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Abstract
In these notes we show that if H is a group of conformal automor-
phisms, isomorphic to a dihedral group, acting free fixed points on a
closed Riemann surface S, then there is a Schottky uniformization of
S for which H lifts. We also give an explicit example of a dihedral
group for which the above lifting property fails, showing in this way
that condition (A) of [4] is not sufficient in general.
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1. Introduction

In these notes we obtain some results in the theory of uniformization of
closed Riemann surfaces with automorphisins. In [1] we were interested in
the following question. Let us consider a closed Riemann surface S and a
group H of conforimal automorphisms of it. Is there some Schottky covering
(G,Q, 7 : @ — S) for which H lifts? (that is, for each i € H there is a
e Ant() satisfying hr = wh).

In [10] L. Keen solves this problem for S hyperelliptic and H the group
generated by the hyperelliptic involution. In [5] we solve this problemn for
pairs (S, H), where H is any cyclic group of order two.

In [4] we obtain necessary conditions to be satisfied by H in order to find
a Schottky covering as desired. These necessary conditions ouly concern to
the set of fixed points of non-trivial elements of H. If H is isomorphic to a
dihedral group, then these conditions hold trivially (see section 5).

In [6], [7) and [8] we show that these conditions are sufficient for H
isomorphic either to Z, Z/2Z & Z/2Z and abelian in general, respectively.

The aim of these notes is to study this problem for dihedral groups of
conformal automorphisms. If the action of the group is free fixed points,
then we show the existence of a Schottky covering of the surface S for which
the group H lifts. We also describe in full the situation when the genus of
S is one (see section 4).

Since the dihedral group of order four is abelian, it follows from the
results in [( that we are able to find a Schottky covering for which the
group lifts.

The first hope is that for a general dihedral group the above result is
true. Unfortunately, this is not the case as shown in the example given in
section 8. This example is a dihedral group of order six acting on a surface
of genus four with, by Riemann-Hurwitz, fixed points. In section 7 we
show that in the absence of fixed points, we may find a Schottky covering
as desired. We give a list, in section 9, of geometrically finite Kleinian
groups J, containing a Schottky group G as a normal subgroup of finite
index, with J/G isomorphic to a dihedral group. Such a list gives a lot
of different topological actions of a dihedral group on a closed Riemann
surface. We expect such a list to be complete, that is, all dihedral actions
that satisfy the lifting problem are represented in it.

As a consequence of the Nielsen realization theorem [11], the above
describes all free fixed points topological actions of a diledral group of
orientation preserving homeomorphisis on a closed orientable surface.

The development of these notes is as follows.
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Section 1: Definition of Schottky coverings, and recall of a well known
fact about conformal automorphisms of region of discontinuity of Schottky
groups.

Section 2: Some basics from quasiconformal deformation theory.

Section 3: The lifting problem and the main theoremn. We also state the
main theorem from the points of view of group theory and of 3-manifolds.

Section 4: The proof of the main theorein for Riemann surfaces of gemus
zero and one.

Section -5: Information about the fixed points of the elements of a di-
hedral group of conforimal automorphisms on a closed Riemann surface.

Section 6: The case when the quotient Riemann surface has genus
greater or equal to one. Construction of a special set of oriented simple
loops.

Section 7: Proof of the main theorem.

Section 8: A counterexample for the lifting problem for dihedral groups
acting with fixed points.

Section 9: A list of geometrically finite Kleinian groups containing a
Schottky group as a normal subgroup of finite index and quotient a dihedral

group.

2. Schottky Coverings

2.1. Schottky Groups. Forg >1,let Cp, ", k=1,..., 9, be 2g Jor-
dan curves on the Riemann sphere, C = CJ{oo}. Assume that they are
mutually disjoint and bound a 2g—connected region D. Suppose that for
each k there exists a M&bius transformation Ag with the following proper-
ties.

(i) AR(Cr)=C"s.

(ii) Ax(D)ND=0.

The group G generated by the transformations Aj,..., Ay is called a
Schottky group of genus g.

It is a well known fact G is a purely loxodromic Kleinian group isomor-
phic to a free group of rank g (see [12] and [13]). A fundamental domain F
for GG is given by D union the curves Cy, k = 1, ..., g. The domain F is called
a standard fundamental domain for G with respect to the above generators.
This domain is not uniquely determined by the above generators.

In fact, every purely loxodromic Kleinian group isomorphic to a free
group of rank g is necessarily a Schottky group of genus g (see [13]).
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For our purposes, we define the Schottky group of genus zero to be the
group with the identity as its only element, that is, the trivial group.

2.2. The Riemann Surface Associated to a Schottky Group. Let
(¢ be a Schottky group of genus g, and € its region of discontinuity, then
S = Q/G is a closed Riemann surface of genus g. Moreover, if Aj....,
A, form a set of free generators for (+, and F' is a standard fundamental
domain for these generators, with boundary curves Cy,("y (k = 1,...,9),
then these loops projects to a set of g disjoint homologically independent
silmple loops on S. Reciprocally, the retrosection theorem [2] asserts that we
can reverse this situation. Another important fact about Schottky groups
is the following.

Theorem 1.1. If Q is the region of discontinuity of a Schottky group
G, then any conformal automorphism of ) is the restriction of a Mobius
transformation.

2.3. Schottky Coverings. Given a Schottky group (7, with region of
discontinuity €2, we can associated to it a natural triple (G.Q,7 : Q@ —
Q/G). The holomorphic projection 7 : £ — Q/G is the natural one. We
can also get a lot of triple associated to G as (G,8,p : Q — Q/(7), where
p = hrt, the map t is a Mobius transformation that conjugates G nto itself
and h is an automorphism of the surface Q/G.

Any triple (G,Q,p : © — S), where S is a closed Riemann surface,
(G a Schottky group with region of discontinuity €, and p : @ — S a
holomorphic covering with G as covering group, will be called a Schottky
covering of S.

3. Quasiconformal maps

In this section we recall some basics from the theory of quasiconformal
maps (see [1] for more details).

3.1. Quasiconformal homeomorphisms. Let ;(2) be a measurable
function defined on the Riemann sphere with |lu|l, < 1. Let ® be a
orientation preserving homeomorphism of the Riemann sphere. We say
that ® is p—quasiconformal homeomorphism if

O®/0z = j(2)0P/0z, a.e.
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In general, an orientation preserving homeomorphism of the Riemann
sphere is called quasiconformal if it is g—quasiconformal for some .

Theoremn 2.1 (Ahlfors-Bers Theorem [1]). If ji(2) is a measurable
function on the Riemann sphere with ||p|| ., < 1. then there exists a unique
quasiconformal homeomorphism W# of the Riemann sphere satisfying the
equation

OWH [0z = p(2)0WH [0z, a.e.,

and WH(0) = 0, WH(1) = 1, WHE(o0) = co. Moreover. the solutions
W™ vary analytically on the complex paraneter t.

Lemma 2.2. Let GG be a finitely generated Kleinian group and let A\ be
an imvariant set of components of the region of discontinuity of . Suppose
there erists jt a measurable function on A so that

w(g(2))g'(2) = p(2)g'(2), for all g in G and all z in A.

Extend p1 to be zero in the complement of A and let ® be a ji—quasiconfor
homeomorphisin of the Riemann sphere. Then ®g® ! is again a Mdbius
transformation.

The proof of the above lemma is a direct computation and it is left to
the interested reader.

3.2, Beltrami coefficients. If |||l <1 in the lenuna above, then
is called a Beltrami coefficient for the group GG supported in A.

Let ;2 be a Beltrami coeflicient for a Kleinian group ¢/, and'let ® be a
jt—quasiconformal homeomorphism. Set G = ®G® 1. Then the group G
is again a Kleinian group for which ®(A) is invariant set for G in its region
of discontinuity ®((G)), where (G) is the region of discontimuity of (.
We say that G is obtained by quasiconformal deformation of G on A. If
the set A is all the region of discontinuity, we only say that G is obtained
by a quasiconformal deformation of G.

4. The Main Theorem

Let S be a closed Riemann surface of genus g and H a group of conformal
automorphisms of S isomorphic to a dihedral group. We are interested in
studying the following question concerning conforinal automorphisms and
Schottky coverings.
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Is there a Schottky covering of S for which H lifts?

The following give a partial answer to the above question in the dihedral
case.

Theorem 3.1. Let S and H be a closed Riemann surface and a group
of conforinal automorphisms of S, respectively. If H is isomorphic to a
dihedral group and acts free fived points. then there is a Schotthy covering
of S for which H lifts.

The dihedral case of order 4 is done in [7] and [8]. In what follows, we
consider only dihedral groups of order greater or equal to 6.

In the group theoretical setting, theorem 3.1. can stated as follows.

Theorem 3.2. Let K be a group isomorphic to the fundamental group
of a closed orientable surface of genus v > 2. Assume that F is a normal
subgroup of K such that K/ F is isomorphic to a dihedral group. Then there
exists a common normal subgroup N of F and K such that F/N is a free
group of rank g.

Theore1 3.1. can be also described from the language of 3-manifolds.
A handlebody V, of genus g > 1 is the connected sum of g copies of the
3-manifold (with boundary) D x S!, where D is the closed unit disc and
S' is the unit circle. The boundary S, of the handlebody Vj is a closed
orientable surface of genus g.

The Nielsen realization theorem [11] asserts that we can give to S, the
structure of a Riemann surface for which H acts as group of conformal
automorphisms. In particular, we can state the main theorem as:

Theorem 3.3. Let H be a group of orientation preserving homeomor-
phisms of the boundary Sy of some handlebody Vy. Assume that H acts
free fixed points and is isomorphic to a dihedral group. Then there erists
an orientation preserving homeomorphism f : Sy — Sy, for which fHf !
can be extended as group of orientation preserving homeomorphism of V.

In the case the group acts with fixed points is not in general true the
existence of such a Schottky covering, as can be seen from the example in
section 8.
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5. The Case of Genus 0 and 1

In this section, we consider all possible actions (by conforimal automor-
phisims) of a dihedral group H on a a Riemann surface S of genus g € {0.1}.
Assuine H to be a group of conformal automorphisms of S, isomorphic to
a dihedral group of order 2n, n > 3. The particular case n = 2 has been
already stated in [8].

5.1. Genus Zero Case. If the genus of S is zero, then $ = C. Let
(G={I},Q=C,m=1:C — C) be the trivial Schottky covering of C.
In this case the group H lifts trivially. We must remark that in this trivial
case, every conformal group H (no necessarily finite) lifts.

5.2, Genus One Case. Assume the genus of S to be one, that is, S'is a
torus. Let a and b be two elements of H of order n > 3 and 2, respectively.
We have that H is generated by a and b with relations " = 1, b2 = 1 and
(ab)? = 1. There are two possibilities for b; either it is an involution with
four fixed points (a hyperelliptic involution) or it is an involution without
fixed points. The automorphism a has four possibilities:

(i) n = 3 and the torus is conformally equivalent to the torus C/ <
1,ef/3 >,

(ii) n = 4 and the torus is conformally equivalent to the torus C/ < 1,7 >.

(iii) n = 6 and the torus is conformally equivalent to the torus C/ <
1’ e1;7|'/3 >.

(iv) n >3 and a (and all its powers) has no fixed points.

Here C denotes the complex plane and < wu,v > denotes the group
generated by the translation z — z + v and the translation z — z 4 v.

Since the fixed points of a® are permuted by the automorphism b, the
number of fixed points of a® must be even. We name these fixed points by
Ply--es Dy Q1,5 Gk, SO that b(p;) = ¢;. In particular, the rotation numbers
(see section 5) satisfy a(a®,p;) = —a(a®,¢;), if the order of a* is greater
than two. It can be checked, from (i)-(iv), that the only possibility is that
a (and all its powers) acts without fixed points and the automorphism b
acts with four fixed points (a hyperelliptic involution).

This action can be seen as follows. Let 7 be any complex number with
positive imaginary part. Let T be the torus C/ < 1,7 >. Choose a complex
number b, and integers numbers 1 < k; < n, at least one k; relatively prime
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ton,i =12 Let B(z) = —z+ b and A(z) = z + (b + ky7)/n. Then
the automorphisms A and B descend to automorphisis a (of order n) and
b (of order 2), respectively, generating a dihedral group (of order 2n) of
conformal automorphisms of T'.

Now choose any siimple loop 1y on the torus T, for example the projection
of the path [0,1]) = {z € C;in(z) = 0,0 < Re(2) < 1}. This path define a
Schottky covering (G,Q, 7 : Q — T) of T. Since the transformation a acts
trivially on tlie fundamental group of T and b acts as the transformation
(n,m) — (—n, —m), they lift to the above Schottky covering.

As a consequence, we obtain the following easy fact.

Theorem 4.1. Let H be a group of conformal automorphisms on a
closed Riemann surface S of genus g € {0,1}. If H is isomorphic to a
dihedral group of order 2n, then there is a Schottky covering of S for which.
H lifts if and only if either:

(1) n=2, or

(2) n > 3 and the cyclic group of order n acts free fired points. In this
case, necessarily, the involutions are hyperelliptic.

6. Dihedral groups of conformal automorphisins

In this section, we consider a dihedral group H of conformal automor-
phisms of a closed Riemann surface S. First we proceed to obtain some
information about the fixed points of the elements of H (see proposition
5.1). Secondly, we use Riemann-Hurwitz formula [3] to observe that the
number of branched values of order two on the quotient surface S/H is
always even (see subsection 5.3. and proposition 5.3).

6.1. Stabilizer and Rotation number. Let S be a Riemann surface
and H be a group of conformal automorphisms of S. Then

(1) For each p € S, the stabilizer of p in H is the group H(p) ={h € H :
h(p) = p}-

(2) Let h € H and p € S be such that h(p) = p. We can find a local
coordinate system (U, ¢) such that ¢(p) = 0 and ¢ph¢~1(z) = ¢*z, for
all z € (U). Moreover, we can assume ¢(U) = A, where A denotes
the unit disc in the complex plane C. The angle a = a(h,p) is well
defined up to a multiple of 27, independent of the local coordinate,
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and a(h¥,p) = ka(h,p). We may normalize a by assuming that
—m <« <. We call a = a(h,p) the rotation number of & at p.

6.2. Fixed points. Let us observe that if a and b elements of H of
order n and two, respectively, then H is generated by a and b, with only
relations

a" = b? = (ab)? = 1.

A now-trivial element of H has the form a*b®, where k € {0,1,...,n —
1} and s € {0,1}. The elements of the form a*b have order two, and
for n > 3, they are exactly those elements of order two. The Riemnann-
Hurwitz formula [3] asserts that every automorphism of order two has an
even number of fixed points. For fixed &, 1 < k < n -1, if ris a fixed
point of a*, then b(z) is also a fixed point of it. This is consequence of
the relation ba*b = a~*. Since the stabilizer of any point is cyclic, we have
b(x) # x. In particular, the automorphism a* has an even number of fixed
points. The above relation shows also that if the order of a* is greater
than two, then the rotation number of a* at x and b(x) are opposite in
sign, that is, a(a®,z) = —a(a®, b(x)). It follows from the above arguments
that a dihedral group satisfies the necessary conditions of [4] (it was called
the condition (A)). We have the following facts concerning the elements of
order two in a dihedral group.

Proposition 5.1.

(1) If n is odd, then a*b is conjugate to b. In particular, the number of
fixed points of a*b is the same as the number of fivred points of b. If
x is a fired point of a¥b, then a®(x) is not a fized point of the same
ak, for1 <s<n-1.

(2) Ifn is even, then a®*b is conjugate to b and a®*~1b is conjugate to ab.
The elements ab and b are non-conjugate. In particular, the number
of fized points of a®*b (resp., a®*~1b) is the same as for b (resp., ab).
Moreover, if x is a fized point of a™b, then a™?(z) # x is also a fized
point of the same a™b.

Proof (1) Write n = 2r — 1 and let | = (n — k)r. Then a'a*ba™! =
a2lthp = q2(n-K)rtkp — g(n=k)(nt)+kp — q—k+kp = b This shows the first
statement. For the second, assume z is a fixed point of a¥b and assume
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there exists s, 1 < s < n — 1, such that a®(z) is also a fixed point of the
same a*b. Since the stabilizer of x and also of a®(x) is the group on two
elements generated by a¥b, we must have a®*a*ba=* = a*b. But the left side
of this equality is a?***b, so we obtain the equation a?* = 1. This is only
true for 2¢ = n. This is a contradiction to the fact that n is odd.

(2) The first statement are consequence of the following. a *a?*ba* =
a 2k = b and al“*a? " lpat1 = a2726+2%-1p — 4b. For the second
statement, observe that a™2a*ba="/2 = a"tkb = a*b. To see that ab and
b are non-conjugate, observe that if we conjugate b by some a®b, then we
obtain a?®b. If we conjugate b by a®, some 1 < s < n — 1, we also obtain
a?%b. This ends the proof of our lemma. i

Notation. If k € H, and (k) is the cyclic group generated by k in H,
then we set

F(k) = {p € S;(k) = {h € H;h(p) = p}}.

The cardinality of F(k) is denoted by N(k) . As a consequence of propo-
sition 5.1, we have the following.

Corollary 5.2.

(1) For each s < n, dividing n, we have N(a®) = 2sks, for some non-
negative integer ks. Moreover, if a® has order greater or equal to
three, then its 2sks fized points can be arranged as

8 s $ 8
pl,i: [ ps,i’ QI,i’ s qs,i,

where i = 1,.., ks, such that b(p},) = ¢}; and a(p};) = piy1; O
modulo n). In particular, a(a®,p};) = —a(a®,q3;) € |0,7[, for all j
and 1.

(2) If n is odd, N(a*b) = 2rg, for all k and some non-negative integer
0.

(3) If n is even, then N(a®*b) = 2r; and N(a®*71b) = 2ry, for some
non-negative integers r1 and rq, respectively.

6.3. The signature of the quotient surface S/H. The signature
(see {12]) of the quotient Riemann surface S/H, of genus 7, can be then
described as follows.

Let 1 =51 < sy <--- <8 <L, where L= (n—1)/2 for n odd and
L = n/2 for n even. Moreover, assume
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(i) s; divides n, and
(ii) if ¢t divides n, then t = s;, for some 1.

For each ¢ € {1,...,t}, the automorphismn a* is the stabilizer of 2s;k;
different points, for some non-negative integer k;. The signature of S/ H is:
(1) case n odd.

(9, 270 + SE1Ris 2, oy 2,181, ey )81, 1) 80y e ) 8,y oo V) S o 1) ),

where there are 2r¢ numbers 2 and k; munbers n/s;, for all 7.
(2) case n even.

(1,71 4+ 7o+ 31k 2, 2, /81, ey )81, 89, ey L) 82, ey U S, ey L) 81),

where there are r; 4+ 9 numbers 2 and k; numbers n/s;, for all 7.
The Riemann-Hurwitz formula implies the following equalities in each
case.

(1) g=2n(y — 1)+ 1+ nro + Sf_1(n — 5;)ky, if n is odd.
(2) g=2n(y=1)+ 1+ (r1 + 12)n/2+ Tt (n — s:)ks, if n is even.

As observed above, in the odd case, we have an even number of branch
values of order 2 on S/ H. The following shows that the same holds for the
even case.

Proposition 5.3. In the even case, vy + ry is even. Proof Let H
be a group of conformal automorphisms of a surface S. Assume H to
be isomorphic to a dihedral group of order 2n with n even. Let a and b
generators of H, so that a and b have orders n and 2, respectively. Denote
by S/H the quotient Riemann surface and by 7 : S — S/H the natural
holomorphic (branched) covering. On S/H we choose a point x, which
is assumed not a branch value, and on S we choose a point z such that
m(z) = x. We choose a set of simple loops aj,..., ay, B1,..., 3, on S
through x so that, they do not contain branch values, they intersect at
their common point x, and they are a canonical basis for I1;(S/H, ), the
fundamental group of S/H based at x. Choose disjoint oriented simple
100pS 81,.eey 8ryy Myeees Nrgy O1yeeey Ok, (kK =K1 + -+ ky), so that

(1) these simple loops are disjoint from the above «; and /3; loops;
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(2) each loop bounds a topological disc¢ containing exactly one branch
value;

(3) the loop &; bounds a branch value of order two, which is projection
of a fixed point of b;

(1) the loop r7; bounds a branch value of order two, which is projection
of a fixed point of ab;

(5) each loops 6; bounds branch value that is the projection of a fixed
point of a power of a;

(6) the orientation of each loop is given so that the branch value they
bound is at the left side (when going in the positive direction).

We consider a set of oriented simple paths, all of them disjoint, starting
at x, and such that

(7) each path connect x with exactly one of the above simple loops
(bounding branch values);

(8) these paths are disjoint (with the exception of x) from the loops «;
and 3;.

We may consider these loops to be based at x, formed by going through
a corresponding path from z to the loop, going around the loop, and then
back to r (see figure 1). We still denoting these new loops as 8;, n; and 6,
respectively.

Set X the surface S with all fixed point deleted, and R the surface
S/H with all branch values deleted. We have that 7 : X — R is a regular
holomorphic covering with H as covering group. Moreover, I1,(R, x) has
generators aq,..., @, 31,..., By, Otyeey ey Myeesy Ny, 01,0, O, and the only

relation is
Y T1 Ty I

H(aiﬁia;lﬁfi"l) H(SJ H?}s 91 =1.
1

i=1 j=1 s=1 =

We have a natural surjective homomorphism ® : I (R,z2) — H given
by lifting loops at z. In particular, we have that

(9) ®(a;Bi0, 18, 1) = aPs,

(10) ®(8;) = a2,
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(11} &(r,) = a?™m"1h,
(12) &(6;) = o,
In consequence, the relation on the generators of I} (R, x) gives us
1 =o' 172,

In particnlar, ) + 3 must be an even nunber. §
x

figure 1

Remark. Same arguiments as in the proof of proposition 5.3 show that,
(1) if ~ = 0. then rg # 0 anc vy + 79 #£ 0.

(2) if there is 1o a subset of {1,....¢}, say {f1.....1x }, satisfying the prop-
erties that
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(2.1) the transformmation o™i generates the stabilizer of some point,
and

(2.2) the transformations a”1,..., a*% generate the cyclic subgroup of
order n,

then rg > 2 for n even, and r; +r9 > 2 for n odd.

7. A Special System of Simple Loops on S/H in the Case vy > 1

In this section we assume =, the genus of the quotient Riemann surface
S/H to be greater or equal to one. Under this assumption we proceed to
find a special set of simple loops, «;, 3; (i = 1,...,) on S/H. This set of
loops gives a canonical basis for the homotopy of S/H and satisfies certain
properties which describes the regular branched covering 7 : S — S/ H (see
proposition 6.3).

Let us fix a and b in H of order n and two, respectively. Denote by S/L
the quotient Riemann surface obtained by the action of L, the cyclic group
generated by a, on the surface S. Let my : S — S/L and 7y : S/L — S/H
be the natural holomorphic (branched) coverings induced by the actions of
Lon S and H/L =2 Z/2Z on S/L, respectively. We have that 7 = mym;.
Let b be the automorphism of S/L (of order two) generating H/L. Then
mafb = by all k.

Choose a point x on S/ H which is not a branch value of 7. Let y; and y,
on S/L be so that m(y;) = x, for i = 1,2. These points are necessarily no
branch values of my. Let 21,..., 2p, wy,..., wy on S be such that m1(2z;) = 1
and m(w;) = y2. We may assume that a(z;) = 241, a(w;) = wiqq, for
i=1,....n—1, a(zy) = z1, a(wy) = wy and b(z1) = w;.

Let oy, 35, 7 = 1,...,7, be a set of different oriented simple loops on
S/ H through r satisfying the following (see figure 2).

(A) The intersection of any two different loops is exactly x.
(B) The intersection number between «; and 3; is +1.

(C) Any other pair of loops are homotopically disjoint, that is, they are
homotopic to disjoint simple loops.

(D) The set of loops above gives a canonical basis for the homotopy of
S/H (based at ).

(E) The loops are disjoint from the branch values of 7.
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oy 5/
™~ . H
@,
s
] by
) x \
1Y
(s '
O
2
X %y
o

figure 2

Lemma 6.1.

(i) If some a®b has a fizred point, then we can choose the set of loops as
above satisfying the property that all of them lift to loops on S/ L.

(ii) If a®b has no fized points for all s, then we can choose the above loops
in such a way that oy lifts to a path and all other loops lift to loops
on S/L.

Proof Choose a set of oriented loops through x satisfying (A) to (E).
Each one of these loops either lifts to a loop or lifts to a path. Assume that
some of these loops lifts to a path (this is the case if the automorphism b
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acts free-fixed points), otherwise we are done. For each fixed j we have the
following possibilities.

(i) Both loops «; and 3; lift to loops.

(ii) One of the loop a; or 3; lifts to a loop and the other lifts to a path.
By permuting them (if necessarily), we may assume that «; lifts to a
path.

(i1i) Both loops «; and 3; lift to paths on S/L.

In case (iii) we can replace the loop §; for a simple loop homotopic to
a;3;. After this change, we are in case (ii). From now on, we assume that
for each j we are either in situation (i) or (ii). We re-order the pairs of
loops aj and 3; such that:

(1) «y lifts to a path and 8; lifts to a loop on S/L, all j =1,...,r; and

2) «a; and 3; both lift to loops on S/L, all j=r+1,...,7.
j J :

For each j, 2 < j < r, we change the loops 3; and «a; by simple
loops homotopic to 313; and ajaq 1 respectively. After performing these
changes, we have that g lifts to a path and all other loops lift to loops on
S/L.

If there is no element a®b with a fixed point, then the automorphism b
has no fixed points. The connectivity of the surface S/ L implies we cannot
do better in this situation, and we obtain the required loops.

Now let us assume some a°b has fixed points. In this case, b has a fixed
point. Denote it by q. Let p be the projection of ¢ in S/H. Let 1 be a small
simple loop around p, disjoint from the above loops and from the branch
locus of m. We may assuine this loop separates p from all other branch
values of w. We orient 1 in such a way that, when going in the positive
orientation, the point p is at the left side of 1. Let & be a simple path
connecting x to 1. We assume this path to be disjoint, except at z, from
the loops «; and 3;, for all j. We orient this path so that 2 is the initial
point. Now replace the loop a; by a simple loop homotopic to aéné~1.
The new set of loops is the required one. §i

Proposition 6.2. We can modify the above set of loops. without de-
stroying the above properties, such that one of the following holds.
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(I) If vy =1, then either

(I.1) Both loops oy and B3y lift to loops on S; or

(L.2) The loop oy lifts to a loop, and the loop B lfts to a path with
initial point 2y and end point z;, k € {2,...,n} and k—1 dividing
n; or

(L3) The loop o lifts to a loop, and the loop By lifts to a path with
initial point z1 and end point wy, k € {1,...,n}; or

(L4) The loop aj lifts to a path with initial point z; and end point 2,
le{2,...,n}, and the loop By lifts to a path with initial point z,
and end point wg, k € {1,..,n}.

(IT) If v > 2, then either

(IL1) Al the loops a; and B3; lift to loops on S; or

(IL.2) All the loops cj and By lift to loops on S, for j >3 and k > 1,
the loop o lifts at zy with end point zo, and the loop «y lifts at
z1 with end point wy; or

(IL.3) The loop ay lifts at z; with end point z9, the loop ay lifts at z
with end point wy, the loop By lifts at z; with end point at somne
z; and all the other loops lift to loops on S.

Proof

(I) The case v = 1. Let us call by a and 3 the loops «; and 3; respectively.
By lemma 6.1, either both lift to loops on S/ L or « lifts to a path and 3 lifts
to a loop on S/L. Change the loops a and 3 by 3 and a1, respectively.
Now a lifts to a loop and 3 lifts either to a loop or to a path on S/ L.

(1) Some automorphism a®b has fixed points. In this case both loops o and
3 lift to loops on S/L. In this case, either both of them lift to loops on S
(in which case we are done) or

(i) The loop « lifts to a loop and the loop (3 lifts at 27 with end point z,
le{2,..,n}; or

(ii) the loop « lifts at z; with end point z and S lifts at z; with end point
2z, Lk € {2,...,n}.
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In case (ii), we cousider the group generated by a/~! and a*~1. This
group is a cyclic group generated by a with h dividing n. In particu-
lar, there exist ¢ and j integers, such that a*®t-D+J(k=1) = gh Let ¢ be
the greater common divisor of [ — 1 and A& — 1. In this case we have:
. D/rtitk -1/ i also a generator of the cyclic group generated by a”.
Since (I —1)/r and (k—1)/r are relatively prime, there exists a simple loop
1 through r, generated by o and 3 which lifts at z; with end point a¥~!(z;),
where v = i(I—1)/r+ j(k—=1)/r. Let § be any simple loop on S/H through
x, generated by o and 3, such that n and 6 satisfy the properties (A) to
(E) as above. There exists an integer m such that 1™ lifts at z; with the
same end point as 6. Change the loops a and 3 by 1~ "6 and 7. Now we
are in case (i).

Similar arguments, as done above, can be use to show that we may
assume that [ — 1 divides n in case (i).

(2) The automorphisms of the form a®b have no fixed points. In this case,
lenuna 6.1 asserts that the loop « lifts to a loop and the loop 3 lifts to a
path on S/L. The loop 8 must lift to a path on S with initial point 2z
and end point wy, for some k € {1,...,n}. The loop « either lifts to a loop
on S or it lifts to a path with initial point z; and end point z;, for some
I €{2,..,n}. This finish the case v = 1. ,

(II) The case v > 2. From now on, we assume our loops to satisfy one of
the possibilities given in leinma 6.1. Assume also that some of these loops
lifts to a path on S, otherwise we are in condition (II.1) of our proposition.

Let us denote by aj,, aj2, 351 and B;2 the liftings of a; and 3; to
S/ L respectively, all j =2,...,7. We assume «;; and 3, to be the liftings
at y; and «;o and 3;9 to be the liftings at y,. Since the loops «a; and 3;
are simple, the intersection number of them is +1, the intersection number
of two other loops is zero and the covering 9 is two to one, we have the
following,.

(1) The loops aj and aj o are disjoint.
(2) The loops 3;1 and (3;9 are disjoint.

(3) The intersection number between a,; and 3;; is 4+1, and all other
imtersection numbers are zero.

(4) i)((lj_l) = Q2 and l_)(,"}j,]) = [‘312

We can choose the loops such that «o lifts to S to a path at z; with
end point zy and all other loops lift to loops on S. In fact, from the above
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observations, we only need to find these loops such that ag ; lifts to a path
on S at z; with end point at 29 and the loops «;1 and 3 ; all lift to loops
on S, for j=3,...,yand k = 2,...,7. We are in the cyclic case, done in [6].
Let us see now the loops a1 and 3;. We have two cases.

(1) Somne automorphism a®b has fixed points. In this case the loops a; and
$31 both lift to loops on S/L. We can proceed as above to change them so
that both lift to loops on S. In this case we permute the pair a; and (3
with the pair g and 3y. Since some element of order two in H has a fixed
point, either b has a fixed point or ab has a fixed point. Denote by ¢ such a
fixed point and denote by p its projection to S/H. Let n be a small simple
loop around p, disjoint from the above loops and from the branch locus of
7. We may assume this loop separates p from all other branch values of .
We orient 7 in such a way that, when going in the positive orientation, the
point p is at the left side of . Let 6 be a simple path connecting x to 7.
We assume this path to be disjoint, except at x, from the loops a; and 3;,
for all j. We orient this path so that « is the initial point. Now replace the
loop ay by a simple loop homotopic to agéné™1.

At this point, if the point ¢ is a fixed point of b, we are done. Assume
the point ¢ is a fixed point of ab. We replace the loops #; and ay by
simple loops homotopic to 815 and a2afl, respectively. We get in this
way -condition (IL.2) of our proposition.

(2) The automorphism a®b has no fixed points for every s. In this case, the
loop o lifts to a path connecting y; to y2 and the loop g lifts to a loop on
S/L. Denote by a1 the lifting of a at y1, by g2 the lifting of the sane
loop at y9, by 31 ; the lifting of 8 at y;, for i = 1,2.

We have two possibilities for the liftings of 3; on S. FKither it lifts to
a loop on S or it lifts to a path at 2z; with end point some z;, for some
1<lI<n—-1.

Since the loop a; does not lift to a loop on S/L, it must lift on S to a
path at z; with end point wy, for some k.

If 3, lifts to a loop on S, -we replace the loops a1, ay and 39 by simple
loops homotopic to af *a;!8,!, asBeBify’ and Boay ™1 respec-
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tively (see figure 3).
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figure 3
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Now replace the loop 32 by a simple loop homotopic to ﬂga;’_k“. At
this point we have that the loop a; lifts to a path connecting z; to wy, the
loop as lifts to a path at z; with end point zy, and all other loops lift to
loops on S. Pernnte the pair of loops a; and ) with the pair as and Gs.
We obtain condition (IL.2) of our proposition.

If the loop 3 lifts to a path at z; with end point z;, for some 1 <
{ < n—1, then we replace the loops a1, 31, ay and (s by simple loops
homotopic to a, 131, o and [31(1'.;1“32 respectively. We have the saime
situation as before but now oy lifts to a path at z; with end point wy, 1. If
we do the same procedure again n — k tilmes more, we obtain that o lifts
at z; and ends at wy. Let us permute the pair ay, ; with the pair «y, 35.
Now we are in condition (IL.3). §

In the arguments above we have fixed two elements a, b in H of orders
n and 2, respectively. For each such a pair, proposition 6.2 gives us a set of
special loops satisfying certain possibilities. The next proposition asserts
that we can modify the pair ¢ and b (with the same properties) so that
these special loops satisfy only few of them.

Proposition 6.3. Let a and b be two elements in H of order n and 2,
respectively. Let ay,..., &, Bi,..., 3y, be the loops found in proposition 6.2.
Then we can change the generators a and b for new ones, say & and b of
order n and 2, respectively, so that we have one of the following situations:

(I) If y =1, then the loop aq lifts to a path with initial point z1 and end
point z9 = a(z1), the loop 51 lifts to a path starting at z1 and ending
at wy = b(z1).

(IT) Ify > 2, thenay lifts to a path starting at z; and ending at zy = a(z1).
ay lifts to a path starting at z; and ending at wy; = b(z1). The other
loops lift to loops.

Proof
The case vy = 1. (1) Assume we are in case (I.1) of proposition 6.2. In this
case, we must have fixed points for b or ab. In either case, we can change
the generators a and b by the generators @ = a and ab. In particular, we
may assume that b has fixed points. We can modify the loop (3 such that
its lifting at z; ends at some wy. In fact, choose a small simmple loop 6
around the projection of some fixed point of b. Let 1 be a simple path
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connecting 3; to 6. We orient eta so that it ends at 6 and we orient 6 so
that, going in the positive way, the branch point it encloses is at the left
side. We may assume the above loops to be disjoint from the loop a;. Now
replace 31 by a simple loop homotopic to 3176n~1. We are in case (1.3) to
be analyzed later.

(2) Assume we are in case (I.2) of proposition 6.2. We must have fixed
points of b or ab. Now we can proceed as in (1).

(3) If we are in case (I.4) of proposition 6.2. Assume first that neither
b nor ab to have fixed points. In this case, the transformations a'~! and
a* b gen te H. We change the generators a and b by a!~! and a*~1b,
respectively. The loop «a lifts at 2; with end point zy and 3 lifts at z;
with end point w;. At this point, we are in situation (I.4) with [ = 2 and
k= 1. Let us assume now that b or ab has fixed points. By replacing b by
ab if necessary, we may assume b has fixed points. Using the same idea as
in (1), we change the loop £; so that it lifts at z; with end point 2z, for
somme [. We change again the loops a; and 31 so that a; lifts to a loop and
31 lifts at z; with end point z,, for some.r. Change the loop 7 as in (1),
so that it lifts at z; with end point some w,. Now we are in case (I.3) of
proposition 6.2, to be analyzed below.

(1) In case (1.3) of proposition 6.2, we change the pair of generators a
and b by t - generators a and a*~1b respectively. Let us call them again
a and b, respectively. In this case the loop «; lifts to a loop and the loop
3y lifts at z; with end point = b(2;) = w; for the new pair a and b of
generators of H. The connectivity of the surface S asserts that is there a
fixed point of either a or a'b for some t € {1,...,n—1}. Denote by g€ S/H
the projection of one such fixed point. Consider a small oriented simple
loop 7 around ¢ so that it separates ¢ from the other possible branched
values. Take an oriented simple path é starting from the intersection point
£ between vy and 31 and ending at a point in 7. We may assume such a
path to be disjoint from the branching set and from (a3 U 81) — {x}. Now
replace the loop g by 676 1. Now the new loops satisfy the desired
properties.

The case v > 2. In this case, we have three possibilities inarked in propo-
sition 6.2 as (I1.1), (II.2) and (IL.3). In case (IL.1), we may proceed in
similar way as in the case v = 1 to obtain the case (IL.2). In case (IL.3),
we proceed as follows. Consider a small oriented simple loop 1 on S/H
bounding a topological disc containing all branch values. This loop is free
homotopic to the loop szl((liﬂiai_l,ﬁfl)- In particular, the loop n lifts at
zy and ends at al 1bal"!(z1) = a® %(2;). Consider a simple oriented path
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& starting at x and ending at a point in %, This path may be assiuned
to be disjoint from all other loops (except for z). Then either F28n 1871
or 326n~ 1867y ! is homotopic to a simple loop. If 2677161 is the one
homotopic to a sinple loop, then we replace 32 by this new loop. In the
second case, the loop ,[izb‘n”l(i*an Uifts at z; and ends at wy = b(z). We
replace the loop 35 by the loops Fycey 185 16 1oy ! (see figure 4). 1

figure 4
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8. Proof of Theorem 4.1.
In this section, we proceed to prove theorem 4.1. concerning free fixed point
actions of dihedral groups. Let us assume we have:

(1) a closed Riemann surface S of genus g > 2,
(2) a group H of conformal automorphisins of 5,
(3) H isomorphic to a dihedral group of order 2n, and

(1) the action of H on S is free fixed points.

Let us denote by R the quotient Riemann surface S/H andby 7 : S — R
the natural holomorphic unbranched covering induced by the action of H
on S.

The ge s 4 of R satisfies, by Riemann-Hurwitz formula,

Part (II) of proposition 6.3. asserts that we may find v disjoint, oriented,
homologic. y independent simple loops, say i,..., 8y, with the property
that the lifting of each one of them, at any point, is a loop.

We claim that the family F of loops on 5, obtained by lifting the ~
loops 31,..., 3y, disconnects S into genus zero surfaces. Before to prove it,
let us finish the proof of theorem 4.1.

Since the family F cuts S into genus zero surfaces, we may find a sub-
family G C F formed by g disjoint homologically independent siimple loops.
The families G and F have the same normalizer A/ in the fundamental
group of S. Since the family F is invariant under the action of H, then
N is also invariant under H. It follows that the Schottky uniformization
determined by the family G (Retrosection theorem) is the desired one.

Now we proceed to prove the above claim. Let X be a connected com-
ponent of S — F. Set R = S/H — {f1,...,3y}. We have the restriction
P : X — R, of the covering m : S — S/H. This is again a covering,
induced by a subgroup of H, the subgroup generated by those elements
keeping X invariant. The order of this subgroup, say d, is the degree of P.

By Maskit [15], we may assume that X is the complement of & disjoint
circular discs on a closed Riemann surface X of genus g and, R is the
complement of 4 disjoint circular discs on the Riemann sphere C.
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The property that each loop 3; lifts to a loop, permits to extend the
covering P : X — R to an unbranched covering P:X —C,of degree d.

Riemann-Hurwitz forimula applied to the above covering asserts that
g=1—d. Since g > 0andd > 1, we must have d =1 and g = 0. In
particular, the surfaces X and R are conformally equivalent by P : X — R.

We can describe explicitly the above construction as follows. The family
{$1,..., 3y} and Retrosection theorem assert that there exist:

(1) a Schottky covering (Q, K, P: 2 — R) of R,
(2) a set of free generators By,..., B, for K,

(3) a set of 2y disjoint simple loops, ), 7y ..., nj . 7}y , bounding a com-
mon domain D of connectivity 2+, such that:

(3.1) Bi(nj) =mn;,
(3.2) Bi(D)NnD = 9.
(3.3) P(nS) = 8;.

If G is the smallest normal subgroup of K containing the elements
B?? B%a (B2Bl)2a B37 ceey B’yv

then ¢ turns out to be a Schottky group of genus g uniformizing the surface
S as desired.

9. A Counterexample

In this section, we construct a closed Riemann surface S of genus 4 and a
group H of conformal automorphisms of S, isomorphic to a dihedral group
of order six, which cannot be lifted to any Schottky covering of S. It follows
that, in the presence of fixed points, the condition (A) in [4] is not sufficient
for the class of dihedral groups.

9.1. Construction of a dihedral action. Let us consider the dihedral
group of order six

D3 = (a,b;a® = b = (ab)? = 1),
and the Fuchsian group

[ = (A1, Ay, A3, B1,Ba; A3 = A3 = A3 = B2 = B2 = A1 A,A3B1By = 1),
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uniformizing a Riemann surface R of genus zero with signature (0, 5;2, 2, 3, 3. 3),
acting on the hyperbolic plane HH. Denote by 7 : HH — R the holomor-
phic (nniversal) branched covering of R induced by I'. Its branched values
are p1. p2, q1, @2 and gz with branch values 2, 2, 3, 3, and 3, respectively.

We have a surjective homomorphism

¢: [ — Dj,

defined by: ¢(A;) =a and ¢(B;) =b, fori=1,2,3 and j =1, 2.

Let us denote by F' the kernel of this homomorphism. Then we have
that F' is torsion free and it corresponds to the smallest normal subgroup
of I' containing the words:

ByB1, AsA,, AzA;, (A1B)%

Following unifpack calculator [17], we have that:

Generators of F (] = AgAl_l, (Y = AglAflAgl, (3 = AgAgl., Cy =
A YA TASY, Cs = A3B1A1 B, Co = A3 BiA1B1A4; Y, Cr = A3B1Ay By,
(s = A;lBlAgBlAgl;

Relation (3CeC5C 1 C1CT IO Cg 1 CrC7 O IO 1 CCACTT Oy = 1
If we set S = HH/F, then we have a natural holomorphic (universal)
covering 7 : HH — 5, such that

d(y)Tp =Tpy,

forally € I". It follows that H = '/ F 2 Dj acts on S as group of conformal
antomorphi 1. We have then a natural holomorphic (branched) covering
7.8 — R, induced by the action of H, branched over py, p9, g1, ¢2 and gs
with branch values 2, 2, 3, 3, and 3, respectively. In particular, 77 = 7.
The Riemann-Hurwitz formula asserts that the genus of S is g = 4.

9.2. The non lifting property. Assume there is a Schottky covering
(QG.P:Q — S) for which the group H lifts. Let us denote by J the
geometrically finite Kleinian group obtained by lifting H via the above
covering. We have a regular branched covering @ : @ — R such that
Q=aP.

By construction, we have an oriented simple loop « on R (disjoint from
the branch values), bounding a topological disc Ay containing on its interior
the branch values p1, po and no other, and lifting to a simple loop on 5.
The loop a corresponds in I' to the transformation B1B9. Set Ag the other
topological disc bounded by o on R.

We lLave that
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(A) each connected component of 77 1(A,;) is a cylinder, invariant under
the action of an element b of order two in [, and the two boundary
loops (each one a lifting of a) are permuted by it.

(B) m1(Ay) is either (using Riemann-Hurwitz formula)

(B.1) connected and topologically a surface of genus one with six
boundary loops (the liftings of «), invariant under the action
of H and the cyclic group acting with six fixed points; or

(B.2) two connected components, each one a genus one surface with
three boundaries components and invariant under the cyvclic group
of order three (of H) acting with exactly three fixed points.

If the loop « lifts to a loop on ). Let A be a connected compo-
nent of Q7 1(Ay) and set B = P(A). We have that P(A) is a connected
component of 7 1(Ay).

Set J4 = {j € J;j(A) = A}, that is, the stabilizer of A in J. We have
that J4 is necessarily finitely generated (A/J4 is the finite surface Ay).
A finitely generated subgroup of a geometrically finite Kleinian group (of
second kind) is necessarily geometrically finite by a result of Thurston [16].

Set G4 = GG J 4. This is finitely generated (A/G 4 is the finite surface
7~ 1(Ay)) and geometrically finite by Thurston’ result, purely loxodromic
and free group (a subgroup of G, a purely loxodromic and free group). It
follows by Maskit’s results [13] that (74 is a Schottky group. Moreover, G 4
is normal subgroup of J4.

If Q4 is the region of discontinuity of J 4, also for (G 4, we have natural
holomorphic (branched) coverings Q4 : Q4 — Qu/Ja = R4, Pa: Qg —
Q4/Ga=Sqand my : S4 — Ry, such that Q4 = m4P4. The surfaces R4
and S4 are a genus zero surface (the surface As after gluing a topological
disc to it about a) and a genus one surface (the surface B after gluing
topological discs to it about its boundaries).

At this point, we have a Schottky covering of the genus one surface Sy
for which either:

(1) we can lift a cyclic group of order three, with exactly three fixed
points, acting as group of conformal automorphisms of S4; or

ii) we can lift a dihedral group of order six, where the cyclic group acts
?
with fixed points.

In case (i), we are in contradiction to the results in [4] and [6]. In case
(i), we are contradiction to theorem 4.1.
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If the loop « lifts to a path on 2. Since o lifts to a loop on S, we
have that the stabilizer of any connected component of @~ 1(a) is neces-
sarily a cyclic subgroup of . Moreover, since 7~1(A;) is a cylinder where
both boundaries are liftings of «, we must have that another connected
components of @ !(a) so that each two have the same stabilizer, say the
cyclic group generated by the primitive loxodromic transformation g. In
particular, cach pair bounds a topological disc on the Riemann sphere (one
component start at one fixed point a(g) of g arriving to the other fixed
point 7(g), and the other component start at 7(g) and arrives to a(g). This
disc is one of the connected components of Q1 (A;).

We must have a transformation j € J that sends one of these compo-
nents to the other. In particular, we must have (jg)2 = I, where I is the
identity of J. The transformation permutes both fixed points of g, so a
transformation of order two, j2 = I. The stabilizer of the topological disc
bounded by these two components is the infinite dihedral group generated
by ¢ and ;.

Since ea  connected component of @ (Aj) is simply connected, we
have that X = Q !(Aj) is connected. In particular, P(X) = 7~ 1(Ay) is
connected.

It follows that 77 !(As) is a genus one surface with six boundary com-
ponents, invariant under the action of H, and the cyclic group of order
three acting with exactly six fixed points. Moreover, the boundaries are
perniuted and no one is invariant under such a cyclic group. The argu-
ments done in section 3 assert that this situation is impossible (there is
no automorphism of order three on a surface of genus one with exactly six
fixed points.

10. A iist of Geometrically finite Kleinian groups

Let us consider n > 3 and the dihedral group
Dy, = {a,b;a" = b = (ab)? = 1).

In this section, we construct geometrically finite Kleinian groups (of
second kind) J containing a Schottky group (7 as a normal subgroup such
that J/G is isomorphic to D,.

If we denote by

(1) Q the region of discontinuity of such a group J,

(2) R the quotient Riemann surface /J,
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(3) S the quotient Riemann surface Q/G,

(4) @ : 2 — R the natural (branched) holomorphic covering induced by
J, and

(5) P:€Q — S the natural holomorphic covering induced by G,

then H = J/G is a group of holomorphic automorphisms isomorphic to
Dy, which can be lifted to the Schottky covering (2,G, P : Q2 — S). The
lifting of H is then J. We have that the natural (branched) holomorphic
covering 7 : 5 — 5, induced by the group H, satisfies QQ = 7 P.

10.1. Some necessary conditions for the constructions. First of
all, let us assume that we may construct such an example. We proceed to
find some conditions, necessary for the constructions if n is a prime integer.

In this case, N(b) = 2r and N(a) = 2k. The signature of the quotient
Riemann surface R has the form (from section 5)

(v, 2r +k;2,...,2,n,...,n),

where there are 2r numbers 2 and & numbers n.

As a consequence of propositions 6.2 and 6.3, we may assume that there
are a set of simple loops ai,..., ay, B1,..., B, (based at some point = € R),
with the properties described in proposition 6.3.

Let 2; and w;, i = 1, ..., n, be the liftings on S of  under the holomorphic
(branched) covering 7 : S — S/H. As before, we may assume that a(z;) =
zi+1, a{w;) = w;41, and b(z1) = wy. In this way, we have the following
possible signatures in each case.

The case v = 0. The only possible signatures are:
(1) (0,2r;2,..,2), r > 2, and
(2) (0,2r +k;2,....,2,n,...,n), k >1and r > 1.

The case v = 1. In this case, the loop o lifts to a path with initial
point z; and end point 29, and the loop g lifts to a path with initial point
z1 and end point wi. The only possible signatures are:

(1) (1,2r;2,...,2), r > 1.

(2) (1,2r +k;2,...,2,n,...,n), k> 1and r > 0.



76 Rubén A. Hidalgo

The case v > 2. In this case, the loops a; and 3; lift to loops, for
J > 3 and all 7, the loop aq lifts to a path with initial point z; and end
point zo, and the loop a9 lifts to a path with initial point z; and end point
wi. The possible signatures in this case are:

N2+ k2020, .,n), k> 1and r > 0.

10.2. Some Mdbius transformations. To construct our examples,
we need the following Mobius transformations. Let A, B and (7 be the
following;:

im0 0 i ) A0
Az( 0 e-Ti/n ) B—(i 0 ) ('_(o 2! >

where A is a real number greater than one.
Denote by AP/? the Mébius transformation

emip/an 0
Ap/q:( 0 o-mip/an )

Define Mobius transformations F and D as follows.
F=AY2F

where £ is the elliptic element of order two, keeping invariant the disc
{z € C;|z| < 1/A}, and with isomettic circle N centered in a point on the
ray {arg(w) = 0} and tangent to the ray {arg(w) = 7/3n}. The circle N
is necessarily orthogonal to the boundary of the above disc. The isometric
circles of F and F~! are N and AY2(N), respectively.

D= AY2D,

where D is the elliptic element of order two, keeping invariant the unit
disc, and with isometric circle M (necessarily orthogonal to the unit circle)
with center on the ray {arg(w) = 0} and tangent to the ray {arg(w) =
7/3n}. The isometric circles of D and D~! are M and AY2(M), respec-
tively.

We assume A big enough such that the isometric circles of F and I are
disjoint.

Denote by Li, Lo, L3 and L4 the sets {arg(w) = n/n}, {arg(w) =
—7/n}, {|w| = 1} and {|jw| = A7!}, respectively. If M is a Mdbius trans-
formation, then I{M) will denote its isometric circle.



Closed Riemann Surfaces with Dihedral Groups ... T

10.3. Some regions on the Riemann sphere. \We proceed to define
open regions in the complex plane, when n is a prime, as follows. The case
n not a prime will be done in a later subsection.

Theregion W, k>1 Setf =n/nandK, = {2z C;-0 < arg(z) <0}.
We proceed firstly to the construction of some circles (..., (%, in case that
k > 1, so that:

(1) C; is orthogonal to Lg.
(2) C;is contained in K.

(3) If a; denotes the center of the circle (;, then 0 < arg(ay) < arg(as) <
- < arg(ag) < 6.

(4) C; only intersects Cii41, and they do it in an angle of 6.

(5) If o; denotes the reflection on (;, and og(z) = z, then o;(C;41) N
oi(0i-1(C5)) = 0.

Set (?,- = 7;-1(C;), D; the bounded disc by Cj, and D~1 the bounded
disc by (.

Set W, =K, N (ULQDZ- U D~1)”. Denote also by T; = 0y0;_1.

The region Wy, is a fundamental set for a group H;, with generators A, B,
Ty,..., Tk, and relations A" = B2 = (BA)?2 = 1, T = 1, (T;T;-1 - - - T3T2B)? =
1. The Riemann surface Q( Hy)/ Hy, has signature (0, 2+4; 2,2, n, ...,n). The
group H; is constructible from Hy_; and T} by the second Maskit-Klein
combination theorem (see [12]). Since H; is a finite group (dihedral group
of order 2n), it is geometrically finite and has connected region of discon-
tinuity. As a consequence, H, is a geometrically finite function group with
connected region of discontinuity. In figure 5 we sketch the regions Wy, Wy
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The region R;. We define the region £, as the open region bounded
by Ll, Lg, Lg and L4.

The region f5. We deline the region Ry as thie open region bounded by

L1, Ly, La, Ly, (D), (271 and I(A™1D-1 A).

The region Ry, We define the region Rz as the open region bounded by
Ly, Ly, Lo, Ly, I, R D), A LFE LA, (DY, (D Y and I(A 11 1 A).
The regions £y, £ty and Ry are drawn in figure 6.
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Another notations we will use, are the following.

(1) If H is a subset of a group K, then we denote by < H >> the smallest
normal subgroup of K containing H.

(2) Ifay, ..., a, are elements of a group K, then we denote by < ay,...,a, >
the subgroup generated by these elements.

10.4. The constructions for n primne. In this part, we proceed to
construct the geometrically finite Kleinian groups in the case n is a primne.
First we use Maskit-Klein combination theorems (see [12]) to obtain a ge-
ometrically finite Kleinian group J with connected region of discontinuity
Q. Then we consider a normal subgroup G of J such that J/G is a dihedral
group of order 2n. The group G is a purely loxodromic, geometrically finite,
function group with connected region of discontinuity. As a consequence of
Maskit’s classification of function groups (see [14]), we obtain that (7 is in
fact a Schottky group. The Riemann surface 2/G is then a closed Riemann
surface admitting a dihedral group of conformal automorphisins which lifts
under the natural Schottky covering induced by G.

Once we have constructed a geometrically finite Kleinian group J as
desired, the theory of quasi-conformal maps, developed by L. Bers (see
section 2), permits us to have a family of geometrically finite Kleinian
groups as desired. This is done as follows: for each Beltrami coeflicient
it for J (see section 2), we consider the the ;i—quasiconformal homeomor-
phism W, : C - C fixing the points 0, 1 and co. Then Lemma 2.2
asserts that J, = VV,‘JW#_1 is again a Kleinian group. In fact, J, is again
a geometrically finite Kleinian group, which contains the Schottky group
Gy =W,GW !, with J,/G,, isomorphic to Dy,.

Example (1). Signature (0,2r;2,...,2), r > 2.

Let us consider the region R;. Let Lq,..., L,_9, be elliptic elements of
order two such that their isometric circles are contained in the region Ry,
and they are pairwise disjoint. Let us consider the group (constructed from
Maskit-Klein combination theorems)

J=<A,B,C,Ly,...; L, _9 >.

As a consequence of Maskit-Klein combination theorems, the group
J is a geometrically finite function group with region of discontinuity €
connected. The elements of J are either loxodromics or conjugated to
some power of a generator. The Riemann surface 2/J is a closed Riemann
surface of signature (0,2r;2,...,2), » > 2. The normal subgroup
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G =< A*B'C,A"BLy, ..., A" 2BL, 4>,

where s,s; € {0,1,...,n — 1} and ¢t € {0,1}, is a purely loxodromic
geometrically finite function group with connected region of discontinuity.
As a consequence, (7 is a Schottky group (see [14]). Moreover, (¢ has index
2n and J/G is a dihedral group of order 2p.

Example (2) Signature (0,2r + %;2,....2,n,...n), k > 1 and r > 1.

Let us consider the region Wy, and the elliptic transformations Ty...., Tj.
Let Ly,..., L. be elliptic elements of order two surh that their isometric
circles are contained in the region W7} and they are pairwise disjoint.

Let us consider the group

J=<AB, Ly, Loy, Ty ..., T >.

Same arguments as before show that the group J is a geometrically finite
function group with region of discontinuity €2 connected. The elements of
J are either loxodromics or conjugated to some power of a generator. The
Riemann surface Q/J is a closed Riemann surface of signature (0,2r +
k;2,...,2,n,..,n), k> 1 and » > 1. The normal subgroup

G =<K A"BLy,...,A*1BL,. , ATy, ..., A%T; >, s € {1, -1},

where ¢; € {1,...,n—1} and s; € {0,1,...,n— 1}, is a purely loxodromic
geometrically finite function group with connected region of discontimuity.
As a consequence, the group G is a Schottky group (see [14]). Moreover,
G has index 2n and J/G is dihedral group.

Example (3) Signature (1,2r;2,...,2), r > 1.

Let us consider the region Ry. Let Ly,..., L., be elliptic elements
of order two such that their isometric circles are contained in the region
Ry and they are pairwise disjoint. Let us consider the geometrically finite
function group with connected region of discontinuity, given by

J=<AB,C, D, Ly... L_1>.

If © denotes the region of discontinuity of J, then the Riemann surface
Q/J is a closed Riemann surface of signature (1,2r;2/...,2), » > 1. Let us
consider the normal subgroup

G =< A°BIC,A*B*D, A BL,,...,A**-1BL, | >,

where u, s,s; € {0,1,...,n — 1} and t,v € {0,1}. As before, (7 is a
Schottky group such that J/G is dihedral of order 2n.
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Example (4) Signature (1,2r +k;2,....,2,n,...,n), k > 1 and r > 0,

Let us consider the region W} and the transformations 7,..., Ty. Let
La,..., Ly be elliptic (if > 1) elements of order two such that their isometric
circles are contained in the region Wy and they are pairwise disjoint. We
consider a loxodromic transformation £ which keeps invariant the unit disc
and conjugate Ty - - - ToB to AB. We may assume the multiplier big enough
so we can apply the second Maskit-Klein combination theorem to the group
< Hy,Ly,...,L, > and E. Let us consider the geometrically finite function
group with connected region of discontinuity, given by

J=<AB,E I, ...L,Ty, .. T >.

If © denotes the region of discontinuity of J, then the Riemann surface
Q/J is a closed Riemann surface of signature (1,2r 4+ k;2,...,2,n,...,n),
k > 1 even and 1 > 0. Let us consider the normal subgroup

G =< A°B'E, A BLy,..., A BL,, ATy, ..., A% T}, >,

where s,s; € {0,1,..,n—1}, t, € {1,..,n—1} and t € {0,1}. The
group G is a Schottky group, and J/G is dihedral of order 2n.

Example (5) (v,2r;2,..,2),y>2and r > 2.

Let us consider the region R;. Let Li,..., L._o be elliptic elements of
order two, and Ay, t = 1, ..., v, be loxodromic elements with I(A;)"I(A") =
Palli=1,..,v, and m € {—1,41}. Assume all the isometric circles I(L;),
I(A;), I(A; 1) in the region Ry and pairwise disjoint. Let us consider the
geometrically finite function group with connected region of discontinuity,
given by

J=< A B,C, Ay, ..., Ary, Li,ooyLyg >.
If Q2 denotes the region of discontinuity of J, then the Riemann surface

Q/J is a closed Riemann surface of signature (v,2r;2,...,2), v > 2 and
r > 2. Let us consider the normal subgroup

G =< A'B¥C, A% B Ay, ..., AYBS A, A BLy,...,A2BL, >,

wheret, s;, d; € {0,1,...,n—1}, u,e; € {0,1}. The group G is a Schottky
group with J/G a dihedral group of order 2n.
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Examnple (6) (v,2r;2,...,2), v > 2 and » > 1.

Let us consider the region R3. Let Lj,..., L, be elliptic elements of
order two, and A, t = 1,...,v — 2, be loxodromic elements such that
I(A)NI(AT') = 0, where m € {—1,+1}, the isometric circles I(L;), I(AT")
are contained in the region R3 and they are all pairwise disjoint. Let us
cousider the geometrically finite function group with connected region of
discontinuity, given by

J=<A,B,C,F,D,Ay,...Ay_2,L1,....L, >.

If  denotes the region of discontinuity of J, then the Riemann surface
Q/J is a closed Riemann surface of signature (v,2r;2,...,2), v > 2 and
r > 1. Let us consider the normal subgroup

G =< A BUC, A2B"F, ASBBD, AL Be1 A, .,
s Ad"’_2Be"_2A,y_2, AhlBLl, veey Ah"BLr >,

where s;,d;, by € {0,1,...,n — 1} and t;,e; € {0,1}. The group G is a
Schottky group and J/G is dihedral of order 2n.

Example (7) (v,2r;2,..,2),y>2and r > 1.

Let us consider the region Re. Let Lj,..., L._; be elliptic elements
of order two, and A, t = 1,...,4 — 1, be loxodromic elements such that
I(A;) N I(AT') = 0, where m € {~1,+1}. Assume all the isometric circles
in the region Ry and pairwise disjoint. Let us consider the geometrically
finite function group with connected region of discontinuity, given by

J=<A,B,C,D,Ay,..., A’y-l, Ly,...,Ly_1 >.
If ©? denotes the region of discontinuity of J, then the Riemann surface

Q/J is a closed Riemann surface of signature (v,2r;2,...,2), v > 2 and
7 > 1. Let us consider the normal subgroup

G =< A*BYC, A'B'D, AhBe1 A,, .., A% Bev-1 A1, AMBL,, ...
,AST_IBLr_l >,

where s,v,d;,s; € {0,1,...,n — 1} and u,t,e; € {0,1}. The group G is
a Schottky group with J/G dihedral of order 2n.
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Example (8) (v,2r +4;2,...,2,n,...,n),y>2,k>1andr >1.

Let us consider the region Wj and the transformations Ts,..., Tj. Let
Ly,..., L, 1 be elliptic elements of order two, and A, t = 1, ..., 7, be loxo-
dromic elements with I(A;) NI(AT") =0 alli=1,...,y and m € {-1,+1}.
Assume all the isometric circles I(L;), I(A;), I(A;!) in the region Wy, and
pairwise disjoint. Let us consider the geometrically finite function group
with connected region of discontinuity, given by

J =< A,B,A],...,AW,Ll,...,LTAI,TQ,...,T}V. >.

If © denotes the region of discontinuity of J, then the Riemann surface
Q/J is a closed Riemann surface of signature

(y,2r +k;2,...,2,n,...,n)
4 >2,k>1andr > 1. Let us consider the normal subgroup
G =«
AdlBe]Al, ceny AdeSyA% ABLy,...,A"'BL,_1, ALTy, oy AT >

where d;,s; € {0,1,...,n — 1}, e; € {0,1} and t; € {1,...,n — 1}. The
group G is a Schottky group with J/G a dihedral of order 2n.

Example (9) (v,2r+k%;2,..,2,n,....n),y>2,k>1andr > 0.

Let us consider the region Wk and the transformations Ty,..., Tj,. Let
Ly,..., L, be elliptic elements of order two, and let A, t = 1,...,7 — 1, be
loxodromic ements such that I(A;) N I(AT) = 0, where m € {-1,+1}.
Assume all the isometric circles I(L;), I(AT') in the region Wj, and pairwise
disjoint. Let us consider a transformation E as in example (4). Let us
consider the geometrically finite function group with connected region of
discontinuity, given by

J =< Aa Ba E7 A17 ~~~»A'y~17 Lly ) LT, T27 "-7Tk >.

If © denotes the region of discontinuity of J, then the Riemann surface
Q/J is a closed Riemann surface of signature

( T+ka~u- a-'anw'vn)

v > 2,k >1and r > 0. Let us consider the normal subgroup

G =< ASBuE7 AdJBSIAl’ .__7Ad’7—1B97—1A,y_17 ASIBLl, ceny AASTBL,-7 A"2T2,

3 Atka >,

where s,d;,s; € {0,1,...,n — 1}, u,e; € {0,1} and ¢; € {1,...,n — 1}.
The group G is a Schottky group with J/G a dihedral group of order 2n.
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Example (10) (v,2r+k;2,...,2,n,..,n),v > 2, k> 1 and » > 0.

Let us consider the region Wy, and the transformations T5,..., Ti. Let
Lq,..., L, be elliptic elements of order two, and Ay, £ = 1,....9 — 1. be
loxodromic elements such that I(A;) N I(AT') = @, where m € {—1.+1}.
Assume all the isometric circles in the region Wy and pairwise disjoint. Let
E be a transformation as in example (4). Let us consider the geometrically

finite function group with connected region of discontinuity, given by
J =< A, B, F, Ay, ceey A"y—la Ly, ..., L., T, ... Ty >.

If ©2 denotes the region of discontinuity of J, then the Riemann surface
Q/J is a closed Riemann surface of signature

(v, 2r + k;2,...,2,n,...,n)

,v>2,k>2even and r > 0. Let us consider the normal subgroup

G =< A*B'E, A% B A,.. A% -1B-1A 1 A BLy, ..., A% BL,, ATy, ...
7Atka >>7

where s,d;,s; € {0,1,...,n— 1}, t,e; € {0,1} and ¢; € {1,....,n —1}.
The group G is a Schottky group with J/G a dihedral of order 2n.

Example (11) (v,0;—), v > 2.

Let us consider the region R3. Let Aj,..., Ay_2, be loxodromic elements
such that I(A;) N I(AT') = 0, where m € {~1,+1}, and all these isometric
circles are contained in the region R3. Let us consider the geometrically
finite function group with connected region of discontinuity, given by

J=<A,B,C,F,D,A,..., A»Y,Q >.
If Q denotes the region of discontinuity of J, then the Riemnann surface
Q/J is a closed Riemann surface of signature (v,0;—), v > 2. Let us
consider the normal subgroup

G =< A" BUC, A2 BuF, ASBBD, AL B Ay, ..., A% -2Bv-2 A,y >,

where s;,d; € {0,1,...,n — 1} and ¢;,e; € {0,1}. The group ¢ is a
Schottky group and J/G is dihedral of order 2n.
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10.5. The construction in the general case. The above examples
can be carry out for any integer n > 3. For this we only need to con-
sider new regions Wl(dy, ..., dy), W2(dy, ..., dy) and W3 (dy, ..., dy), where
1 <dy <dg < --- <di <n,d; dividing n. The region li'ﬂ((l‘z. cdy) s
defined in analogous way as the region Wj, but in this case the transforma-
tions T in the construction may have order n/d;. The region W 2(dy. ... dy)
is constructed from region W’,&(dg, ..., ) but deleting the disc of radins 1/A
and center 0 (in this construction, we are assuming that A is big enongh so
that the circle of radius 1/\ does not cut the boundary of W} (dy, ... dy)).
The region W"g(dg,...,dk) is constructed from the region 11',;,2((12....,(15.)
by deleting the bounded discs with boundary the isometric circles I(F),
I(F~') and I(A~'F~! A), respectively (again the value of X is assuined big
enough so that the circles I(F), I(F ') and I(A"'F~1A) do not cut the
boundary of W2(ds, ..., di)). We have W/l (1,...,1) = Wi. As a consequence
of propositions 6.2 and 6.3, we get all topological actions of such a group.
We proceed to give an example for n = 4 (to simplify).

Example n = 4 and v = 0. In this example, H is generated by
elements a and b of order 4 and 2, respectively. The values r; and 7y are
the number of fixed points of b and ab, respectively. The nummbers &y and
ko are the number of fixed points of a and a? (which are not fixed by a),
respectively.

The signature (0,71 + 79;2,...,2) with r, and r, even Let us
consider the region Ry and elliptic transformation of order two, say Li,...,
Ly, -2)/2: N1yeery Ny 272, s0 that their isometric circles are contained in
the region R; and they are pairwise disjoint. Let J be the group generated
by A, B, C, Li,...; Lry—2)/2, N1,e-es Nir, 2)/2- As a consequence of Maskit-
Klein combination theorems, we have that J is a geometrically finite func-
tion group with connected region of discontinuity and every non-loxodromic
element is conjugate to a power of a generator. Let GG be the smallest norinal
subgroup containing the elements A°B!C, AU BLy,..., Al “D2B L, 92,
AT BNy,..., As(r?‘Q)/QBN(,.Q_?)/% where 8,85, 1; € {O, 1,2,3}, t € {0 1}, t;
even and s; odd. The group G happen to be a purely loxodromic, geo-
metrically finite function group with connected region of discontinuity. It
follows that (i is a Schottky group of index 8 in J.

The signature (0,77 +79;2,...,2) with »; and ry odd Let us con-
sider the region R and elliptic transformation of order two, say Li,...,
L(ry~1)/2y N1yeesy Niry—1)/2, 80 that their isometric circles are contained in
the region Ry and they are pairwise disjoint. Let J be the group gen-
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erated by A, B, C', D, Li,..., Lg -1y/20 N1,y Nipg—1)/2- As a conse-
quence of Maskit-Klein combination theorems, we have that J is a ge-
ometrically finite function group with connected region of discontinuity
and every non-loxodromic element is conjugate to a power of a generator.
Let G be the smallest normal subgroup containing the elements A*B!C,
A“BYD, AMBLy,..., A'1-U2BLG, 1y, AT BNy,..., A% D2BN, ),
where u, s, 5;,t; € {0,1,2,3}, t,v € {0,1}, t; cven and s; odd. The group &
happen to be a purely loxodromic, geometrically finite function group with
connected region of discontinuity. It follows that (7 is a Schottky group of
index & in J.

The signature (0, ky +ko+714+79;2, ..., 2, 4,...,4,2, ..., 2) with r; and
ro even and k; > 0 Let us consider the region W’,gﬁkg(l, ey 1,2, 000, 2),
where the number 1 is &1 — 1 times and the number 2 is Ay times. We
also consider the transformations Tb,..., Tk, 11, in the construction of such
a region. Let us also consider elliptic transformations of order two, say
Li,...; Ly, /2, Ni,...y Npy/9, so that their sometric circles are contained in
the above region, and they are pairwise disjoint. Let E be a loxodromic
transformation which conjugate Ty, +x, - - - ToB onto AB. We choose it with
big multiplier so that we can apply the second Maskit-Klein combination
theorem to the group generated by the above transformations. Let J be
the group generated by A, E, To,..., Tk;+xy, L1,--; Ly j2, N1yeery Nyyjoo As
a consequence of Maskit-Klein combination theorems, we have that J is a
geonmetrically finite function group with connected region of discontinuity
and every non-loxodromic element is conjugate to a power of a generator.
Let (& be the smallest normal subgroup containing the elements A*B'E,
A™2Ty, .. Ak Tk, , A2Tk1+1,--- AQTkth?, AUBLq,..., Al ‘1)/2BL(.,-1*1)/2,
A®*BNy,..., A2 02 BN, _1)/9, wheren; € {—1,+1}, 5,85, t; € {0,1,2,3},
t € {0,1}, t; evenr and s; odd. The group G happen to be a purely lox-
odromic, geometrically finite function group with connected region of dis-
continuity. It follows that G is a Schottky group of index 8 in J.

The signature (0, k1 +ko+r1+79;2,...,2,4,...,4,2,...,2) with r; and
r9 odd and %k > 0 Let us consider the region W,31+k2(1,...,1 2,..,2),
where the number 1 is k; — 1 times and the nummber 2 is ko times. We
also consider. the transformations Ts,..., Tk, 4%, in the construction of such
a region. Let us also consider elliptic transformations of order two, say
Li,...; Ly 1y72) N1yeooy Nry—1)/2, so that their isometric circles are con-
tained in the above region, and they are pairwise disjoint. Let J be the
group generated by A, To,..., Tiy tkys L1seeey Liri—1)/2 N1yeory Nipy—1y2- As
a consequence of Maskit-Klein combination theorems, we have that J is
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a geonetrically finite function group with connected region of discontinu-

ity and every non-loxodromic element is conjugate to a power of a gen-

erator. Let (+ be the smallest normal subgroup containing the elements
o . 27 2 t try ~1)/:

ATy, Am‘lTkl. AZT;\.]+1,... A Tk1+k2, AUBLq...., A l)/2l3L(r1 ~1)/2-

A*'BNj,..., A’2-02 BN, 1y/5, where ny € {—=1,+1}, s;,¢; € {0,1.2,3},
t; even and s; odd. The group ¢ happen to be a purely loxodromic, geo-
nietrically finite function group with connected region of discontinuity. It

follows that (7 is a Schottky group of index 8 in J.

The signature (0,ky + 71 + 79;2,...,2) with 7, and r, even and
ko > 0 Let us consider the region VV?M2 2,...,2), where the number 2 is
kg 4+ r1 + 19 times. We also consider the transformations 7y,..., 1744, in
the construction of such a. region. Let us also consider elliptic transfor-
mations of order two, say Li,..., Lz —9)/2, Ni,..e; Niry—9)/2, 80 that their
isometric circles are contained in the above region, and they are pairwise
disjoint. Let J be the group generated by A, Ta,..., Ti4ky, L1,y L(r;-2)/2
Niyeoos Nipy-2y/2- As a consequence of Maskit-Klein combination theorems,
we have that .J is a geometrically finite function group with connected re-
gion of discontinuity and every non-loxodromic element is conjugate to a
power of a generator. Let (G be the smallest normal subgroup containing
the elements A2Ty,..., A2Ty yx,, A% BLy,..., Al “NR2BLGy . 9y, AT BNy,
A% D2 BN, _9)/9, Where .
s;,t; € {0,1,2,3}, t; even and s; odd. The group & happen to be a purely
loxodromic, geometrically finite function group with connected region of
discontinuity. It follows that G is a Schottky group of index & in J.

The signature (0,ky + r; +79;2,...,2) with »; and ry odd and
ko > 0 Let us consider the region Wf+k2 (2,...,2), where the nunber 2 is
ko + 71 + 79 times. We also consider the transformations 75,..., T4, in the
construction of such a region. Let us also consider elliptic transformations
of order two, say Li,..., Lz, —1y/2, N1y--y Nry—1)/2, 50 that their isometric
circles are contained in the above region, and they are pairwise disjoint.
Let J be the group generated by A, F', Ts,..., T14ky, L1,y Liry—1y/25 N1seeos
Nir,—1)72- As a consequence of Maskit-Klein combination theorems, we
have that J is a geometrically finite function group with connected re-
gion of discontinuity and every non-loxodromic element is conjugate to
a power of a generator. Let (G be the smallest normal subgroup contain-
ing the elements A*B'F, A?Ty,...,A*T 1r,, A" BLy,..., A'C1-2/2BL,. 9y,
A'BNy,..., As(r2“2)/QBN(T2_2)/2, where s,s;,t; € {0,1,2,3}, t € {0,1}, ¢,
even and s; odd. The group G happen to be a purely loxodromic, geo-
metrically finite function group with connected region of discontinuity. It
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follows that G is a Schottky group of index 8 in J.
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