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Abstract

In the present work, we pay attention to a number of nonlinear
Volterra integro-differential equations (VIDEs) with constant time-
lag. We define three new Lyapunov functionals (LFs) and employ
them to get specific conditions guaranteeing the uniform exponential
asymptotic stability (UEAS) of the trivial solutions of the (VIDEs)
considered. The results obtained generalize, compliment and improve
the existing results in the literature from the cases of the without delay
to the more general cases with time-lag.
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1. Introduction

The Lyapunov’s direct method containing an energy like function has come
to be a powerful implement in the qualitative study of ordinary differen-
tial equations (ODEs). Over the last five decades years, this technique has
also been applied to functional differential equations (FDEs) and (IDEs)
by many researchers. It is well known that while Lyapunov functions are
made use in the investigation of (ODEs), more generally (LFs) are used in
studying (FDEs) and (IDEs) (see, for example, Burton [6, 7]. As (VIDEs)
can also be treated as (FDEs), (LFs) have been constructed or defined ex-
clusively for various (VIDEs) by Adıvar and Raffoul [1], Becker ([2],[3],[4]),
Burton [5, 6, 7], Burton et al. [8], Burton and Mahfoud ([9],[10]), Cor-
duneanu [11], Diamandescu [12], Eloe et al. [13], Furumochi and Matsuoka
[14], Graef and Tunç [15], Graef et al. [16], Grimmer and Seifert [17],
Gripenberg et al. [18], Hara et al. [19], Islam and Raffoul [20], Jordan [21],
Levin [22], Mahfoud [23], Miller [24], Raffoul [25],[26],[27], Raffoul and Ren
[28], Raffoul and Unal [29], Rama Mohana Rao and Raghavendra [30],
Rama Mohana Rao and Srinivas [31], Staffans [32], Tunç ([33],[34],[35]),
Tunç and Ayhan [38], Vanualailai and Nakagiri [39], Wang [40], Wazwaz
[41], Zhang [42], Da Zhang [43] and many relative papers in their references
in order to study the stability (S), instability (I), uniform stability (US),
exponential stability (ES), boundedness (B), etc. properties that equations.

As differentiated from this line, in 2007, Raffoul [26] presents some basic
theorems which provide a way of constructing (LFs) for the vector (VIDE)

x0(t) = Ax(t) +

Z t

0
B(t, s)f(x(s))ds.(1.1)

Using (LFs), the author obtains sufficient conditions guaranteeing the (EAS)
of the trivial solution to system

x0(t) = G(t, x(s); 0 ≤ s ≤ t) := G(t, x(.)),(1.2)

where x is an n− dimensional vector, the function G is continuous function
for t ∈ [0,∞) and x ∈ <n with G(t, 0) = 0. A typical example of (1.2) is
(VIDE) (1.1) . The results of Raffoul [26] are applied to (VIDE) (1.1) with
f(x) = xn, n is positive and rational. Two examples are discussed in [26].

Then, Raffoul [26] applies the theory obtained for equation (1.2) to the
real (VIDE)

x0(t) = σ(t)x(t) +

Z t

0
B(t, s)f(s, x(s))ds+ g(t, x(t)).(1.3)
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The author [26] describes specific conditions guaranteeing the trivial solu-
tion of (VIDE) (1.3) is (UEAS).

In addition, more recently, Raffoul and Ren [29] considered the n-
dimensional stochastic differential equation (SDE) of the form

dx(t) = f

µ
t, x(t), x(t− h),

Z t

t−h
A(t, s)h(s, x(s))ds

¶
dt

+g(t, x(t), x(t− h))dB(t)

for t ∈ <+, t ≥ 0. The authors provide general theorems about bounded-
ness or bounded in probability of solutions to the former nonlinear delay
stochastic differential equation. In [29], the analysis is based on the suc-
cessful construction of suitable (LFs), and the authors also offer several
good examples as application of their theorems.

In this paper, instead of (VIDE) (1.3) without time-lag and the (SDE)
in [29], we pay attention to the below nonlinear (VIDE) with constant
time-lag

x0(t) = −α(t)ϕ(x(t)) +
Z t

t−τ
C(t, s, x(s))ψ(s, x(s), x(s− τ))ds

+h(t, x(t), x(t− τ)),(1.4)

where x(t) = ϕ2(t) for 0 ≤ t ≤ t0, t − τ ≥ 0, τ is fixed constant time-lag,
x ∈ <, α(t) : [0,∞) → (0,∞), φ : < → <, ψ, h : [0,∞) × < × < → < are
continuous functions with φ(0) = ψ(t, 0, 0) = h(t, 0, 0) = 0 and C(t, s, x(s))
is a continuous function for 0 ≤ s ≤ t <∞ and x(s) with C(t, s, 0) = 0.

Let

φ1(x) =

⎧⎪⎨⎪⎩
φ(x)
x , x 6= 0

φ0(0), x = 0.

Then, it may obtained from (VIDE) (1.4) that

x0(t) = −α(t)φ1(x)x+
Z t

t−τ
C(t, s, x(s))ψ(s, x(s), x(s− τ))ds

+h(t, x, x(t− τ)),(1.5)

in which and throughout the paper, when we need x represents x(t).
In [26], Raffoul also considers the following real (VIDEs)
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x0(t) = σ(t)x(t) + exp(−δt)
Z t

0
B(t, s)x

2
3 (s)ds(1.6)

and

x0(t) = σ(t)x(t) + exp(−k1t)
Z t

0
B(t, s)x

2
3 (s)ds.(1.7)

The author [26] gives sufficient conditions under which the trivial solutions
of (VIDE) (1.6) and (VIDE) (1.7) are (UEAS). It should be noted that
(VIDE) (1.6) and (VIDE) (1.7) are equivalent when δ = k1. However, the
results given in [26] with respect to that (VIDEs) are different since different
(LFs) are used therein.

In this paper, instead of (VIDE) (1.6) and (VIDE) (1.7), we consider
the nonlinear (VIDEs) with constant time-lag

x0(t) = −γ(t)h(x) + exp(−δt)
Z t

t−τ
K(t, s)p

2
3 (x(s))ds(1.8)

and

x0(t) = −γ(t)f(x) + exp(−k1t)
Z t

t−τ
K(t, s)q

2
3 (x(s))ds,(1.9)

respectively, in which x(t) = ϕ4(t), 0 ≤ t ≤ t0, t−τ ≥ 0, τ is fixed constant
time-lag, x ∈ <, γ(t) : [0,∞)→ (0,∞) and h, f, p, q : <→ < are continuous
functions with h(0) = f(0) = p(0) = q(0) = 0, and the function K(t, s) is
continuous for 0 ≤ s ≤ t <∞.

Let

h1(x) =

⎧⎪⎨⎪⎩
h(x)
x , x 6= 0

h0(0), x = 0

and

f1(x) =

⎧⎪⎨⎪⎩
f(x)
x , x 6= 0

f 0(0), x = 0.

Then, we have from (VIDE) (1.8) and (VIDE) (1.9) that

x0(t) = −γ(t)h1(x)x+ exp(−δt)
Z t

t−τ
K(t, s)p

2
3 (x(s))ds(1.10)

and

x0(t) = −γ(t)f1(x)x+ exp(−δt)
Z t

t−τ
K(t, s)q

2
3 (x(s))ds,(1.11)
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respectively.
We investigate here the (UEAS) of the trivial solutions of (VIDEs) (1.4),

(1.8) and (1.9) via new suitable (LFs).
It is notable form the mentioned information that Raffoul [26] considers

certain non-linear (VIDEs) without time-lag. In spite of this case, here, we
consider certain new non-linear (VIDEs) with time-lag. In fact, when we
choose φ(x) = x, ψ(s, x(s), x(s−τ)) = f(s, x(s)), g(t, x(t)) = h(t, x(t), x(t−
τ)) and take zero instead of the term t − τ , then our equation, equation
(VIDE) (1.4) reduces to (VIDE) (1.3) discussed by Raffoul [26]. In addition,

if take zero instead of the term t− τ , h(x) = x, p
2
3 (x) = x

2
3 and f(x) = x,

p
2
3 (x) = x

2
3 , then (VIDEs)(1.8) and (1.9) reduce to (VIDEs) (1.6) and

(1.7), respectively. That is, (VIDEs) (1.4), (1.8) and (1.9) include and
extend (VIDEs) (1.3), (1.6) and (1.7) discussed by Raffoul [26]. Moreover,
our results improve the related results of [26] from the cases of without
delay to the more general cases with time-lag.

Finally, if we set the coefficient of the stochastic term in the (SDE)
investigated in [29] equal to zero, then we have the following delay (VIDE)
of the form

x0(t) = f(t, x(t), x(t− h),

tZ
t−h

A(t, s)h(s, x(s))ds.

Hence, it is clear that the former delay (VIDE) includes the delay
(VIDEs) (1.4), (1.6) and (1.7). However, the results established in [2] and
that we are going to establish here, Theorems 2.1-2.3, are different from
each other. Because the results proved in [29], their assumptions and the
(LFs) constructed therein are different form that we are going to give and
prove in this paper. By the way we would like to state that the results in
[29] and those we are going to give here complement to each other.

All the mentioned information shows that the present paper has novel
and original results and makes contribution to the literature.

We now consider the differential system given by (FDE) (1.2). Let
t0 ≥ 0. Then, for each continuous function ϕ : [0, t0] → <n, there exists
in any case one function x(t) = x(t, t0, φ), x(.) ∈ C[t0, I], appeasing (FDE)
(1.2) for 0 ≤ t0 ≤ t ≤ I such that x(t, t0, ϕ) = ϕ for 0 ≤ t ≤ t0.

Definition 1.1. The trivial solution of (FDE) (1.2) is (EAS) if for a posi-
tive constant λ any solution x(t, t0, ϕ) of (FDE) (1.2) fulfills

kx(t, t0, ϕ)k ≤ K(|ϕ| , t0) exp(−λ(t− t0))(1.12)
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for all t ≥ t0, where K(|ϕ| , t0) is a positive constant depends on ϕ and t0,
and ϕ is a stated initial function, which is bounded and continuous.

If the constant K in (1.12) is independent of t0, then it is said that the
trivial solution of (FDE) (1.2) is (UEAS).

The following three basic theorems are needed for the (S) results of this
paper.

Theorem 1.1. (Raffoul [26]) Assume that D ⊂ <ncontains the origin and
there exists a (LF) V : D → [0,∞) such that the below assumptions hold
for all (t, x) ∈ [0,∞)×D:

(A1) λ1 kxkρ ≤ V (t, x(.)),

(A2) V̇ (t, x) ≤ λ3V (t, x(.)) + L exp(−δt),

where λ1 > 0, λ3 > 0, ρ > 0, δ > 0, L ≥ 0 are real constants and
0 < �min{λ3, δ}.
Then the trivial solution of (FDE) (1.2) is (UEAS).

Proof. See Raffoul [26]. 2

Theorem 1.2. (Raffoul [26]) Assume that D ⊂ <n contains the origin and
there exists a continuously differentiable (LF) V : [0,∞)×D→ [0,∞) such
that the below assumptions hold for all (t, x) ∈ [0,∞)×D :

(B1) λ1 kxkρ ≤ V (t, x(.)) ≤ λ2W2(|x|) + λ2
R t
0 φ1(t, s)W3(|x(s)|)ds,

(B2) V̇ (t, x(.)) ≤ −λ3W4(|x|)− λ3
R t
0 φ2(t, s)W5(|x(s)|)ds+ L∗ exp(−δt),

where λ1 > 0, λ2 > 0, λ3 > 0, ρ > 0, δ > 0 and L∗ > 0 are real
constants, and φ1(t, s) and φ2(t, s) are scalar valued and continuous
functions for 0 ≤ s ≤ t <∞. If the below assumption

(B3) W2(|x|)−W4(|x|)+
R t
0 [φ1(t, s)W3 |x(s)|− φ2(t, s)W3 |x(s)|] ds ≤ L1 exp(−δt)

holds for some positive constants L1 and B with
R t
0 φ1(t, s)ds ≤ B,

then the trivial solution of (FDE) (1.2) is (UEAS).
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Proof. See Raffoul [26]. 2

Theorem 1.3. (Raffoul [26]) Assume that D ⊂ <ncontains the origin and
there exists a continuously differentiable (LF) V : [0,∞)×D→ [0,∞) such
that the following assumptions hold for all (t, x) ∈ [0,∞)×D:

(C1) λ1(t) kxkρ ≤ V (t, x(.)) ≤ λ2(t)W2(|x|) + λ2(t)
R t
0 φ1(t, s)W3(|x(s)|)ds,

(C2) V̇ (t, x(.)) ≤ −λ3(t)W4(|x|)−λ3(t)
R t
0 φ2(t, s)W5(|x(s)|)ds+L exp(−δt),

where λ1(t), λ2(t), and λ3(t) are some positive and continuous func-
tions, with λ1(t), is non-decreasing, ρ > 0, δ > 0 and L > 0 are some
real constants, and φ1(t, s) ≥ 0 and φ2(t, s) ≥ 0 are scalar valued and
continuous functions for 0 ≤ s ≤ t <∞. If the assumption

(C3) W2(|x|)−W4(|x|)+
R t
0 [φ1(t, s)W3 |x(s)|− φ2(t, s)W3 |x(s)|] ds ≤ L2 exp(−δt)

holds for some positive constants L2, B and N with
R t
0 φ1(t, s)ds ≤ B

and λ2(t) ≤ N , then the trivial solution of (FDE) (1.2) is (UEAS).

Proof. See Raffoul [26]. 2

2. Exponential stability

A. Assumptions

Let δ0, δ1, �, β, τ , K0 and K be positive constants. Assume that the
following assumptions are true:

(D1) φ1(x) ≥ δ1 for x ∈ <,

(D2) |ψ(t, x, x(t− τ))| ≤ σ(t)min(|x| , |x(t− τ)|),

|h(t, x, x(t− τ))| ≤ θ(t)min(|x|
1
2 , |x(t− τ)|

1
2 ), where σ(t) and θ(t)

are positive, bounded and continuous functions,

(D3) |C(t, s, x(s))| ≥ K0

∞R
t−τ

|C(u+ τ, s, x(s))| du with 0 ≤ s ≤ t ≤ u <∞,

(D4) |C(t+ τ, s, x(s))| ≥ K0

∞R
t−τ

|C(u+ τ, s, x(s))| du, and

t0R
0

∞R
t0−τ

|C(u+ τ, s, x(s))| duσ(s)ds ≤ δ0 <∞ for all t0 − τ ≥ 0.
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(D5) α(t)δ1 − 1
2 − βσ(t)

∞R
t−τ

|C(u+ τ, t, x(t))| du ≥ K with K0 ≥ βK
ε > 0.

Theorem 2.1. If assumptions (D1)-(D5) are true, then the trivial solution
of (VIDE) (1.4) is (UEAS).

Proof. Describe a (LF) V1 = V1(t) = V1(t, x(t)) by

V1 = |x|+ β

tZ
0

∞Z
t−τ

|C(u+ τ, s, x(s)| du |ψ(s, x(s), x(s− τ))| ds,(2.1)

where β > 0, β ∈ <, which is determined later in the proof.
Positive definiteness of the (LF) V1 is clear. That is,

V1(t, 0) = 0 and V1(t, x) ≥ |x| .

Differentiating the (LF) V1 with respect to t, we obtain from (2.1) that

V 01 =
x

|x|x
0 + β

∞Z
t−τ

|C(u+ τ, t, x(t))| du |ψ(t, x, x(t− τ))|

−β
tZ
0

|C(t, s, x(s))| |ψ(s, x(s), x(s− τ))|ds

≤ −α(t)φ1(x) |x|+
tZ

t−τ

|C(t, s, x(s))| |ψ(s, x(s), x(s− τ))| ds

+ |h(t, x, x(t− τ))|

+β

∞Z
t−τ

|C(u+ τ, t, x(t))| du |ψ(t, x, x(t− τ))|

−β
tZ
0

|C(t, s, x(s))| |ψ(s, x(s), x(s− τ))| ds.(2.2)

Let
β = 1 + ε, ε > 0.

Then, it follows from (2.2), the hypotheses of Theorem 2.1 and the reality
2 |mn| ≤ m2 + n2 that
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V 01 ≤ −α(t)φ1(x) |x|+ |h(t, x, x(t− τ))|

+β

∞Z
t−τ

|C(u+ τ, t, x(t))| du |ψ(t, x, x(t− τ))|

−ε
tZ
0

|C(t, s, x(s))| |ψ(s, x(s), x(s− τ))| ds

≤ −α(t)φ1(x) |x|+ θ(t) |x|
1
2

+βσ(t) |x|
∞Z

t−τ

|C(u+ τ, t, x(t))| du

−ε
tZ
0

|C(t, s, x(s))| |ψ(s, x(s), x(s− τ))| ds

≤ −

⎡⎣α(t)φ1(x)− 1
2
− βσ(t)

∞Z
t−τ

|C(u+ τ, t, x(t))| du

⎤⎦ |x|
−ε

tZ
0

|C(t, s, x(s))| |ψ(s, x(s), x(s− τ))| ds+ 1
2
θ2(t)

≤ −K |x|− ε

tZ
0

|C(t, s, x(s))| |ψ(s, x(s), x(s− τ))| ds+ 1
2
θ2(t)

≤ −K |x|− εK0

tZ
0

∞Z
t−τ

|C(u+ τ, s, x(s))| du |ψ(s, x(s), x(s− τ))| ds

+
1

2
θ2(t)

≤ −K

⎡⎣|x|+ β

tZ
0

∞Z
t−τ

|C(u+ τ, s, x(s))| du |ψ(s, x(s), x(s− τ))| ds

⎤⎦
+
1

2
θ2(t)

≤ −KV1(t, x(t)) +
1

2
θ2(t).
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If θ2(t) ≤ exp(−δt) for a positive constant δ, λ1 = 1, ρ = 1 and L = 2−1,
then we can show the verification of all the assumptions of Theorem 1.1 .
That is, the trivial solution of (VIDE) (1.4) is (UEAS). This finishes the
proof of Theorem 2.1. 2
B. Assumptions

Let α1, δ and τ be positive constants such that the following assump-
tions are correct:

(E1) h(0) = p(0) = 0, h1(x) ≥ 1, x ∈ <, |p(x)| ≤ α
1/2
1 |x|, 0 < α1 < 1,

(E2) 2γ(t)−exp(−δt)
tR

t−τ
|K(t, s)| ds−

∞R
t−τ

exp(−δ(u+τ)) |K(u+ τ, t)| du ≥
1,

where γ(t) is a positive, bounded and continuous function,

(E3) (−1 + 2
3α1) exp(−δt) |K(t, s)| ≥

∞R
t−τ

exp(−δ(u+ τ) |K(u+ τ, s)| du

with 0 ≤ s ≤ t ≤ u <∞.

Theorem 2.2. If assumptions (E1)-(E3) are true, then the null solution
of (VIDE) (1.8) is (UEAS).

Proof. We describe a (LF) V2 = V2(t) = V2(t, x(t)) by

V2 = x2 + λ

tZ
0

∞Z
t−τ

exp(−δ(u+ τ) |K(u+ τ, s)| dux2(s)ds(2.3)

where λ > 0, λ ∈ <, and we determine that constant later.
Obviously, it follows that the (LF) V2 is positive definite, since

V2(t, 0) = 0 and V2(t, x) ≥ x2.

Differentiating the (LF) V2, it follows from (LF) (2.3) and (VIDE) (1.8)
that

V 02 = 2xx0 + λx2
∞Z

t−τ

exp(−δ(u+ τ) |K(u+ τ, t)| du

-λ
tR
0
exp(−δt) |K(t, s)|x2(s)ds
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=-2γ(t)g1(x)x
2 + 2 exp(−δt)x

tR
t−τ

K(t, s)p
2
3 (x(s))ds

+λx2
∞R

t−τ
exp(−δ(u+ τ)) |K(u+ τ, t)| du

-λ
tR
0
exp(−δt) |K(t, s)|x2(s)ds.

By the disparity 2 |mn| ≤ m2 + n2 and the assumption g1(x) ≥ 1, we
reach that

V 02 ≤ −2γ(t)x2 + exp(−)
tZ

t−τ

|K(t, s)| [x2(t) + p
4
3 (x(s))]ds

+λx2
∞Z

t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du

−λ
tZ
0

exp(−δt) |K(t, s)|x2(s)ds

= −2γ(t)x2 + exp(−δt)x2
tZ

t−τ

|K(t, s)| ds

+exp(−δt)
tZ

t−τ

(t, s)| p 43 (x(s))ds

+λx2
∞Z

t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du

−λ
tZ
0

exp(−δt) |K(t, s)|x2(s)ds.(2.4)

Let a = 3
2 and b = 3. By using the Young’s inequality,

mn ≤ 1
a
ma +

1

b
nb,

1

a
+
1

b
= 1,

and assumption (E1), we have from (2.4) that
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tZ
t−τ

|K(t, s)| p 43 (x(s))ds =

tZ
t−τ

|K(t, s)|
1
3 |K(t, s)|

2
3 p

4
3 (x(s))ds

≤
tZ

t−τ

∙
1

3
|K(t, s)|+ 2

3
|K(t, s)| p2(x(s))

¸
ds

≤ 1

3

tZ
t−τ

(t, s)| ds+ 2
3
α1

tZ
t−τ

|K(t, s)|x2(s)ds.

Setting former inequality into (2.4), we have

V 02 ≤ −2γ(t)x2 + exp(−δt)x2
tZ

t−τ

|K(t, s)| ds

+
1

3
exp(−δt)

tZ
t−τ

|K(t, s)| ds

+
2

3
α1 exp(−δt)

tZ
t−τ

|K(t, s)|x2(s)ds

+λx2
∞Z

t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du

−λ
tZ
0

exp(−δt) |K(t, s)|x2(s)ds

= −[2γ(t)− exp(−δt)
tZ

t−τ

|K(t, s)| ds

−λ
∞Z

t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du]x2

+
1

3
exp(−δt)

tZ
t−τ

|K(t, s)| ds
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+
2

3
α1 exp(−δt)

tZ
t−τ

|K(t, s)|x2(s)ds

−λ
tZ
0

exp(−δt) |K(t, s)|x2(s)ds.

Let λ = 1 and L∗ = 1
3

tR
t−τ

|K(t, s)| ds. Then

V 02 ≤ −[2γ(t)− exp(−δt)
tZ

t−τ

|K(t, s)| ds

−
∞Z

t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du]x2

+(−1 + 2
3
α1)

tZ
0

exp(−δt) |K(t, s)|x2(s)ds+ L∗ exp(−δt).

By assumption (E2), we have

V 02 ≤ −x2 + (−1 +
2

3
α1)

tZ
0

exp(−δt) |K(t, s)|x2(s)ds+ L∗ exp(−δt),(2.5)

Let W2(.) =W4(.) = x2(t), W3(.) =W5(.) = x2(s), λ1 = 1, λ2 = 1, λ3 = 1,

φ1(t, s) =

∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du

and

φ2(t, s) = (−1 +
2

3
α1) exp(−δt) |K(t, s)| .

Then, it follows from (2.3) and (2.5), respectively, that

x2 ≤ V2 = x2 + λ

tZ
0

∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, s)| dux2(s)ds

≤ λ2W2(|x|) + λ2

tZ
0

φ1(t, s)W3(|x(s)|)ds



628 Cemil Tunç and Sizar Abid Mohammed

and

V 02 ≤ −x2 + (−1 + 2
3
α1)

tZ
0

exp(−δt) |K(t, s)|x2(s)ds+ L∗ exp(−δt)

= −λ3W4(|x|)− λ3

tZ
0

φ2(t, s)W5(|x(s)|)ds+ L∗ exp(−δt).

Hence, we can conclude that assumptions (B1) and (B2) of Theorem
1.2 hold.

Then, in view of the assumption

1

3
exp(−δt) |K(t, s)| ≥

∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, s)| du,

we get

W2(|x|)−W4(|x|) +
tZ
0

[φ1(t, s)W3 |x(s)|− φ2(t, s)W3 |x(s)|] ds

= x2 − x2 +

tZ
0

⎡⎣ ∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du +

(−1 + 2
3
α1) exp(−δt) |K(t, s)|

¸
x2(s)ds

=

tZ
0

⎡⎣ ∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du +

(−1 + 2
3
α1) exp(−δt) |K(t, s)|

¸
x2(s)ds ≤ 0.

Therefore, the last estimate shows that assumption (B3) of Theorem 1.2
holds for L1 = 0. That is, the trivial solution of (VIDE) (1.8) is (UEAS).
Thus, the desirable result is available for the proof of Theorem 2.2. 2
C.Assumptions

Let β and k2 be positive constants. Assume that the below assumptions
hold:

(F1) f(0) = q(0) = 0, f1(x) ≥ 1, (x 6= 0), |q(x)| ≤ β
1
2 |x| , 0 < β < 1,
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(F2) k2+2γ(t)−
tR

t−τ
|K(t, s)| ds−

∞R
t−τ

|K(u+ τ, t)| du ≥ 1 with 0 ≤ s ≤ t ≤ u <∞,

where γ(t) is a positive, bounded and continuous function,

(F3)
tR

t−τ
|K(t, s)| ds <∞ and

tR
0

∞R
t−τ

|K(u+ τ, s)| duds <∞with 0 ≤ s ≤ t ≤ u <∞

and (1− 2
3β) exp(−δt) |K(t, s)| ≥

∞R
t−τ

exp(−δ(u+ τ)) |K(u+ τ, s)| du.

Theorem 2.3. Let δ, k1, k2 be positive constants such that 1 < δ = k1+k2.
If assumptions (F1)-(F3) are correct, then the null solution of (VIDE) (1.9)
is (UEAS).

Proof. We define a (LF) V3 = V3(t) = V3(t, x(t)) by

V3 = exp(−k2t)

⎡⎣x2 + µ

tZ
0

∞Z
t−τ

|K(u+ τ, s)| dux2(s)ds

⎤⎦ ,(2.6)

where µ > 0, µ ∈ <, and it is determined later.
It can be seen the positive definiteness of the (LF) V3, since

V3(t, 0) = 0 and V3(t, x) ≥ x2 exp(−k2t).

Differentiating the (LF) V3 with respect to t, along solutions of (VIDE)
(1.9), we obtain from (LF) (2.6) and (VIDE) (1.9) that

V 03 = −k2 exp(−k2t)

⎡⎣x2 + µ

tZ
0

∞Z
t−τ

|K(u+ τ, s)| dux2(s)ds

⎤⎦
+exp(−k2t)

⎡⎣2xx0 + µx2
∞Z

t−τ

|K(u+ τ, t)| du

⎤⎦
− exp(−k2t)

⎡⎣µ tZ
0

|K(t, s)|x2(s)ds

⎤⎦

= −k2 exp(−k2t)

⎡⎣x2 + µ

tZ
0

∞Z
t−τ

|K(u+ τ, s)| dux2(s)ds

⎤⎦
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−2 exp(−k2t)
h
γ(t)f1(x)x

2
i

+2exp(−(k1 + k2)t)

⎡⎣x tZ
t−τ

K(t, s)q
2
3 (x(s))ds

⎤⎦
+µ exp(−k2t)

⎡⎣x2 ∞Z
t−τ

|K(u+ τ, t)| du

⎤⎦
−µ exp(−k2t)

⎡⎣ tZ
0

|K(t, s)|x2(s)ds

⎤⎦ .
In view of the inequality 2 |mn| ≤ m2 + n2 and the assumption f1(x) ≥ 1,
we have

V 03 ≤ −k2 exp(−k2t)x2 − k2µ exp(−k2t)
tZ
0

∞Z
t−τ

|K(u+ τ, s)| dux2(s)ds

+2exp(−(k1 + k2)t)

⎡⎣|x(t)| tZ
t−τ

|K(t, s)| q 23 (x(s))ds

⎤⎦
−2 exp(−k2t)γ(t)x2 + µ exp(−k2t)

⎡⎣x2 ∞Z
t−τ

|K(u+ τ, t)| du

⎤⎦
−µ exp(−k2t)

⎡⎣ tZ
0

|K(t, s)|x2(s)ds

⎤⎦

≤ −[k2 + 2γ(t)] exp(−k2t)x2

−k2µ exp(−k2t)
tZ
0

∞Z
t−τ

|K(u+ τ, s)| dux2(s)ds

+exp(−(k1 + k2))x
2

⎡⎣ tZ
t−τ

|K(t, s)| ds

⎤⎦
+exp(−(k1 + k2)t)

⎡⎣ tZ
t−τ

|K(t, s)| q 43 (x(s))ds

⎤⎦
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+µ exp(−k2t)x2
⎡⎣ ∞Z
t−τ

|K(u+ τ, t)| du

⎤⎦
−µ exp(−k2t)

⎡⎣ tZ
0

|K(t, s)|x2(s)ds

⎤⎦ .(2.7)

Let a = 3
2 and b = 3. By using the Young’s inequality,

mn ≤ 1
a
ma +

1

b
nb,

1

a
+
1

b
= 1,

and assumption (F1), we arrive at

exp(−(k1 + k2)t)

tZ
t−τ

|K(t, s)| q 43 (x(s))ds

= exp(−(k1 + k2)t)

tZ
t−τ

|K(t, s)|
1
3 |K(t, s)|

2
3 q

4
3 (x(s))ds

≤ exp(−(k1 + k2)t)

tZ
t−τ

[
1

3
|K(t, s)|+ 2

3
|K(t, s)| q2(x(s))]ds

≤ 1

3
exp(−(k1 + k2)t)

tZ
t−τ

|K(t, s)| ds

+
2

3
β exp(−(k1 + k2)t)

tZ
t−τ

|K(t, s)|x2(s)ds.

Placing the former inequality into (2.7), we obtain

V 03 ≤ − exp(−k2t)

⎡⎣k2 + 2γ(t)− tZ
t−τ

|K(t, s)| ds− µ

∞Z
t−τ

|K(u+ τ, t)| du

⎤⎦x2

−k2µ exp(−k2t)
tZ
0

∞Z
t−τ

|K(u+ τ, s)| dux2(s)ds

+
1

3
exp(−(k1 + k2)t)

tZ
t−τ

|K(t, s)| ds
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+
2

3
β exp(−(k1 + k2)t)

tZ
t−τ

|K(t, s)|x2(s)ds

−µ exp(−k2t)

⎡⎣ tZ
0

|K(t, s)|x2(s)ds

⎤⎦ .
Let µ = 1 and L = 1

3

tR
t−τ

|K(t, s)| ds. Then, using assumption (F2) of

Theorem 2.3, we conclude that

V 03 ≤ − exp(−k2t)

⎡⎣k2 + 2γ(t)− tZ
t−τ

|K(t, s)| ds−
∞Z

t−τ

|K(u+ τ, t)| du

⎤⎦x2

+
1

3
exp(−(k1 + k2)t)

tZ
t−τ

|K(t, s)| ds

+
2

3
β exp(−(k1 + k2)t)

tZ
t−τ

|K(t, s)|x2(s)ds

− exp(−k2t)

⎡⎣ tZ
0

|K(t, s)|x2(s)ds

⎤⎦
≤ − exp(−k2t)

⎡⎣k2 + 2γ(t)− tZ
t−τ

|K(t, s)| ds−
∞Z

t−τ

|K(u+ τ, t)| du

⎤⎦x2

+(−1 + 2
3
β) exp(−k2t)

tZ
0

|K(t, s)|x2(s)ds+ L exp(−(k1 + k2)t)

≤ − exp(−k2t)x2 + (−1 +
2

3
β) exp(−k2t)

tZ
0

|K(t, s)|x2(s)ds

+L exp(−(k1 + k2)t).

Let

W2(.) =W4(.) = x2(t), W3(.) =W5(.) = x2(s),
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λ1 = exp(−k2t), λ2 = exp(−k2t), λ3 = exp(−k2t)

φ1(t, s) =

∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du

and

φ2(t, s) = (1−
2

3
β) |K(t, s)| .

Then, it follows from (2.6) and the last estimate that

x2 exp(−k2t) ≤ V3 = exp(−k2t)

⎡⎣x2 + µ

tZ
0

∞Z
t−τ

|K(u+ τ, s)| dux2(s)ds

⎤⎦
≤ λ2W2(|x|) + λ2

tZ
0

φ1(t, s)W3(|x(s)| ds

and

V 03 ≤ −x2 + (−1 + 2
3
β)

tZ
0

exp(−δt) |K(t, s)|x2(s)ds+ L exp(−k2t)

= −λ3W4(|x|)− λ3

tZ
0

φ2(t, s)W5(|x(s)|)ds+ L exp(−k2t).

Hence, we can conclude that assumptions (B1) and (B2) of Theorem
1.3 hold.

Then, in view of the assumption

(1− 2
3
β) exp(−δt) |K(t, s)| ≥

∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, s)| du,

we get
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W2(|x|)−W4(|x|) +
tZ
0

[φ1(t, s)W3 |x(s)|− φ2(t, s)W3 |x(s)|] ds

= x2 − x2 +

tZ
0

⎡⎣ ∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du +

(−1 + 2
3
β) exp(−δt) |K(t, s)|

¸
x2(s)ds

=

tZ
0

⎡⎣ ∞Z
t−τ

exp(−δ(u+ τ)) |K(u+ τ, t)| du +

(−1 + 2
3
β) exp(−δt) |K(t, s)|

¸
x2(s)ds ≤ 0.

Therefore, the last estimate shows that assumption (C2) of Theorem
1.3 holds for L = 0. That is, the trivial solution of (VIDE) (1.9) is (UEAS).
This brings to an end the proof of Theorem 2.3. 2

Remark 2.1. By Theorems 2.1, 2.2 and 2.3, we improve and extend the
stability results of Raffoul [26] obtained for (VIDEs) without time-lag to
their more general and time-lag forms. In addition, Theorems 2.1, 2.2 and
2.3 complement to the results in the references like Adıvar and Raffoul
[1], Becker ([2],[3],[4]), Burton ([5],[6],[7]), Burton et al. [8], Burton and
Mahfoud ([9],[10]), Eloe et al. [13], Furumochi and Matsuoka [14], Graef
and Tunç [15], Graef et al. [16], Grimmer and Seifert [17], Gripenberg et
al. [18], Hara et al. [19], Islam and Raffoul [20], Jordan [21], Levin [22],
Mahfoud [23], Miller [24], Raffoul ([25],[26],[27],[28]), Raffoul and Ren [29],
Raffoul and Unal [29], Rama Mohana Rao and Raghavendra [30], Rama
Mohana Rao and Srinivas [31], Staffans [32], Tunç ([33],[34],[35]) Tunç and
Ayhan [38], Vanualailai and Nakagiri [39], Wang [40], Wazwaz [41], Zhang
[42], Da Zhang [43].

By this way, we also mean that the non-linear (VIDEs) thought about
and the appointed assumptions here are separate from that in the sources
mentioned above. It is noticeable that investigators working on the qual-
itative properties of (VIDEs) or (IDEs) may derive advantages from that
results obtained here. These cases show the newness and contribution of
the current paper.
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3. Conclusion

Here, we consider three non-linear (VIDEs) of first order with constant
time-lag. The (UEAS) of the trivial solutions of that (VIDEs) is discussed
by the (LF) approach. The results obtained generalize, compliment and
improve the existing results in the literature.

Acknowledgement

The authors thank the main editor and anonymous referee for their valuable
comments and suggestions leading to improvement of this paper. This
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