynomial is ;r 2 + det( e) and the eigenvalues 
are ±j- det(e). There are three cases. 

l. If det e > o we can fix a basis such that e is 

and the trajectories of the system :i: = Cx are cirdes centered at the 
origin. In the induced projective action there is just one trajectory. 

o 
2. If det C = O with e=O we ha ve, in some hasis that 
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and the trajectories of the linear system defined by e are the straight 
lines perpendicular to the y-axis and the points in the x-axis are 
stationary points. In the projective action there are two trajectories; 
a fixed point and a dense trajectory which starts and ends in the fixed 
point. 

o 
:L If det (: < O we ha ve that 

and the trajectories are hyperbolas. The induced projective action 
consists of two fixed points and two trajectories linking the fixed 
points. 

o 
The attractor corresponds to the eigenspace associated with the highest 
eigenvalue of C. 

For the controllability of i = (A + uB)x we distinguish the cases ac­
cording to det B. We always assurne that A and B are different frorn O. 

1 If det B > O and A E sl(2) is any matrix with det[A, E] :¡lO then the 
system is controllable. This is because the trajectories of i = Bx 
are cirdes and it is not possible to find any compact subset in the 
projective line which is invariant under the semigroup of the system. 
Also, Corollary .5.'2 ensures that Sr, has non void interior. 

11 If det B = O and det[A, E] :¡lO we have controllability again because we 
can not find any compact and invariant subset of the projective space. 

111 lt remains the case det B < O. There are the possibili ties: 

l. If det(A) 2: O and det[A, B]:¡lO then the projective trajectories 
of A are dense and we have controllability. 
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2. det(A) <O. In this rase tlw controllability depPnds on tlw sign 
of det[A, B]. Geometrically we hav<> two cases, nam<>ly the fixed 
points Ui'' r} }, in RP1

' of A li<> in tlw same traj<'rlory of B or 
in different trajectories. 

a f A 
2 

!? '.!{'! 

In the first case there is controllability berause t.here is no rom­
pact invariant set, and in the second case the syst<'Ill is not con­
trollable. In fact, suppose that f.} is the fixed point of A which 
is the attractor. Then the closur<.> of the trajectory of B which 
contains Jf is invariant as show a quirk glance at th<> pirture. 

lt should be noted that det[A, B]~O if and only if thC' fixed point.s 
of A are different from the fixed points of B. Tlw coincidence 
of some of these points imply that A and B have a common 
eigen vector so t hat they do not g<'nerate sl( 2). 

Tlw algebraic meaning of these geometric conditions are as fol ­
lows. Fix a basis surh that 

B = ( a O ) and A = ( 0 
¡ j ) 

O -a 1 -o 

The fixed points of A lie on th<• sauw trajert.ory of B if and 
only if the eigenvectors of A are in t he sanw qua.dra.nt.. Now, 
the eigenvalues of A are ±Jo2 + ¡ j ). An eigenvector (.r , y) of A 
satisfies 

{ 
(o± Ja 2 + ¡ j ))J· + ¡3y. = O 

¡:r +(-a± Ja. 2 + ¡(J)y =O 

Since y~O we can a.ssume that y = 1 and we get the eigenvectors 

(J:±, 1) = ( - f-3/(o ± Jn: 2 + ¡d), 1). 

These eigenvectors helong to the same quadrant if and only if 
J:+ and :r_ have the same sign, and this in tum is l:'quivalent to 

- (3¡ = (n + Ja2 + ¡ f1)(o - Jo2 + ¡ ;1) > O. 

Since df't[A, B] = 4a2¡ f1 Wl:' ha ve that 
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• the system is controllable in case det[ A, B] < O, and not 
controllahle if det[A, B] > O. 

This concludes the case by case analysis of the systems which generate 
S/(2). Summarizing, we note the following fact which comes from this 
analysis. 

Theorem 5.3. Let A, B E sl(2). Then the semígroup S¿_ generated by 
I: ={A, ±B} coincides wíth 51(2) íf and only íf det[A, B] <O. 

Proof. We have that .')¿_ = Sl(2) if and only if :E is controllable on 
R 2 - {O} so that it is enough to check that in the above cases controlla­
bility occurs if and only if det[.4, B] < O. This happens to be the case if 
det B < O by the last one of the cases. On the other hand, if det B 2: O, :E 
is controllable if and only if det[A, B]=O. By Lemma .5.1, we have in this 
case that det[A, B] :S O, so the theorem follows. O 

We turn now to the group G/(2). 

6. The case GE = Gf+(2) 

We use the results of the previous section. The idea is to decompose a 
matrix in gl(2) as a sum of a matrix in sl(2) and a diagonal matrix, i.e. 

A= (A_ tr~A) 1) + ( tr~A) )1 

We use the notation b(A) = tr(A)/2 andA= A-b(A)l. Since the matrices 

<51 andA commute, we have that [fi, .8] =[A, B] and etA = fl>tf:~-4. for every 
tE R. 

We start by finding a condition ensuring that A and B generate gl(2). 
Consider the decomposition 

gl(2) = sl(2) ftl Rl 

and note that A ~ A is the associated projection gl(2)- sl(2). Recall 
from Section 2 that if g e sl(2) is such that its projection g = {C: e E g} 
is sl(2) then dim g 2: 3 so that g = sl(2) or gl(2). As a consequence, we 
ha ve 

Proposition 6.1. Take A, B E gl(2) wíth tr(A):¡i:O or tr(B):¡i:O. Then 
det[A , B]:¡i:O íf and only íf the Líe algebra generated by {A, B} is gl(2). If 
this is the case then the Líe algebra generated by {A, B} is sl(2). 
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Proof. Let g be the subalgebra g(>nerated by A and B. Since det[A, B] = 

det[.4, B]:¡iO, we have from Corollary 5.:2 that A and B genPrat(> sl(2). This 
shows that g = si( 2 ). Therefore the condition that the trace of one of the 
matrices is not zero im plies that g = gl( 2). RNi procally, if g = gl( 2) then 
the trace of one of the matrices is not zero, otlwrwise g would be con­
tained in sl(2). Also, g = sl(2) so that det[A, B]:¡iO which implies that 
det[A. B]:¡iO. o 

Given the system ~ determined by A and B, denot(> by ~ the system 
associated with A and B. The above proposition shows that (;'!:, = S/('2.) 
if the group of ~ is (;/('2.). Assuming this condition, a nPcessary condition 
for the controllability of ~ is the controllability of i:. In fact, the elements 
of S¿ are products of exponentials like 

Therefore the elements of S¿ are of the form >-.g with >-. > O and g E S't. 
Since the action of >-.g on RP1 coincides with the action of g, we have that 
St is transitive on RP1 if S¿ is transitive on R 2 - {0}, that is if ~ IS 

transitive . .Joining together these comments with Theorem :3.5 we get 

Proposition 6.2. Suppose that {A, B} generates gl(2). Then a necessary 
condition for the controllability of ~ is that St, = S/(:2) ami hence that E 
is con trollable. 

We look at the controllability of ¿ by considering the cases in which E 
is controllable. This will be made with the a.id of Proposition 4.1 and the 
following 

Proposition 6.3. Suppose that f; is wntrollable and assume that S¿ is 
transitive on a ray r0 starting at the origin of R 2 , that is, for every pair 
x, y E r0 there exists g E SE such that gx = y. Then S¿ is transitive on 
R 2 - {0}. 

Proof. Since St, is transitive on R 2 - {O} it is transitive on the rays, 
i.e., given two rays r 1 and r 2 there exists g E St with gr 1 = r 2 . But the 
action of S¿ on the rays coincides with that of St, because the elements of 
S¿ ore of the form >-.g, >-.E R+, g E St. Hence S¿ is also transitive on 
the rays. Take x E r0 and let y E R 2 - {O} be arbitrarily given. Let r 1 be 
the ray which contains y. Then there is g E S¿ such that gr 1 = r 0 so tha.t 
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gy E r0 . Hence there exists h E Sr, such that hgy = x. Analogously, there 
is 91 E Sr, with 91 ro = r 1 . Then g} 1 y E ro and there is h1 E Sr, such that 
h1 .r = g} 1 y, i.e., g1h1 x =y. Therefore Sr, is transitive on R 2 - {0}. D 

We can now consider the different cases. They are divided according to 
trB. 

1 tr B=O. In this case E is controllable if and only if E is cor.trollable. In 
fact, suppose f: controllable and distinguish the case::;: 

l. The eigenvalues of B are real (det iJ :::; 0). Then there is an 
eigenvector v E R 2 - {O} and exp (tB), t E R is transitive on 
the ray spanned by v. Therefore Proposition 6.:1 implies that E 
is controllable. 

2. The eigenvalues of B are complex ( det iJ > O). Let a± ib be the 
eigenvalues. By assumption a:f-0-:f-b. Hence there exists t E R 
such that tb = 2br for some integer k=O. Since in some basis 
we can write B as 

(
a -b) 
b a ' 

we have that exp (lB) = exp (la) .l. By taking -t instead of 
t we find that Sr, satisfies the assumptions of Proposition 4.1. 
Therefore Sr, = Gl(2) and E is controllable. 

11 trB =O (B = B). Then trA:f-0. We consider the different possibilities 
for the .Tardan form of B. 

l. det B > O. Then there is a basis ¡3 such that the matrix of B is 
of the form 

( ~ ~a) 
and the trajectories of B are circles centered at the origin. De­
note by(-,·) the canonical inner product with respect to j3. The 
connected subsets which are invariant by the trajectories of B 
are the rings formed by those x su eh that ( x, x) belongs to an 
interval of R+. Now, Sr,x is connected and B-invariant for all 
x. Therefore E is not controllable if and only if exp (tA), t 2: O 
leaves invariant sorne of these rings. However this condition 
holds if and only if Ax points inwards or outwards sorne circle 
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for every x in the circle, and this is equivalent to the fact that 
( Ax, x) do es not change sign in the circle. N o te that this condi­
tion is independent of the length of x, so that ~ is controllahle 
if and only if (Ax, x) changes sign in R 2 - {0}. In order to look 
at these signs, put 

S= A+ At 
2 

Then S is symmetric and (Ax, x) = (Sx, x). We get thus that 
a necessary and sufficient condition for the controllahility of ~ 
is that S is not semi-definite. Recall that a symmetric matrix 
is not semi-definite if and only if its eigenvalues are of different 
sign, that is, if its determinant is negative. Hence we have 

• :E is controllable if and only if det S < O. 

This condition depends on the basis which puts B in canonical 
form. We shall translate it into a coordinate free condition. For 
this use the notations 

A=(~~) 
Then B = ( .J det B) X and 

[X, A]= ( -b-e a- d ) 
a-d b+c · 

A simple computation shows then that det S = det[X, A] + 
(trA) 2

. Substituting X by B in this expression we get 

det S= de~ B ( det[X, A]+ det B (trA)
2

) • 

Since det B > O we get the following coordinate free condition 

• :E is controllable if and only if 

2 det[X, A]+ det B (trA) <O. 

2. det B = O. In a suitable basis B is given by 
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so that its trajectories are horizontal lines except for the fix(:'d 
points in th(:' horizontal axis. In analogy with th(:' prPvious cas(:' 
we find that the connected B-invariant subsets arP the strips 
formed by($ , t) with t restricted toan interval of the reals and 
s ER. Such a strip is A-invariant if and only if Ax points upwards 
or downwards along a line {(t,a) : t E R} , a fixed, and this 
happens if and only if the second coordinate of A(t , a) does not 
changes sign whPn t runs OV(:'r R. However this coordinat(:' is a 
linear funrtion of t so that thNe is no strip invariant under A 
and :E is always transitiv(:' in this cas(:'. 

:l. det B < O. In this case :E is controllable if and only if 

det[A, B] = det[A, B] < O, 

that is, if and only if f; is controllable. In fact, the eigenvalues 
of B are real so that exp (tE) is transitive on some ray, therefore 
the controllability of :E from the controllability of t follows from 
Proposition 6.3. 

7. The case with Gr. abelian 

We considPr here the case where A and B are written simultaneously in 
the form 

The Lie algebra generated by these matrices is so( 2) 8-J Rl if and only if 
they are linearly independent. The geometry of this case is the easiest one to 
look at. In fact, as a topological space the group .5'0(2) X (Rl) is a cylinder 
.5'1 x R with the circle 5 1 representing the group SO (2). Also, .5'0(2) x (Rl) 
is isomorphic to the group C* whose action on R 2 is just multiplication of 
complex numbers, so that :E is controllable if and only if Sr, is the whole 
group. Sin ce the group is abelian the formula exp (X + Y) = exp X exp Y 
holds. This implies that .'ir, is the exponen ti al of the half-plane spanned by 
A and B: 

Sr.= exp{tA + sB: t 2 O, sER} . 

Now , the exponen ti al mapping, which is the exponen tia] of complex num­
bers, is the mapping which rolls up the plane onto the cylinder. Hence :E is 
controllable if and only if the half-plane spanned by A and B rolls up onto 
the cylinder. lt is clear that this happens if and only if B is not contained 
in so( 2). Therefore we ha ve: 
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• Assuming that A and B are linearly independent, ~ is controllable if 
and only if the eigenvalues of B are not purely immaginary. 

Besides the above geometric proof, this fact can be seen also as follows. 
Suppose that the eigenvalues of B are purely immaginary. Then its trajec­
tories on R 2 are cirdes centered at the origin. Recalling the sarne situation 
appearing in Section 6 we have that controllahility depends on the sign of 
the determinant of 

A+ At 
S=---

2 

However this matrix is of the form A .1 so that det S = A 2 > O and the 
system is not controllable. On the other hand, if the eigenvalues of B are 
not purely immaginary, the half-plane spanned by .4 and B contains in 
its interior one of the rays of so(2) so that the interior of this half-plane 
contains a matrix of the form 

( ~ ~b) 
with b = 2br, k integer. Therefore 1 E int.'h:, so that Sr, = 80(2) X (R+l), 
and the system is controllable. 

8. Conclusions 

We summarize now the previous analysis m the form of necessary and 
sufficient polynomial conditions. 

• Controllability is equivalent to det[ A, B] < O in each one of the fol­
lowing cases: 

l. det B ::; O and B=O. 

2. det B > O and the eigenvalues of B are real and Bf:c.l. 

3. trA = trB =O. 

The case where the matrices belong to sl(2) were discussed in Section .5. 
As to the other cases, if det B ::; O then B is not a multiple of the identity 
and its eigenvalues are not complex. Therefore controllahility holds only 
if [A, B]::/:0 which means that the Lie algebra generated by {A, B} is sl(2) 
or gl(2). By the discussion in Section 6, we have controllability if and 
only if det[A, B] = det[A, B] < O and the eigenvalues of B are not purely 
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immaginary. Hence we get the equivalent condition in case det B ::::; O. This 
argument applies also to the second case. 

If B heal) eigenvalues then det[A, B] < O. So we have the following 
refinement of the first two cases. 

• Controllability is equivalent to det[A, B]:¡iO m case B has just one 
eigenvalue and B:¡ic.l. 

In any one of the above situations the group associated with the system 
is not ahelian. This might happen to be the case in the remaining ones 
which complement the first and second cases above. 

• If B = k.l then controllability holds if and only if the eigenvalues of 
A are complex. 

• If the eigenvalues of B are complex and not purely immaginary (so 
that det B >O and trB±O) then there is controllability if and only if 
A is ltiple of B. 

• If the eigenvalues of B are purely immaginary, controllahility is equiv­
alent to 

det[A, B] + det B (trA) 2 < O. 

In this last case, det[A, B] :S O for any A with equality if and only if 
[A, B] = O. If this happens, we are in the situation of Section 7. Otherwise, 
the condition is always fulfilled if tr A = O, so we ha ve 

• If the eigenvalues of B are purely immaginary and tr A 
controllability is equivalent to [A, B]:¡iO. 

O then 

This list covers all the possibilities for A and B providing necessary and 
sufficient conditions for the controllabili ty of ( 1.1). 
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