ON A NEW ITERATION FOR SOLVING CHANDRASEKHAR'S H-EQUATION

IOANNIS K. ARGYROS*

Abstract.

A new iteration for solving Chandrasekhar's H-Equation is given. Under certain assumptions the iteration converges without the usual positi vity assumptions on the parameters involved.

Key words and phrases: Radiative transfer, quadratic equations, neutron transport, contraction mapping.

1980 AMS subject classification codes: 65, 46B15.

[^0]Introduction.

In the theories of radiative transfer [2] and neutron transport [3] an important role is played by nonlinear integral equations of the form

$$
\begin{equation*}
H(s)=1+\lambda H(s) \int_{0}^{1} k(s, t) H(t) \psi(t) d t \text {. } \tag{1}
\end{equation*}
$$

In Eq. (1), λ is a real (or complex) parameter, $\psi \in X=L^{\prime}[0,1]$ es given and real valued, the kernel $K(s, t)$ on $X x X$ satisfies
(i) $0<K(s, t)<1, s, t \in X$
(ii) $K(s, t)+K(t, s)=1, s, t \varepsilon X$.
and H is the function to be found.

The question has been answered under certain assumptions on λ (usually $|\lambda| \leq 1$) and positivity assumptions on ψ as in [1], [2], [4], [5] and the reference there.

We introduce a new iteration that converges for any λ for which a solution to Eq. (1) exists and do not require positivity assumptions on ψ and restrictions on λ as in [1], [4], [5].

I. BASIC THEOREMS.

We consider the Banach space $C[0,1]$ of complex volued continuous functions on $[0,1]$ with the supremum norm. We define a bounded linear operator and a bounded bilinear operator $\bar{B}[6]$ or. $C[0,1]$ by

$$
\bar{B}(w, z)(s)=w(s)(L z)(s)+z(s)(L w(s)) .
$$

Denote by $\bar{B}^{\prime}(w)$ the Frechet derivative of \bar{B} given by

$$
\bar{B}(w) z=w L z+x L w \text { for } w, z \in C[0,1] .
$$

Define the linear operator E on a subset D of $C[0,1]$ by

$$
E(w)=\int_{0}^{1} w(t) H(t) \psi(t) d t
$$

where H is a solution to Eq. 1.
Fact. Let $U=\int_{0}^{1} H(t) \psi(t) d t$ and $\Psi=\int_{0}^{1} \psi(t) d t$ then $U^{2}-2 U+\Psi=0$

The proof can be found in [2].

Theorem 1. Let $H=H\left(\lambda_{0}\right)$ be any solution to Eq. (1) with $\lambda=\lambda_{0}$. If $\int_{0}^{1} \psi(t) d t \neq 0$ and $\operatorname{Kern}(L)=\{0\}$ then $\bar{B}^{\prime}\left(H\left(\lambda_{0}\right)\right)$ is an invertible linear operator on $C[0,1]$ with bounded inverse for any λ.

Proof. Let $z \in C[0,1]$ be such that

$$
\begin{aligned}
\bar{B}^{\prime}\left(H\left(\lambda_{0}\right)\right) z & =0 \\
0 & =\int_{0}^{1} \psi(t) B\left(H\left(\lambda_{0}\right), z\right)(t) d t \\
& =\left[\int_{0}^{1} \psi(t) H(t) d t\right] \int_{0}^{1} z(t) \psi(t) d t
\end{aligned}
$$

Hence either $\int_{0}^{1} z(t) \psi(t) d t=0$ or $\quad \int_{0}^{1} \psi(t) H(t) d t=0$.

By the fact before if $U=0$ then $\Psi=0$ which is a contradiction.

$$
\text { If } \begin{aligned}
\int_{0}^{1} z(t) \psi(t) d t & =0 \text { then } \\
E(w) & =0 \text { for } w(t)=H^{-1}(t) z(t)
\end{aligned}
$$

and since $\operatorname{Kern}(E)=\{0\} \rightarrow w=0 \rightarrow z=0$ and the theorem is proved.

We now introduce the iteration

$$
\begin{equation*}
H_{n}=H_{n-1}+\left(\bar{B}\left(H_{n-1}\right)\right)^{-1}\left(H_{n-1}-1-\bar{B}\left(H_{n-1}, H_{n-1}\right)\right) . \tag{2}
\end{equation*}
$$

Convergence of the above iteration is a consequence of Theorem 1 and Theorem 3 given in part II of this paper. Here to simplify computations as it is suggested in [4] we assume existence of a solution ard seek only to show that the solution may be computed by the above iteration.

Theorem 2. Let $H\left(\lambda_{0}\right)$ be a solution to Eq. (1). Then there exists $\varepsilon_{0}>0$ such that if

$$
\left|\left|H_{0}-H\left(\lambda_{0}\right)\right|\right|<\varepsilon_{0}
$$

the iteration scheme given by (2) converges and

$$
\left\|H_{n+1}-H\left(\lambda_{0}\right)\right\| \leq\left|\left|I-\left(\bar{B}\left(H\left(\lambda_{0}\right)\right)\right)^{-1}\right|\right| \cdot| | H_{n}-H\left(\lambda_{0}\right) \| \text {. }
$$

Proof. By Theorem 1, $\left(\bar{B}\left(H\left(\lambda_{0}\right)\right)\right)^{-1}$ exist on D. As $\bar{B}(w)$ is continuous in w for fixed $\lambda=\lambda_{0}$, there exists $\varepsilon>0$ such that if

$$
\left\|H\left(\lambda_{0}\right)-w\right\|<\varepsilon \text { then }(\bar{B}(w))^{-1} \text { exists. }
$$

Let $H_{0} \varepsilon C[0,1]$ be such that

$$
\left\|H\left(\lambda_{0}\right)-H_{0}\right\|<\varepsilon_{0}<\varepsilon
$$

$$
\text { We show that if }\left\|H\left(\lambda_{0}\right)-H_{n}\right\|<\varepsilon_{0} \text { and } \varepsilon_{0} \text { is sufficiently }
$$

small then

$$
\left\|H_{n+1}-H\left(\lambda_{0}\right)\right\|<\varepsilon_{0} .
$$

Let $d_{n}=H_{n}-H\left(\lambda_{0}\right) \|$ and $H=H\left(\lambda_{0}\right)$, then

$$
\begin{aligned}
d_{n+1} & \left.=d_{n}+\bar{B}\left(H_{n}\right)\right)^{-1}\left(H_{n-1}\right)-H_{n} \\
& =d_{n}+\bar{B}\left(H\left(\lambda_{0}\right)+d_{n}\right)^{-1}\left[H+d_{n}-1-\bar{B}\left(H+d_{n}\right)\left(H+d_{n}\right)\right] \\
& =\left(\bar{B}\left(H+d_{n}\right)\right)^{-1}\left[d_{n}-\bar{B}\left(d_{n}, H\right)\right] \\
& =\left[I-\bar{B}(H)^{-1} \bar{B}\left(-d_{n}\right)\right]^{-1}\left[\bar{B}(H)^{-1}-I\right]\left(d_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty}\left[\bar{B}(H)^{-1} \bar{B}\left(-d_{n}\right)\right]^{k}\left[\bar{B}(H)^{-1}-I\right]\left(d_{n}\right) \\
& =\sum_{k=0}^{\infty}\left(\bar{B}(H)^{-1} B\left(-d_{n}\right)\right)^{k} \bar{B}(H)^{-1}\left(d_{n}\right) \\
& -\sum_{k=0}^{\infty}(\bar{B}(H))^{-1} \bar{B}\left(-d_{n}\right)^{k}\left(d_{n}\right)
\end{aligned}
$$

By taking norms in the above equation we have

$$
\left\|d_{n}+1\right\| \leq\left\|d_{n}\right\|\left\|I-\bar{B}(H)^{-1}\right\|+0\left(\left\|d_{n}\right\|^{2}\right) .
$$

If $\left|\mid d_{n} \|<\varepsilon_{0}\right.$ is sufficiently small, we have

$$
\left\|d_{n+1}\right\| \leq\left\|I-\bar{B}(H)^{-1}\right\| \cdot\left\|d_{n}\right\|<\varepsilon_{0}
$$

and the theorem is proved.

II. EXISTENCE THEOREMS FOR THE SOLUTION OF THE QUADRATIC EQUATION.

We consider the quadratic equation $x=y+B(x, x)$ in a Banach space X, where $y \in X$ is fixed and B is a bounded bilinear operator on x.

Equation (1) is a special case of Eq. (3) provided that $\lambda \bar{B}=B$, $H=x, y=1$ and $x=L^{\prime}[0,1]$. We examine the convergence of the iteralions

$$
x_{n+1}=B\left(x_{n}\right)^{-1}\left(x_{n}-y\right) \text { or } x_{n+1}=x_{n}+B\left(x_{n}\right)^{-1}\left(x_{n}-y-B\left(x_{n}, x_{n}\right)\right) \text {. }
$$

Note that in case of convergence, a solution x of equation (3) is obtaine.

We now state the following lemma. The proof can be found in [10].

Lemma 1. Let L_{1} and L_{2} be bounded linear operators in a Banach space X, where L_{1} is invertible, and $\left\|L_{1}^{-1}\right\| \cdot\left\|L_{2}\right\|<1$. Then $\left(L_{1}+L_{2}\right)^{-1}$ exists, and

$$
\left\|\left(L_{1}+L_{2}\right)^{-1}\right\| \leq \frac{\left\|L_{1}^{-1}\right\|}{1-\left\|L_{2}\right\| \cdot\left\|L_{1}^{-1}\right\|}
$$

Lemma 2. Let $z \neq 0$ be fixed in X. Assume that the linear operator $B(z)$ is invertible then $B(x)$ is also invertible for all $x \in U(z, r)=$ $\left\{x \in X|||x-z||<r\}\right.$, where $r \varepsilon\left(0, r_{0}\right)$ and $r_{0}=\left[||B|| \cdot| | B(z)^{-1}| |\right]^{-1}$.

Proof. We have

$$
\begin{aligned}
\|B(x-z)\| \cdot \| B(z)^{-1} \mid & \leq\|B\| \cdot\|x-z| | \cdot\| B(z)^{-1}| | \\
& \leq\|B\| \cdot\left\|B(z)^{-1}\right\| \cdot r
\end{aligned}
$$

<1
for $r \varepsilon\left(0, r_{0}\right)$. The result now follows from Lemma 1 for $L_{1}=B(z), L_{2}=$ $B(x-z)$ and $x \in U(z, r)$.

Definition 1. Let $z \neq 0$ be fixed in X. Assume that the linear operator $B(z)$ is invertible.

Define the operators P, T on $U(z, r)$ by

$$
P(x)=B(x, x)+y-x, T(x)=(B(x))^{-1}(x-y)
$$

and the real polynomials $f(r), g(r)$ on R by

$$
\begin{aligned}
& f(r)=a^{\prime} r^{2}+b^{\prime} r+c^{\prime}, g(r)=a r^{2}+b r+c, \\
& a^{\prime}=\left(\|B| | \cdot\| B(z)^{-1} \|\right) \\
& b^{\prime}=-2| | B| | \cdot| | B(z)^{-1} \| \\
& c^{\prime}=1-| | B(z)^{-1}\|-\| B\|\cdot\| B(z)^{-1}\left\|^{2} \cdot\right\| z-y \| \\
& a=r_{0}^{-1} \\
& b=\left\|B(z)^{-1}(I-B(z))\right\|-1 \\
& c=\left\|B(z)^{-1} P(z)\right\|
\end{aligned}
$$

From now on we assume that B is a bounded symmetric bilinear operator on $X \times X$.

Theorem 3. Let $X \in X$ be such that $B(z)$ is invertible and that the following are true:
a) $c^{\prime}>0$;
b) $b<0, b^{2}-4 a c>0$, and

c) there exists $r>0$ such that $f(r)>0$ and $g(r) \leq 0$.

Then the iteration

$$
x_{n+1}=B\left(x_{n}\right)^{-1}\left(x_{n}-y\right), \quad n=0,1,2, \ldots
$$

is well defined and it converges to a unique solution x in $\bar{U}(z, r)$ of (3) for any $x_{0} \in \bar{U}(z, r)$.

Proof. T is well defined by lemma 2.

Claim 1. T maps $\bar{U}(z, r)$ into $\bar{U}(z, r)$.

If $x \in \bar{U}(z, r)$ then
$T(x)-z=B(x)^{-1}(x-y)-z$

$$
=B(x)^{-1}[(I-B(z))(x-z)-P(z)]
$$

so

$$
\begin{aligned}
& \quad\|T(x)-z\| \leq r \text { if } \\
& \frac{1}{1-||B|| \cdot| | B(z)^{-1}| | r}\left[\left|\mid B(z)^{-1}(I-B(z))\|r+\| B(z)^{-1} P(z) \|\right] \leq r\right.
\end{aligned}
$$

(using lemma 1 for $L_{1}=B(z)$ and $L_{2}=B(x-z)$) or $g(r) \leq 0$ which is true by hypothesis.

Claim 2. T is a contraction operator on $\bar{U}(z, r)$.

If $w, v \in \bar{U}(z, r)$ then

So T is a contraction on $\bar{U}(z-r)$ if $0<q<1$, where
$a=\frac{1}{1-\|B\| \cdot\left\|B(z)^{-1}\right\| \cdot r}\left[\left\|B(z)^{-1}\right\|+\frac{\|B\| \cdot\left\|B(z)^{-1}\right\|^{2} r+\|B \mid\| B(z)^{-1}\left\|^{2}\right\| z-y \|}{1-\|B\| \cdot\left\|B(z)^{-1}\right\| \cdot r}\right]$
which is true since $f(r)>0$.

Note that Theorems 1 and 3 can now be used to compute the soltion to Eq. (1) by iteration (4), if $z=H$ and $\bar{U}(H, r) \subset D$.

REFERENCES.

1. Argyros, I.K. Quadratic equations and applications to Chandrasekhar's and Related Equations. Bull. Austral. Math. Soc., Vol. 32, № 2 (1985), pp. 275-292.
2. Chandrasekhar, S. Radiative Transfer, Oxford U. P., London, 1950.
3. Case, K.M. and Zwiefel, P. F., Linear Transfort Theory, Addison-Wesley Publ. 1967.
4. Kelley, C. T. Solution of the Chandrasekhar H-equation by Newton's Method. J. Math. Phys. 21(7), (1970), pp. 1625-1628.
5. Rall, L. B. Quadratic Equations in Banach Space. Rend. Circ. Math. Pa lermo 10, 314 (1961), pp. 314-332.
6. -----. Computational Solutions of Nonlinear Operator Equations, Wiley, New York, 1969.

[^0]: * Department of Mathematics, New Mexico State University. Las Cruces, New Mexico 88003, U.S.A.

