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Abstract

For bilinear control sysiems £ = Az + uBz, + € R®, A and B
2 x 2 matrices, necessary and sufficient conditions are gqiven for the
controllability on R?—{0}. The method is through Lie theory. and fol-
lows the program outlined by this theory which consists in finding first
the connected subgroups of the group GU(2) of all invertible matrices
which are transitive on R? — {0}, and then look at the subsemigroups
of these subgroups which are transitive. A detailed and nearly self
contained exposition of the determination of the transilive subgroups
is presented. It turns out that they are GIT(2), SI(2) and the commu-
tative group of nonzero complez numbers. Controllability is analysed
by considering these groups separately. In the case of SI(2) the con-
trollability is decided with the aid of a result of [15] about semigroups
in semi-simple Lie groups. A self contained proof specific for Si(2)
s presented. This case by case analysis recovers the necessary and
sufficient conditions given by Lepe and Joé and Tuan (see [10]).
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1. Introduction

The controllability problem of control systems proved to be one of the diffi-
cult problems in the geometric theory of control systems. Indeed, if for the
linear systems there are simple criteria, such as the Kalman rank condition
(see for example [20]), for nonlinear systems there are ounly a few situations
where simply verified necessary and sufficient conditions are available. At
this regard we mention the already classical results by Jurdjevic and Suss-
mann [11], about right invariant systems on compact Lie groups and by
Lobry [14] (see also [16]), about systems whose vector fields have a dense
set of recurrent points. For these systems the Lie algebra rank condition
turns out to be a necessary and sufficient condition for controllability in
case i1t 1s assumed that the system is analytic. With the development of
a geometric theory of semigroups (see the books [7].[8]). new methods in
the study of controllability of invariant systems on Lie groups were dis-
covered. By applying one of these methods Hilgert, Hofinann and Lawson
[6] studied controllability on solvable and nilpotent Lie groups. obtaining
a necessary and sufficient condition in the latter case. Controllability in
nilpotent groups were studied also by Ayala [1], using different methods.

The purpose of this paper is to present a detailed analysis of the con-
trollability of a two dimensional bilinear system

(L.1) & = Ar + uBr

with unrestricted control u €R. Here r € R? and A and B are 2 x 2
matrices. The controllability of general d x d bilinear systems were studied
elsewhere with partial answers. Sufficient conditions were given in the
seminal paper by Jurdjevic and Kupka [12], which were afterwards extended
to controllability on semi-simple Lie groups (see [4, 5, 13. 19]). By piecing
together these results with the determination of the transitive groups on
R?— {0} (see [2, 3]), further sufficient conditions are achieved. The specific
case of two dimensional systems were studied by Lepe and complemented
Jo6 and Tua (see [10]). Here we take a different route from these authors
and analyse the cases according to the Lie algebra generated by the matrices
A and B. At the final we recover the necessary and sufficient conditions
given in [10].

In our approach to controllability, we consider piecewise constant con-
trols. Then it is well known that (1.1) is controllable if and only if the
semigroup

Sy = {etXr e Xh it >0, X, = 4, +B,k > 0}
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generated by ¥ = {A, £ B} is transitive on R? — {0}, in the sense that for
all r,y € R* — {0} there exists g € Sy such that gz = y (see e.g. [12]).
This being so, a necessary condition for controllability is that the group

Gy = {Pthl etk Xk t, e ROX, = A, +B,k > 0}

generated by ¥ is transitive on R%? — {0}. Now. it is a standard fact in
control theory that v is a connected Lie subgroup of the group GI(2)
of all invertible 2 x 2 matrices and that Sv C (v has nonempty interior
in the intrinsic topology of Gz (see [11]). Moreover, the Lie algebra of
Gy is generated by A and B. With these facts in mind, our first job is
to find the groups which are transitive on R? — {0}. Using Lie algebraic
arguments, we show that the only connected transitive groups are G1(2),
the group of the matrices with positive determinant, the group S{(2) of
matrices with determinant one, and SO(2) x Rt which is isomorphic to
the group C'*, of non zero complex numbers. Once we have the groups.
we proceed to analyse the semigroups with interior points on them. The
case of the group ('* presents no difficulty because this group is abelian
and diffeomorphic to a cylinder, so one can see almost immediately the
transitive semigroups. Since every invertible matrix is the product of a
multiple of the identity matrix times a matrix with determinant one, the
case where the group is GI*(2) is reduced to the case where Gy = SI(2).
The analysis of this group is the central one. For it, we use a general result
proved in [15], which in our context asserts that a semigroup S C 5(2)
with non void interior coincides with SI(2) if and only if it is transitive
on RP!, the set of one dimensional subspaces of R?. With the purpose
of turning the paper more self contained, in Section 3 below we adapt the
general proof of this result given in [15] to the situation considered here.

Although we consider in this paper only systems with unrestricted con-
trols, it should be noted that most of our methods could be applied also to
systems with restricted controls and to other classes of systems such as the
discrete-time systems like those studied in [17].

The paper is divided as follows: In Section 2 the groups transitive
on R? — {0} are determined. Section 3 is devoted to the proof that no
proper subsemigroup with nonempty interior of 5{(2) is transitive on the
projective line R P!, In Section 5 the controllability of (1.1) is studied with
the assumption that tracotrA = tracotrB = 0. It is shown that the system
is controllable if and only if det[A, B] < 0. Sections 6 and 7 consider the
cases of the groups GIT(2) and SO(2) x Rt respectively. Finally. in Section
8 we recover the necessary and sufficient conditions of Theorems A and 1
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of [10], with some refinements. by recollecting our preceding work.

2. Transitive groups

In this section we find the linear Lie groups which are transitive on R?—{0}.
The linear groups transitive on R%—{0} were classified in [2, 3]. We present
here an approach which is specific for d = 2.

Let (G be a connected Lie subgroup of (Gl(2), the group of invertible
linear matrices, and denote by g the Lie algebra of (+. It is the Lie algebra
of those matrices X such that exptX € ( for all t € R. Due to the fact
that R* — {0} is connected, a necessary and sufficient condition for G to
be transitive is that the orbit

Gr ={gr:g¢€ G}
is open for a rr € R? — {0}. The tangent space to (<z at r is given by
gx = {Ax: Aecg}.

Hence, Gz is open if and only if gx = R2. In the sequel we shall say that
g is transitive provided this condition holds for every x € R* — {0} so that
(7 is transitive if and only if g is transitive. Our purpose here is to show
that the only transitive Lie algebras and corresponding groups are

1. gl(2), the Lie algebra of all real 2x 2 matrices, which is the Lie algebra
of the connected group GI*(2) = {g : detg > 0}.

2. sl(2), the subalgebra of gl(2} consisting of the zero trace 2 x 2 ma-
trices.  his is the Lie algebra of S{(2), the group of determinant one
matrices.

3. so(2) s R1 where so(2) stands for the one dimensional algebra of
skew-s: 1metric matrices and 1 denotes the identity 2 x 2 matrix.
This is the Lie algebra of the group SO(2) x (R*1) which consists
of a rotation (element of SO(2)) followed by a homothety (matrix in
R*1). The elements of this group are the invertible matrices of the

form
a —b
b a

which are in bijection with the non zero complex numbers a + ib. So
that SO (2) x (R*1) is isomorphic to C*. This is actually a class
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of transitive groups. Two groups in this class are conjugate to each
other by an invertible matrix which is given by the choice of different
basis in R2.

It is not hard to check that these algebras and groups are indeed tran-
sitive on R? — {0}. We have

(; 171)“):(;) for 20
(2—10/;,)((1)):(2) for  y#0

so that the orbit of (1,0) under SI(2) is R? — {0}. Consequently this
group and GI*(2) D SI(2) are transitive on R? — {0}. The transitivity of
SO(2) x R*1 follows from

o] cos@ —siné 1 -
! sinf cos# 0/

for v € R? — {0} where 8 is the angle between v and (1,0).

The proof that these are the only transitive groups requires some lem-
mas. We start with the following well known fact about two dimensional
subalgebras of sl(2).

Lemma 2.1. Let g C sl(2) be a subalgebra with dimg = 2. Then there
exists a basis  of R? such that the matrices of the linear maps in g with
respect to 3 are of the form

a b

0 —a

Proof. Sincedimg = 2, g issolvable. Let us check that g is not abelian.
Put

()= (2 0) e (20)

These matrices form a basis of s1(2). Their brackets are given by

[H,P|=2P, [H,Ql=-2Q, [P,Q]=H.
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Let X and X’ be such that [X, X’} = 0 and write X = aH + bP + ¢Q and
X' =ad'H+VP+ Q. Then

[X, Xl = (bc' — ¢b")H + 2(ab’ — ba")P + 2(ca’ — ac’)Q.

The condition [X, X'] = 0 implies that be’ = ¢b’, ab’ = ba’ and ca’ = ac’ so
that X and X’ can not be linearly independent. This shows that there are
no abelian two dimensional subalgebras in sl(2) so that g is not abelian.
Hence there is a basis {X,Y} of g such that [X,Y] =Y. Also, by the
Theorem of ie on solvable Lie algebras, there exists a bhasis of C? such
that the complexifications of the elements of g are written in this basis as

[o5)

In this representation, the diagonal entries of Y are zero because [X,Y] =
Y. Therefore, Y? = 0 so that there exists a basis 4 of is of R? such that
with respect to /3, Y is upper triangular with zeros on the main diagonal.
Using again the fact that [X,Y] = Y one gets quickly that X is also upper
triangular w 1 respect to /3 showing the lemma. O

The line spanned by the first element in the basis /3 claimed by this
lemma is invariant under g. Hence this lemma shows at once that there
are no two dimensional transitive subalgebras contained in sl(2). Since one
dimensional subalgebras are not transitive (because dim(gx) < dimg), and
dimsl(2) = 3 we get

Corollary 2.2. sl(2) is the only of its subalgebras which is transitive. O

We look now at the transitive subalgebras which are not contained in
sl(2). Every 2 x 2 matrix A can be written as

Ao (4,
2 2

so that gl(2) decomposes as
(2.2) gl(2) =sl(2)% R1.

We use the notation z = R1 toindicate the center of gl(2). Because of this
decomposition of gl(2), any subspace V' C gl(2) containing z decomposes
as V = z& (sl(2) N V). With this in mind, we have the following lemma
which characterizes the two-dimensional transitive subalgebras which con-
tain z.
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Lemma 2.3. Take X € sl(2) and suppose that g = RX b z is transitive.
Then g is isomorphic to so(2) + z.

Proof.  The assumption that g is transitive implies that X'#0 and since
trX =0, its real Jordan canonical fornn is one of the following

a 0 0 1 0 —a
0 —a ’ 0 0 ) a 0

In the first two cases the matrices in g are upper triangular in a ssuitable
basis of R? so that g cannot be transitive. It remains the third case. but
then g is isomorphic to so(2) as clained. O

Corollary 2.4. The twodimensional transitive subalgebras are isomorphic
toso(2)h z.

Proof. Let ¢ be transitive with dimg = 2. If gn =z # {0} then we
are in the situation of the above lemma because dimz = 1. Otherwise, let
m be the projection of gl(2) onto sl(2) according to the decomposition
(2.2). Then dim7(g) = 2 so that the elements of 7 (g) are upper
triangular matrices in some basis by Lemma 2.1. This implies that the
elements of g are also upper triangular so that g is not transitive.
(‘oncerning the three dimensional subalgebras containing z. we have

Lemma 2.5. Suppose that g = h&z where h is a subalgebra of s1(2) of
dimension 2 and z is as above. Then g Is not transitive.

Proof. By Lemma 2.1 there is a basis such that the elements of h are
upper triangular. In this basis, the elements of g are also upper triangular
so that this algebra is not transitive. a

Now, let g be a transitive algebra with dimg = 3. By the above lemma,
z is not contained in g and since dimz = 1 it happens that gnz = {0}
which implies that
gli2)=g&z.

However, sl(2) is the only subalgebra which complements z. In fact, taking
the basis {H, P,Q} as in (2.1), the fact that g complements z ensures the
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existence of reals h, p and ¢ such that H' = H + hl, P = P + pl and
Q' =@ + ql are in g. The brackets between these matrices are

[Hlvpl] = 2P, [HI’QI] = —2Q’ [Plan] =H

so that sl(2) C g, and these algebras coincide because they have the same
dimension. We have thus that

Lemma 2.6. sl(2) is the only three dimensional transitive Lie algebra. O

With this lemma we conclude the proof that gl(2), sl(2) and so(2) $ R
are the only transitive subalgebras. In fact, if g is transitive then dimg > 2.
If dimg = 2 then g is (isomorphic to) so(2) @ z by Corollary 2.4. The last
lemma shows that g = sl(2) if dim g = 3, and it remains only gl(2) which
is four dimensional.

3. Semigroups in S{(2)

As mentioned in the introduction, the controllability of the control system
is equivalent to the transitivity of the semigroup Sy which has nonempty
in the connected Lie subgroup Gyx. We study here the transitivity on
R? — {0} of a semigroup S with non void interior in SI(2), which is one of
the transitive groups of the previous section.

Denote by RP! the real one dimensional projective line, which is the
set of one di ensional subspaces of R%, and for v € R? — {0} let [v] be
the subspace it spans. We have that 51(2) acts transitively on RP! by
glv] = [gv], g € SI(2), v € R? — {0}. A subsemigroup S of SI(2) is said
to be transitive on RP! if for every u,v € R? — {0} there exists ¢ € §
satisfying g[t = [v]. The main goal of this section is to show that if § C
S1(2) is a subsemigroup with interior points and transitive on RP! then
it is the whole S/(2). This result is a particular instance of [15, Theorem
4.2] (see also[18, Theorem 6.2]), and we adapt here the general proof to our
specific situation. We start with the following lemma which shows that a
proper semigroup cannot contain rotations in its interior.

Lemma 3.1. Let S C SI(2) be a semigroup and suppose that there is
X € sl(2) with purely immaginary eigenvalues, and such that exp X is in
intS. Then S = 51(2).
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Proof. The fact that the eigenvalues of X are purely immaginary, imply
that its real Jordan form is

so that

exp (tX) = ( cos (ta) —sin(ta) ) .

sin (ta) cos(ta)
Since exp X € intS, there exists t such that exp (tX) € intS and ta is
rational. Putting h = exp (tX), we have that h" € intS for every integer
n > 0. However, A" = 1 for some n because ta is rational. Hence 1 € intS,
which implies that S = 5{(2) because in any connected topological group
the semigroup generated by a neighborhood of the identity is the whole
group. a

We show now that proper semigroups of SI(2) do not contain unipotent
elements either.
Lemma 3.2. Let S be a subsemigroup of S1(2). Suppose that there exists
a nilpotent element X such that ¢ = exp X € intS. Then S = S1(2).

Proof. If X =0 there is nothing to prove. Otherwise the Jordan form

of X is
0 1
0 0/

Since g € intS and the exponential map is continuous there exists ¢ > 0
small enough such that

expY = exp ( _O( (1) ) € nt(S).

The eigenvalues of Y are +i,\/¢ so the claim follows from the previous
lemma. O

Lemma 3.3. Let S be a subsemigroup of SI(2) with intS#Q and assume
that S is transitive on RP'. Take v € R? — {0}. Then there exist w € R?
and h € intS such that {v,w} is a basis and in this basis h is written as

0
h = <l(; y! ) for some p > 0.
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Proof. Take g € intS such that g[v] = [v]. For its existence, pick
hy € intS. Since S is transitive on RP!, there exists i, € 9 such that
hyhq[v] = [v] so that g = hyhy belongs to intS and fixes [v]. Now, let
u € R? be such that {v,u} is a basis. Since v is an eigenvector for g, in
this basis the matrix of g is of the form

foa b
=10 at

with a,b € R and a#0. Clearly, g2 € int.S and its matrix in the basis {v, u}

is
2_ [ A C

with c € R and g > 0. If g = 1 then g% = exp Y with

, [0 ¢
so Lemma 3.2 implies that .5 = SI(2), and S certainly contains the claimed

diagonal element. Otherwise, let w = u + ¢/(p~! — p)v. Than the matrix
of h = g2 in the basis {v, w} has the desired form. O

This lemma shows that the assumption that S is transitive on RP!
implies that every vector is an eigenvector of a diagonalizable element in
intS. The next lemma improves this by showing that any direction is
actually a principal eigenvector for some matrix in znt.S. This fact is crucial
in the proof of the main result of this section, namely that 5 = SI(2)if S
is transitive on RP!.

Lemma 3.4. With the notations and assumptions of the above lemma
take v € R? — {0}. Then there exists w=0 and h € intS in such a way that
5 = {v,w} is a basis and the matrix of h with respect 3 is

(5 .)

with g > 1.
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Proof. Let {v,w} be as in the last lemma. All the matrices are referred
to this basis.

First we observe the following decomposition (Iwasawa decomposition)
of g1 € SI(2) which satisfies ¢,[v] = [w]: There are

a O | "
h1_<0 a_1>andn1—<0 1)
0 -1
g1:<1 0 >hlnl.

In fact, since gyv = aw for some a=0 and detg; = 1 there is b € R such

that
[0 —a!
gl - a b

so the claim follows from the following matrix identities
0 —a ¥} [0 -1 a b [0 -1 a 0 1
a b A1 0 0 /)7L 1 0 0 ot 0 '

Analogously, if g, € SI(2) and g[w] = [v] we have that g, decomposes

after Iwasawa as
> = hon. 0 1
P

with hy and n, of the same form as h; and n, respectively.

such that

— o

Now we prove the lemma.

Let h € intS be as in Lemma 3.3. If 4 > 1 there is nothing to do.
Otherwise, we can take 0 < p < 1 small enough by taking A" instead of
h and p" instead of g, » > 0 big enough. Since we are assuming that
S is transitive on RP! there are g;,¢2 € S such that g,[v] = [w] and
g2[w] = [v]. We have that ghgy € intS because h € intS. Taking Iwasawa
decompositions of ¢g; and g2 as above we have

0 1 0 0 -1
g2hg1 =h2n2< Z1 0 ) (l(; = ) ( 1 0 )hlnl.

Performing the products on the right hand side we get

gahgy = hong ( #0 i ) hin,.
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This equality can be rewritten as gohg) = hi with

_ -1
h:h-z(“O z)hl and ﬁ:(é ’{)

(In fact, if a is a diagonal matrix and b has the same form as 7 above,
then a~lba is like b so that the diagonal matrix can be put on the left by
ba = a (a"1ba)).

We have that h is the product of three diagonal matrices so it is diagonal.
Taking 2 small enough we get

— (x 0
= (o)

g2hg) = ( A ) € intS with A > 1.

with A > 1. That is,

0 A!

Now we can change the basis as in the end of proof of Lemma 3.3 to
get the desired diagonal matrix. O

As a last comment before the proof of the main theorem of this section
we observe the following two facts:

I. Let (a,b) C R be an interval with & > a > 1. Then there exists
Ty > 0 such that (Tp,00) C Up>1(a™, b™)

2. Let (¢,d) be an interval with 0 < ¢ < d < 1. Then there exists ¢ > 0
such that (0,¢€) C Unzl(c", dm)

The second fact is a consequence of the first, which follows from a™*! <
b", n > ng for some ng, i.e., ‘;—: < %, which follows from (§)* — 0.

Theorem 3.5. Let S C SI(2) be a subsemigroup with interior points.
Suppose that S is transitive on RP!. Then S = SI(2).

Proof. By Lemma 3.4 there are a basis {v, w} of R? and h € int.S which

is written in this basis as
h=|(* 0
0 pt
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with 4 > 1. We also have that there exists g € intS such that gw = Aw
with A > 1. In the basis {v, w} we can write g as

Ao
9= * A )

Since h, g € intS their powers and powers of their neighborhoods are in
intS. By 1. above there exists Ty > 0 such that for all £ > T

( (t] t(_)l ) € intS
-1

( 0 ) € intS.
* 4

Therefore there exist in the interior of .5 elements which can be written

(o2 ) (7 0)=(08) = (2)

and the theorem follows from Lemma 3.2. O

There is also * such that

In the analysis of the bilinear systems we prove controllability by show-
ing the non existence of a compact invariant subset on R P! which ensures
that S = SI(2) according to the following corollary.

Corollary 3.6. Let S be a subsemigroup of SI(2) with intS#0. Then
S=S51(2) if and only if there exists a proper compact subset (' C RP!,
with intC'#0, which is S-invariant, that is, gC' C C forallg € 5.

Proof. For «+ € RP! consider the compact subset ¢/(Sx) of RP'. We
have that cl/(Sx) is S-invariant and there exists a proper compact invariant
subset, as in the statement, if and only if ¢l(Sz) is proper for some .
Suppose that cl(Sz) = RP! for every z € RP!. Then S is transitive on
RP!. In fact, the subset

St={g":g9€5}

is also a semigroup with nonempty interior in SI(2). Hence for ally € RP?,
S=1y is a subset with non void interior in RP!. Since Sz is dense, we have
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that S~y N Sz=0. Picking z € S~y N Sz, there are hy, hy € S such that
z = hl_ly and z = hox. Therefore y = hihyx and 5 is transitive.
Therefore there are no proper compact invariant subsets if and only if

S is transitive on RP!. By the theorem, this last condition is equivalent
to S = SI(2). a

Remark: An invariant control set is a compact invariant set (! C RP!
such that ¢/(Sz) = C for all » € (. It is proved in [15] that there is just
one invariant control set. This invariant control set turns out to be the
only invariar compact subset.

Another consequence of Theorem 3.5 is that a semigroup S C SI(2),
with int.S#@, is transitive on R? — {0} if and only if § = SI(2) because
transitivity on R? — {0} implies transitivity on RP!.

4. Semigroups in GI[*(2)

In contrast to S{(2), there are proper semigroups with non void interior in
Gl (2) which are transitive on RP'. This happens for instance with the
semigroup

{g € GIT(2):detg > 1}.

In order to look at the semigroups with nonempty interior in G{t(2),
consider the onto mapping 7 : GI*(2) — SI(2) given by

m(9)= (Vaetg) g

This is a homomorphism of groups and a matrix ¢ € kern if and only if
g = Al for some A € R*. Thus kerr is isomorphic to the multiplicative
group of positive reals. Let S C GI*(2) be a semigroup. Then 7 () is also
semigroup, and int7 (5)#0 in SI(2) in case intS#D in GI(2) because 7 is
an open mapping. The following proposition gives information about the
semigroups in (7{(2) which project onto SI(2).

Proposition 4.1. Let S C GI*(2) be a semigroup with intS#0, and sup-
pose that m(S) = SI(2). Then there exists a semigroup T C R*, with
intl'#0) such that

S Nkerr =T.1.

Moreover, S = GI*(2) if and only if there are \{, A\, € Rt with \; > 1 and
Ao < | such that A\11 and A3l belong to S.
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Proof. We have that SNkern is a (possibily empty) seniigroup because
this is an intersection of a semigroup with a group. Hence it is enough to
show that it has non void interior. Take g € intS. Since 7(5) = SI(2)
there exists h € S such that 7(h) = n(g)~!. We have that gh € intS and
m(gh) = m(g)m(h) = 1. This shows that intS N ker 7#0 which implies that
the interior of .5 N ker 7 is not empty.

For the last statement, we apply the remarks preceding Theorem 3.5.
First of all, the existence of A\; > [ in I' ensures that there is an element
bigger than 1 in ntl. In fact, take @ € intI'. Then AJa € intT for every
n > 1. Taking n big enough, we get Afa > | in intl' as claimed. Now,
we have that R = exp (R1), hence the fact that the interior of I' contains
some b > 1 implies that there exists Ty > [ such that the interval (T, 00) is
contained in ¢ntl'. Similarly, there exists 77 > 1 such that (0,1/7)) C intT.
So that there exists A € intl’ with A=! € intI' which shows that 1 € intI’
and I' = R*.

Now, take g € GIT(2). Then m(g) € #(S) so that there exists h € §
such that ¢ = Ah for some A > 0. Since kerm C 5 we have that g € §
concluding the proof. a

5. Controllability in the case Gy = SI(2)

As we have seen the int(Sy) is nonempty in GGy. In the case of bilinear
systems of dimension 2, Gy, = S/{(2) if and only if the Lie algebra generated
by ¥ = {A, B} is sl(2). So we start by looking at this condition.

Lemma 5.1. Take A, B € sl(2). Then

1. Suppose that det B > 0. Then det[A, B] < 0 and the equality holds if
and only if A is a multiple of B. Moreover, {A, B,[A, B]} is linearly
independent if and only if det[A, B] < 0.

2. Assume that det B = 0. Then det[A, B] < 0 with equality if and only
if[A, B] = AB. Moreover, the set { A, B,[A, B]} is independent if and
only if det[A, B] < 0.

3. A and B generate sl(2) if and only if det[A, B]#0.
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Proof.

{. If det B > 0 then in a suitable basis of R?

(07

and B is skew-symmetric. Write A = A; + A, with A; skew and A,
symmetric. Then Aj is a multiple of B so that

[A, B] = [A,, B).

Being o bracket of a skew by a symmetric matrix [A, B] is symmet-
ric, so that det[A, B] < 0 because its trace is zero. A direct compu-
tation shows that [A;, B] is not a multiple of A, unless A; = 0. This
implies the independence of the matrices A, B and [A, B].

2. If det B = (0 we can assume that

B:(gé) and A:(i_ba).
—c 2a
= (5 %)

Therefore det[A, B] = —c¢? < 0 with equality if and only if [A, B] =
2aB. From these expressions it is clear that A, B and ' are indepen-
dent if ¢#£0.

Thus

3. In view of the previous items, it remains to check only the case where
det A and det B are < 0. In a suitable basis

A:(“ 0) and B:(“’ y)
0 —a z =

with —z% — y2 < 0, a#0, and we have

_ 0 Z2ay
[4, B] = ( —2az 0 )

Hence det[A, B]#0 if and only if yz#0. It is readily seen that if
yz = 0 then A, B and [A, B] are triangular so that this set is not
independent. On the other hand one checks easily the independence
of A, B and [A, B] if yz#0.
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This concludes the proof of the lemma. a

From this lemma we get immediately the following criteria for checking
if the Lie algebra generated by A and B is sl(2).

Corollary 5.2. Take A, B € sl(2). The following conditions are equivalent

1. The Lie algebra generated by ¥ = {4, B} is sl(2).
2. A, B and [A, B] are linearly independent.

3. det[A, B]#0. o

Now, we look at the controllability of bilinear systems of the forin & =
(A4 uB)r. We are interested in conditions on the matrices 4 and B
which we assuine to generate sl(2). As we have seen in Corollary 3.6 the
system is controllable if and only if its semigroup does not leave invariant
any proper compact subset of the projective space RP!. The existence or
not of these invariant sets will be detected by looking at the trajectories
of the corresponding linear systems. Recall that if (" is a matrix with
tr(’ = 0, its characteristic polynomial is z? + det(C’') and the eigenvalues

are +,/— det((’). There are three cases.

1. If det " > 0 we can fix a basis such that (' is

oy

and the trajectories of the system & = ('x are circles centered at the
origin. In the induced projective action there is just one trajectory.

2. If det " = 0 with C'=0 we have, in some basis that
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and the trajectories of the linear system defined by (' are the straight
lines perpendicular to the y-axis and the points in the z-axis are
stationary points. In the projective action there are two trajectories;
a fixed point and a dense trajectory which starts and ends in the fixed
point.

3. If det C' < 0 we have that

A0
C_(O —/\)

and the trajectories are hyperbolas. The induced projective action
consists of two fixed points and two trajectories linking the fixed
points.

The attractor corresponds to the eigenspace associated with the highest
eigenvalue of C'.

For the controllability of # = (A + uB)z we distinguish the cases ac-
cording to det B. We always assume that A and B are different from 0.

I If det B > 0 and A € sl(2) is any matrix with det[A, B]#0 then the
system . controllable. This is because the trajectories of # = Bur
are circles and it is not possible to find any compact subset in the
projective line which is invariant under the semigroup of the system.
Also, Corollary 5.2 ensures that Sy has non void interior.

IT If det B = 0 and det[A, B]#0 we have controllability again because we
can not nd any compact and invariant subset of the projective space.

IIT It remains the case det B < 0. There are the possibilities:

1. If det(A) > 0 and det[A, B]#0 then the projective trajectories
of A are dense and we have controllability.
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2. det(A) < 0. In this case the controllability depends on the sign
of det[A4, B]. Geometrically we have two cases, namely the fixed
points {f{1, f}, in RP', of A lie in the same trajectory of B or
in different trajectories.

B B
24
fi fi
oA
/e vi 7B

In the first case there is controllability because there is no com-
pact invariant set, and in the second case the system is not con-
trollable. In fact, suppose that f;! is the fixed point of A which
is the attractor. Then the closure of the trajectory of B which
contains f4 is invariant as show a quick glance at the picture.
It should be noted that det[A, B]#0 if and only if the fixed points
of A are different from the fixed points of B. The coincidence
of some of these points imply that A and B have a commnion
eigenvector so that they do not generate sl(2).

The algebraic meaning of these geometric conditions are as fol-
lows. Fix a basis such that

B:(“‘ 0>andA:<” ”’)
0 —a v -«

The fixed points of A lie on the same trajectory of B if and
only if the eigenvectors of A are in the same quadrant. Now,

the eigenvalues of A are /a2 + v/3. An eigenvector (r,y) of A

satisfies
(ot a2 +yB)r+py=0
yr 4+ (—at ot +48)y =0

Since y#£0 we can assume that y = | and we get the eigenvectors

(rx,1)=(=8/(a £ /a2 +~3),1).

These eigenvectors belong to the same quadrant if and only if
z4 and r_ have the same sign, and this in turn is equivalent to

-0y = (a+ /a2 + 8} a—y/a? +v3) > 0.

Since det[A, B] = 4a%y/3 we have that
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e the system is controllable in case det{4, B] < 0, and not
controllable if det{A, B] > 0.

This concludes the case by case analysis of the systems which generate
S1(2). Summarizing, we note the following fact which comes from this
analysis.

Theorem 5.3. Let A, B € sl(2). Then the semigroup Sy generated by
¥ = {A, £ B} coincides with SI(2) if and only if det[A, B] < 0.

Proof. We have that Sy = SI(2) if and only if ¥ is controllable on
R? — {0} so that it is enough to check that in the above cases controlla-
bility occurs if and only if det[A, B] < 0. This happens to be the case if
det B < 0 by the last one of the cases. On the other hand, if det B > 0, &
is controllable if and only if det[A, B]=0. By Lemma 5.1, we have in this
case that de 4, B] < 0, so the theorem follows. (]

We turn now to the group GI(2).

6. The case Gy = GI*(2)

We use the results of the previous section. The idea is to decompose a
matrix in gl(2) as a sum of a matrix in sl(2) and a diagonal matrix, i.e.

trgA)l) . (tr(‘A))1
2
We use the notation §(A) = tr(A)/2and A = A—~6(A)1. Since the matrices
81 and A commute, we have that [A, B] = [A, B] and ¢4 = ¢®tet4 for every
te R.

We start by finding a condition ensuring that A and B generate gl(2).
Consider the decomposition

gl(2) =sl(2)®» R1

A=(A-

and note that A — A is the associated projection gl(2) — sl(2). Recall
from Section 2 that if g C s1(2) is such that its projection g = {C : C € g}
is s1(2) then dimg > 3 so that g = sl(2) or gl(2). As a consequence, we
have

Proposition 6.1. Take A, B € gl(2) with tr(A)#0 or tr(B)#0. Then
det[A, B]#0 if and only if the Lie algebra generated by {A, B} is gl(2). If
this is the case then the Lie algebra generated by {A, B} is sl(2).
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Proof.  Let g be the subalgebra generated by A and B. Since det{4, B] =
det[A, B]#0, we have from Corollary 5.2 that A and B generate sl(2). This
shows that g = s1(2). Therefore the condition that the trace of one of the
matrices is not zero implies that g = gl(2). Reciprocally, if g = gl(2) then
the trace of one of the matrices is not zero, otherwise g would be con-
tained in sl(2). Also, g = sl(2) so that det[A, B]#0 which implies that
det[A. B]#£0. a

Given the system ¥ determined by A and B, denote by ¥ the system
associated with A and B. The above proposition shows that Ge = 50(2)
if the group of ¥ is (+1(2). Assuming this condition, a necessary condition
for the controllability of ¥ is the controllability of ©. In fact, the elements
of Sy are products of exponentials like

Therefore the elements of Sy are of the form Ag with A > 0 and g € Ss.
Since the action of Ag on RP! coincides with the action of ¢, we have that
S¢ is transitive on RP! if Sy is transitive on R? — {0}, that is if ¥ is
transitive. Joining together these comments with Theorem 3.5 we get

Proposition 6.2. Suppose that {A, B} generates gl(2). Then a necessary
condition for the controllability of ¥ is that S = 5[(2) and hence that ¥
is controllable.

We look at the controllability of ¥ by considering the cases in which &
is controllable. This will be made with the aid of Proposition 4.1 and the
following

Proposition 6.3. Suppose that ¥ is controllable and assume that Sy, is
transitive on a ray ro starting at the origin of R?, that is, for every pair
T,y € 1y there exists ¢ € Sy, such that gr = y. Then Ss is transitive on
R? — {0}.

Proof.  Since Sy is transitive on R — {0} it is transitive on the rays,
i.e., given two rays ry and r; there exists g € S with gry = ry. But the
action of Sy on the rays coincides with that of S5, because the elements of
Sy, ore of the form Ag, A € RY, g € 5. Hence Sy is also transitive on
the rays. Take z € ro and let y € R? — {0} be arbitrarily given. Let r; be
the ray which contains y. Then there is ¢ € Sy such that gr; = ry so that
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gy € ro. Hence there exists h € Sy such that hgy = . Analogously, there
is g1 € Sy with gy = r1. Then gl_ly € 7o and there is hy € Sy such that
hix = g;7'y, ie., g1thir = y. Therefore Sy is transitive on R? — {0}. O

We can now consider the different cases. They are divided according to
trB.

I trB=0. In this case ¥ is controllable if and only if ¥ is controllable. In
fact, suppose & controllable and distinguish the cases:

1. The eigenvalues of B are real (det B < 0). Then there is an
eigenvector v € R? — {0} and exp (tB), t € R is transitive on
the ray spanned by v. Therefore Proposition 6.3 implies that ¥
is controllable.

2. The eigenvalues of B are complex (det B > 0). Let a £ ib be the

eigenvalues. By assumption a#0#b. Hence there exists t € R
such that tb = 2kn for some integer k=0. Since in some basis

(0 ),

we have that exp (tB) = exp(ta).l. By taking —t instead of
t we find that Sy satisfies the assumptions of Proposition 4.1.
Therefore Sy = (71(2) and X is controllable.

we can write B as

II trB = 0 (B = B). Then trA#0. We consider the different possibilities
for the Jordan form of B.

1. det B > 0. Then there is a basis  such that the matrix of B is

of the form
0 —a
a 0

an the trajectories of B are circles centered at the origin. De-
note by (-, -) the canonical inner product with respect to 3. The
connected subsets which are invariant by the trajectories of B
are the rings formed by those x such that (x,z) belongs to an
interval of R*. Now, Ssz is connected and B-invariant for all
z. Therefore ¥ is not controllable if and only if exp (tA), t > 0
leaves invariant some of these rings. However this condition
holds if and only if Az points inwards or outwards some circle
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for every z in the circle, and this is equivalent to the fact that
(Az, z) does not change sign in the circle. Note that this condi-
tion is independent of the length of z, so that ¥ is controllahle
if and only if (Az, z) changes sign in R? — {0}. In order to look
at these signs, put

A+ A

==

Then S is symmetric and (Az,z) = (Sz,z). We get thus that
a necessary and sufficient condition for the controllability of ¥
is that S is not semi-definite. Recall that a symmetric matrix
is not semi-definite if and only if its eigenvalues are of different
sign, that is, if its determinant is negative. Hence we have

S

e Y is controllable if and only if det S < 0.

This condition depends on the basis which puts B in canonical
form. We shall translate it into a coordinate free condition. For
this use the notations

=(0y) (1Y)

Then B = (\/det B) X and

-b—c a-d
[X; Al = ( a—d b+c )
A simple computation shows then that detS = det[X, A] +
(trA)%. Substituting X by B in this expression we get

1 2
det§ = —— (det[X, A] + det B (trA)?).

Since det B > 0 we get the following coordinate free condition

e Y is controllable if and only if
det[X, A] + det B (trA)? < 0.

2. det B = 0. In a suitable basis B is given by

(o)



134Carlos Braga, Joao Goncalvez, Osvaldo do Rocio y Luiz San Martin

so that its trajectories are horizontal lines except for the fixed
points in the horizontal axis. In analogy with the previous case
we find that the connected B-invariant subsets are the strips
formed by (s,t) with t restricted to an interval of the reals and
s €R. Such a strip is A-invariant if and only if Az points upwards
or downwards along a line {(t,a) : t € R}, a fixed, and this
happens if and only if the second coordinate of A(t,a) does not
changes sign when t runs over R. However this coordinate is a
linear function of ¢ so that there is no strip invariant under A
and ¥ is always transitive in this case.

3. det B < 0. In this case ¥ is controllable if and only if
det[A, B] = det[A, B] < 0,

that is, if and only if ¥ is controllable. In fact, the eigenvalues
of B are real so that exp (tB) is transitive on some ray, therefore
the controllability of ¥ from the controllability of & follows from
Proposition 6.3.

7. The case with Gy abelian

We consider here the case where A and B are written simultaneously in

the form
a -b
b a )

The Lie algebra generated by these matrices is so(2) & R1 if and only if
they are linearly independent. The geometry of this case is the easiest one to
look at. In fact, as a topological space the group SO(2) x (R1) is a cylinder
S1xR with e circle S! representing the group SO (2). Also, SO(2)x(R1)
is isomorphic to the group C* whose action on R? is just multiplication of
complex numbers, so that ¥ is controllable if and only if Sy is the whole
group. Since the group is abelian the formula exp(X +Y) = exp XexpVY
holds. This implies that Sy is the exponential of the half-plane spanned by
A and B:
Sy =exp{tA+sB:t>0,s€ R}

Now, the exponential mapping, which is the exponential of complex num-
bers, is the mapping which rolls up the plane onto the cylinder. Hence X is
controllable and only if the half-plane spanned by A and B rolls up onto
the cylinder. It is clear that this happens if and only if B is not contained
in so(2). Therefore we have:
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o Assuming that A and B are linearly independent, ¥ is controllable if
and only if the eigenvalues of B are not purely immaginary.

Besides the above geometric proof, this fact can be seen also as follows.
Suppose that the eigenvalues of B are purely immaginary. Then its trajec-
tories on R? are circles centered at the origin. Recalling the same situation
appearing in Section 6 we have that controllability depends on the sign of

the determinant of
A+ A
S = .
2
However this matrix is of the form A.1 so that detS = A? > 0 and the
system 1s not controllable. On the other hand, if the eigenvalues of B are
not purely immaginary, the half-plane spanned by A and B contains in
its interior one of the rays of so(2) so that the interior of this half-plane

contlains a matrix of the form
0 —b
b 0

with b = 2k, k integer. Therefore 1 € intSy so that Sy = SO(2) x (R¥1),
and the system is controllable.

8. Conclusions

We summarize now the previous analysis in the form of necessary and
sufficient polynomial conditions.

¢ Controllability is equivalent to det[A4, B] < 0 in each one of the fol-
lowing cases:

1. det B < 0 and B=0.
2. det B > 0 and the eigenvalues of B are real and B#c.1.
3. trA=trB=0.

The case where the matrices belong to sl(2) were discussed in Section 5.
As to the other cases, if det B < 0 then B is not a multiple of the identity
and its eigenvalues are not complex. Therefore controllability holds only
if [A, B]#0 which means that the Lie algebra generated by {A, B} is sl(2)
or gl(2). By the discussion in Section 6, we have controllability if and
only if det[4, B] = det[A, B] < 0 and the eigenvalues of B are not purely
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immaginary. Hence we get the equivalent condition in case det B < 0. This
argument applies also to the second case.

If B heal) eigenvalues then det[4, B] < 0. So we have the following
refinement of the first two cases.

e Controllability is equivalent to det[A, B]#0 in case B has just one
eigenvalue and B#c.1.

In any one of the above situations the group associated with the system
is not abelian. This might happen to be the case in the remaining ones
which com] ‘ment the first and second cases above.

e If B = k.1 then controllability holds if and only if the eigenvalues of
A are complex.

e If the eigenvalues of B are complex and not purely immaginary (so
that det B > 0 and trB=0) then there is controllability if and only if
A is ltiple of B.

e If the eigenvalues of B are purely immaginary, controllability is equiv-
alent to

det[A, B] + det B (trA)* < 0.

In this last case, det[A, B] < 0 for any A with equality if and only if
[A, B] = 0. If this happens, we are in the situation of Section 7. Otherwise,
the condition is always fulfilled if trA = 0, so we have

o If the eigenvalues of B are purely immaginary and tr4A = 0 then
contre ability is equivalent to [A, B]#0.

This list covers all the possibilities for A and B providing necessary and
sufficient conditions for the controllability of (1.1).
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