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Abstract

We determine the continuous solutions f, g : G → C of each of
the two functional equationsZ

G

{f(xyt)− f(σ(y)xt)}dµ(t) = f(x)g(y), x, y ∈ G,

Z
G

{f(xyt)− f(σ(y)xt)}dµ(t) = g(x)f(y), x, y ∈ G,

where G is a locally compact group, σ is a continuous involutive au-
tomorphism on G, and µ is a compactly supported, complex-valued
Borel measure on G.
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1. Introduction

In the papers [8,9], Van Vleck studied the continuous solutions f : R→ R,
f 6= 0, of the functional equation

f(x− y + z0)− f(x+ y + z0) = 2f(x)f(y), x, y ∈ R,(1.1)

where z0 > 0 is fixed. We shall in this paper study extensions of (1.1) and
related functional equations from R to locally compact groups.

Let G be a group and Z(G) be the center of G. In [4], Perkins and
Sahoo extended the result of Van Vleck by determining the abelian solutions
f : G→ C of the functional equation

f(xτ(y)z0)− f(xyz0) = 2f(x)f(y), x, y ∈ G,(1.2)

where z0 ∈ Z(G) and τ : G → G is an involution (that is, an anti-
homomorphism such that τ(τ(x)) = x for all x ∈ G). As a very recent
result, Stetkær extended the result of Perkins and Sahoo in [7] by solving
the functional (1.2) on semigroups.

Van Vleck’s functional equation (1.1) was generalized in another direc-
tion by the authors in [3], viz. to the functional equation

f(σ(y)xz0)− f(xyz0) = 2f(x)f(y), x, y ∈ G,(1.3)

where z0 ∈ G is a fixed element that need not belongs to Z(G) and σ : G→
G is an involutive automorphism (that is involutive means that σ(σ(x)) = x
for all x ∈ G). Observe that (1.3) can be written as followsZ

G
{f(σ(y)xt)− f(xyt)}dµ(t) = f(x)f(y), x, y ∈ G,

where µ = 1
2δz0 (δz0 is the Dirac measure concentrated at z0). Our aim is to

generalize this equation by substituting the Dirac measure by an arbitrary
compactly supported, complex-valued Borel measure and considering more
unknown functions.

Let G be a locally compact group, σ be a continuous involutive auto-
morphism on G, and µ be a compactly supported, complex-valued Borel
measure on G. The purpose of the present paper is first to give an explicit
description of the continuous solutions f, g : G → C of each of the two
integral-functional equations
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Z
G
{f(xyt)− f(σ(y)xt)}dµ(t) = f(x)g(y), x, y ∈ G,(1.4)

Z
G
{f(xyt)− f(σ(y)xt)}dµ(t) = g(x)f(y), x, y ∈ G,(1.5)

and second to present several consequences of these results as well. In
particular, using our main results (Theorem 3.3 and Theorem 4.2), we find
the continuous solutions f : G → C of the following Van Vleck’s integral-
functional equationZ

G
{f(σ(y)xt)− f(xyt)}dµ(t) = f(x)f(y), x, y ∈ G,(1.6)

and the solutions f, g : G→ C of each of the equations

f(xyz0)− f(σ(y)xz0) = 2f(x)g(y), x, y ∈ G,(1.7)

f(xyz0)− f(σ(y)xz0) = 2g(x)f(y), x, y ∈ G,(1.8)

nX
i=0

{f(xyzi)− f(σ(y)xzi)} = 2f(x)g(y), x, y ∈ G,(1.9)

nX
i=0

{f(xyzi)− f(σ(y)xzi)} = 2g(x)f(y), x, y ∈ G,(1.10)

where z0, z1, ..., zn ∈ G are fixed elements. Note that each of the equations
(1.7)-(1.10) results from (1.4) or (1.5) by replacing µ by a suitable discrete
measure and that all these equations are, according to our knowledge, not
in the literature even for abelian groups.

Results of [1,2,3,5,10] have been an inspiration by their treatments of
similar functional equations on groups.

2. Notation and terminology

To formulate our results we recall the following notation and assumptions
that will be used throughout the paper:
Let G be a group with neutral element e. The map σ : G → G denote an
involutive automorphism. That it is involutive means that σ(σ(x)) = x for
all x ∈ G. If (G,+) is an abelian group, then the inversion σ(x) := −x is an
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example of an involutive automorphism. Another example is the complex
conjugation map on the multiplicative group of non-zero complex numbers.

For any complex-valued function F on G we use the notations

Fe =
F + F ◦ σ

2
and Fo =

F − F ◦ σ
2

.

We say that F is even if F = Fe, and odd if F = Fo.
A function A : G→ C is called additive, if it satisfies A(xy) = A(x) +

A(y) for all x, y ∈ G.
A character of G is a homomorphism from G into the multiplicative

group of non-zero complex numbers.
By N(G,σ) we mean the vector space of the solutions θ : G→ C of the

homogeneous equation

θ(xy)− θ(σ(y)x) = 0, x, y ∈ G.

If G is a topological space, then we let C(G) denote the algebra of all
continuous functions from G into C.

If G is a locally compact group, then we let MC(G) denote the space
of all compactly supported, complex-valued Borel measures on G. For µ ∈
MC(G), we say that µ is σ-invariant if µ(f ◦ σ) = µ(f) for all f ∈ C(G),
i.e., Z

G
f(σ(t))dµ(t) =

Z
G
f(t)dµ(t) for all f ∈ C(G).

3. Solution of equation (1.4)

In this section, we solve the integral-functional equation (1.4), i.e.,Z
G
{f(xyt)− f(σ(y)xt)}dµ(t) = f(x)g(y), x, y ∈ G,

by expressing its continuous solutions in terms of continuous characters.
The following theorem is an immediate consequence of Theorem 4.2 in

[1]. It will be used in the proof of Theorem 3.3. For the notation N(G,σ)
see section 2.

Theorem 3.1. Let G be a group, let σ be an involutive automorphism on
G, and let f, g, h : G→ C be solutions of the functional equation

f(xy)− f(σ(y)x) = 2g(x)h(y), x, y ∈ G.(3.1)

Then we have the following possibilities:
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a) g = 0, h is arbitrary, f ∈ N(G,σ).

b) h = 0, g is arbitrary, f ∈ N(G,σ).

c) There exist a character χ of G with χ 6= χ ◦ σ, constants α, β ∈ C,
γ ∈ C\{0}, and a function θ ∈ N(G,σ) such that

g = αχ+ βχ ◦ σ,
h = γ(χ− χ ◦ σ),
f = 2γ(αχ− βχ ◦ σ) + θ.

d) There exist a character χ of G with χ = χ ◦ σ, constants α, β ∈ C,
an additive function A : G → C with A ◦ σ = −A, and a function
θ ∈ N(G,σ) such that

g = αχ+ βχA,

h = χA,

f = αχA+
1

2
βχA2 + θ.

Conversely, the formulas above for f, g and h define solutions of (3.1).
Moreover, if G is a topological group, g 6= 0, h 6= 0, and f, g, h ∈ C(G),
then χ, χ ◦ σ,A, θ ∈ C(G).

The following lemma will be used in the proof of Theorem 3.3 in which
the integral-functional equation (1.4) will be solved.

Lemma 3.2 (3, Lemma 4.1). Let G be a group and let σ be an invo-
lutive automorphism on G. Let χ be a character of G with χ 6= χ ◦ σ,
A : G → C be an odd additive function, θ be a function in N(G,σ), and
α, β be complex numbers.

1. If αχ+ βχ ◦ σ + θ = 0, then α = β = 0 and θ = 0.

2. If A2 + αA+ θ = 0, then A = θ = 0.

By help of Theorem 3.1 and Lemma 3.2, we now describe the complete
continuous solution of (1.4).
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Theorem 3.3. Let G be a locally compact group, let σ be a continuous
involutive automorphism on G, and let µ ∈MC(G). Assume that the pair
f, g ∈ C(G) is a solution of the functional equation (1.4). Then we have
the following possibilities:

(a) f = 0, g is arbitrary in C(G).

(b) g = 0, f ∈ {k ∈ C(G) | x 7→
R
G k(xt)dµ(t) ∈ N(G,σ)}.

(c) There exist a non-even continuous character χ of G with µ(χ) 6= 0
and a non-zero complex number α such that

f = αχ and g = µ(χ)(χ− χ ◦ σ).

(d) There exist a continuous character χ of G with µ(χ) 6= 0, µ(χ ◦ σ) =
−µ(χ), and non-zero complex numbers α, β such that

f = αχ+ βχ ◦ σ and g = µ(χ)(χ− χ ◦ σ).

Conversely, the functions given with these properties satisfy the func-
tional equation (1.4).

Proof. The first two cases are obvious, so we suppose that f 6= 0 and
g 6= 0. Define F : G→ C by

F (x) = 2

Z
G
f(xt)dµ(t) for all x ∈ G.(3.2)

Since µ ∈ MC(G) and f ∈ C(G), we have F ∈ C(G). Using (3.2), the
equation (1.4) becomes

F (xy)− F (σ(y)x) = 2f(x)g(y), x, y ∈ G.

Since f, g ∈ C(G) \ {0}, we know from Theorem 3.1 that there are only
the following two cases:

Case 1: There exist a continuous character χ ofG with χ 6= χ◦σ, constants
α, β ∈ C, γ ∈ C\{0}, and a continuous function θ ∈ N(G,σ) such that

f = αχ+ βχ ◦ σ,
g = γ(χ− χ ◦ σ),
F = 2γ(αχ− βχ ◦ σ) + θ.
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Using the expression F (x) = 2
R
G f(xt)dµ(t) for all x ∈ G, we get that

2γ[αχ(x)− βχ ◦ σ(x)] + θ(x) = 2αχ(x)µ(χ) + 2βχ ◦ σ(x)µ(χ ◦ σ),

for all x ∈ G. We reformulate the last equality as follows

2α[γ − µ(χ)]χ(x)− 2β[γ + µ(χ ◦ σ)]χ ◦ σ(x) + θ(x) = 0,

for all x ∈ G. According to Lemma 3.2(a), we obtain(
α[γ − µ(χ)] = 0
β[γ + µ(χ ◦ σ)] = 0

Since f 6= 0, then at least one of α and β is non-zero.

Subcase 1.1: Suppose that β = 0. Then α 6= 0 and hence γ = µ(χ),
which implies that f = αχ and g = µ(χ)(χ− χ ◦ σ). This is case (c) in our
statement.

Subcase 1.2: Suppose that α = 0. Then β 6= 0 and hence γ = −µ(χ ◦ σ),
which implies that f = βχ ◦ σ and g = −µ(χ ◦ σ)(χ−χ ◦ σ) = µ(χ ◦ σ)(χ ◦
σ−χ). So we are in case (c) with the continuous character χ◦σ replacing χ.

Subcase 1.3: We now suppose that α 6= 0 and β 6= 0. Then γ = µ(χ) =
−µ(χ ◦ σ) which implies that g = µ(χ)(χ − χ ◦ σ). Then we arrive at the
solution in case (d). This completes case 1.

Case 2: There exist a continuous character χ of G with χ = χ◦σ, constants
α, β ∈ C, a continuous additive function A : G→ C with A ◦ σ = −A, and
a continuous function θ ∈ N(G,σ) such that

f = αχ+ βχA,

g = χA,

F = αχA+
1

2
βχA2 + θ.

A small computation based on (3.2) shows that

αχ(x)A(x) +
1

2
βχ(x)A2(x) + θ(x)

= 2αµ(χ)χ(x) + 2βµ(χ)A(x)χ(x) + 2βχ(x)µ(Aχ),
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for all x ∈ G. We reformulate the last equation as follows

βA2 + 2[α− 2βµ(χ)]A+ θ1 = 0,(3.3)

where θ1 := 2(
θ
χ)−4αµ(χ)−4βµ(Aχ). Since χ is even we have θ1 ∈ N(G,σ).

Subcase 2.1: Suppose that β = 0. From (3.3) we see that 2αA+ θ1 = 0.
Then αA ∈ N(G,σ), i.e., for all x, y ∈ G we have

αA(xy)− αA(σ(y)x) = 0,

which implies that 2αA(y) = 0 for all y ∈ G, i.e., αA = 0. Since f = αχ
and f 6= 0, then α 6= 0 and hence A = 0. Therefore g = 0. This subcase
does not apply, because g 6= 0 by assumption.

Subcase 2.2: We now suppose that β 6= 0. Dividing (3.3) by β and using
Lemma 3.2(b), we get that A = 0. Hence g = 0. Also this subcase does not
apply, because g 6= 0. This finishes the necessity assertion.

Conversely, simple computations prove that the formulas above for (f, g)
define solutions of (1.4). 2

As a consequence of Theorem 3.3 one can obtain the following corollar-
ies.

Corollary 3.4. Let G be a locally compact group, let σ be a continu-
ous involutive automorphism on G, and let µ be a σ-invariant measure in
MC(G). Then a pair f, g ∈ C(G) \ {0} satisfies the functional equation
(1.4) if and only if there exist a non-even continuous character χ of G with
µ(χ) 6= 0 and a non-zero complex number α such that

f = αχ and g = µ(χ)(χ− χ ◦ σ).

Proof. Let χ be a continuous character of G such that µ(χ) 6= 0. Since
µ is σ-invariant we have µ(χ ◦ σ) = µ(χ). This implies that µ(χ ◦ σ) 6=
−µ(χ). Indeed, µ(χ ◦ σ) = −µ(χ) would entail µ(χ) = 0, contradicting our
assumption. So a pair f, g ∈ C(G) \ {0} satisfies the equation (1.4) if and
only if it has the form stated in case (c) of Theorem 3.3. 2

Corollary 3.5. Let G be a locally compact group, let σ be a continuous
involutive automorphism on G, and let µ ∈ MC(G). Then a function f ∈
C(G) \ {0} satisfies the functional equation (1.4) if and only if there exists
a continuous character χ of G with µ(χ) 6= 0 and µ(χ ◦ σ) = −µ(χ) such
that

f = −µ(χ)(χ− χ ◦ σ).
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Proof. The proof follows on putting g = −f in Theorem 3.3. 2

In the following corollaries let G be a group, n ∈ N, z0, z1, ..., zn ∈ G
be arbitrarily fixed elements, and let σ be an involutive automorphism on
G. To illustrate our theory, we continue by discussing the solutions of Eq.
(1.4), but now for the case of µ being supported by a finite set. We can
of course get all solutions, continuous or not, by considering the special
instance of the discrete topology on G.

Corollary 3.6. The non-zero functions f, g : G → C satisfying the func-
tional equation

f(xyz0)− f(σ(y)xz0) = 2f(x)g(y), x, y ∈ G,

are the ones of the forms:

(a)

f = αχ and g =
χ(z0)

2
(χ− χ ◦ σ),

where α is a non-zero complex number and χ is a non-even character
of G.

(b)

f = αχ+ βχ ◦ σ and g =
χ(z0)

2
(χ− χ ◦ σ),

α, β are non-zero complex numbers and χ is a character of G such
that χ ◦ σ(z0) = −χ(z0).

Proof. The proof follows on putting µ = 1
2δz0 in Theorem 3.3. 2

As a consequence of Corollary 3.5 (or Corollary 3.6) we have the fol-
lowing result which is a natural extension of Van Vleck’s equation (1.1).

Corollary 3.7. The non-zero solutions f : G→ C of the functional equa-
tion

f(σ(y)xz0)− f(xyz0) = 2f(x)f(y), x, y ∈ G,

are the functions of the form f = −χ(z0)
2 (χ−χ ◦ σ), where χ is a character

of G such that χ ◦ σ(z0) = −χ(z0).
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Proof. The proof follows on putting µ = 1
2δz0 in Corollary 3.5. 2

Corollary 3.8. The non-zero functions f, g : G → C satisfying the func-
tional equation

nX
i=0

{f(xyzi)− f(σ(y)xzi)} = 2f(x)g(y), x, y ∈ G,

are the ones of the forms:

(a)

f = αχ and g =
nX
i=0

χ(zi)

2
(χ− χ ◦ σ),

where α is a non-zero complex number and χ is a non-even character
of G such that

Pn
i=0 χ(zi) 6= 0.

(b)

f = αχ+ βχ ◦ σ and g =
nX
i=0

χ(zi)

2
(χ− χ ◦ σ),

where α, β are non-zero complex numbers and χ is a character of G
such that

Pn
i=0 χ(zi) 6= 0 and

nX
i=0

χ ◦ σ(zi) = −
nX
i=0

χ(zi).

Proof. The proof follows on putting µ = 1
2

Pn
i=0 δzi in Theorem 3.3. 2

In view of Corollary 3.8, we have the following.

Corollary 3.9. The non-zero solutions f : G→ C of the functional equa-
tion

nX
i=0

{f(σ(y)xzi)− f(xyzi)} = 2f(x)f(y), x, y ∈ G,

are the functions of the form

f = −
nX
i=0

χ(zi)

2
(χ− χ ◦ σ),

where χ is a character of G such that
Pn

i=0 χ(zi) 6= 0 and
Pn

i=0 χ ◦ σ(zi) =
−Pn

i=0 χ(zi).
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Proof. The proof follows on putting g = −f in Corollary 3.8. 2

4. Solution of equation (1.5)

In this section, we solve the integral-functional equation (1.5), namelyZ
G
{f(xyt)− f(σ(y)xt)}dµ(t) = g(x)f(y), x, y ∈ G,

by expressing its continuous solutions in terms of continuous characters and
continuous additive functions.

Lemma 4.1. Let G be a locally compact group, let σ be a continuous
involutive automorphism on G, and let µ ∈MC(G). The following pairs of
functions f, g : G→ C are continuous solutions of the functional equation
(1.5):

(a)

f = c(χ− χ ◦ σ) and g = µ(χ)χ+ µ(χ ◦ σ)χ ◦ σ,

where c ∈ C and χ is a continuous character of G, and

(b)

f = χA and g = 2µ(χ)χ,

where χ is a continuous character of G such that χ◦σ = χ and where
A is a continuous additive function on G such that A ◦ σ = −A.

Proof. (a) Assume that there exist a continuous character χ of G and
a complex number c ∈ C such that f = c(χ−χ ◦σ) and g = µ(χ)χ+µ(χ ◦
σ)χ ◦ σ. Then f, g ∈ C(G) and a small computation shows that

f(xyt)− f(σ(y)xt) = c[χ(x)χ(t) + χ ◦ σ(x)χ ◦ σ(t)][χ(y)− χ ◦ σ(y)],

(4.1)

for all x, y, t ∈ G. Using (4.1) at the first equality sign:
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Z
G
{f(xyt)− f(σ(y)xt)}dµ(t)

= c[χ(y)− χ ◦ σ(y)]
Z
G
{χ(x)χ(t) + χ ◦ σ(x)χ ◦ σ(t)}dµ(t)

= c[χ(y)− χ ◦ σ(y)][µ(χ)χ(x) + µ(χ ◦ σ)χ ◦ σ(x)]
= g(x)f(y).

So the pair (f, g) is a solution of (1.5).
(b) Assume that there exist a continuous character χ of G with χ ◦ σ = χ
and a continuous additive function A on G with A ◦ σ = −A such that
f = χA and g = 2µ(χ)χ. Then f, g ∈ C(G) and a small computation
shows that

f(xyt)− f(σ(y)xt) = 2χ(x)χ(y)A(y)χ(t), for all x, y, t ∈ G.(4.2)

Using (4.2) at the first equality sign:Z
G
{f(xyt)− f(σ(y)xt)}dµ(t) = 2χ(x)χ(y)A(y)

Z
G
χ(t)dµ(t)

= 2χ(x)χ(y)A(y)µ(χ)

= f(x)g(y).

So the pair (f, g) is a solution of (1.5). 2

The second main theorem of the present paper asserts that the converse
result to Lemma 4.1 is also valid. It reads as follows:

Theorem 4.2. Let G be a locally compact group, let σ be a continuous
involutive automorphism on G, and let µ ∈ MC(G). Let the pair f, g ∈
C(G)\{0} be a solution of the functional equation (1.5). Then there exists
a continuous character χ of G such that

g = µ(χ)χ+ µ(χ ◦ σ)χ ◦ σ.

Furthermore, we have the following possibilities:

(a) If χ 6= χ ◦ σ, then there exists a constant c ∈ C \ {0} such that

f = c(χ− χ ◦ σ).
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(b) If χ = χ◦σ, then there exists a continuous additive function A : G→
C with A ◦ σ = −A such that

f = χA.

Conversely, the formulas above for g and f define continuous solutions of
(1.5).

Proof. It remains to prove the necessity assertion. Similarly to the
proof of Theorem 3.3 we define F : G→ C by

F (x) = 2

Z
G
f(xt)dµ(t) for all x ∈ G.

So F ∈ C(G) and the equation (1.5) becomes

F (xy)− F (σ(y)x) = 2g(x)f(y), x, y ∈ G.

Since g, f ∈ C(G) \ {0}, we know from Theorem 3.1 that there are only
the following two cases:

Case 1: There exist a continuous character χ ofG with χ 6= χ◦σ, constants
α, β ∈ C, γ ∈ C\{0}, and a continuous function θ ∈ N(G,σ) such that

g = αχ+ βχ ◦ σ,
f = γ(χ− χ ◦ σ),
F = 2γ(αχ− βχ ◦ σ) + θ.

Since F (x) = 2
R
G f(xt)dµ(t) for all x ∈ G, we have

2γ[αχ(x)− βχ ◦ σ(x)] + θ(x) = 2γ[χ(x)µ(χ)− χ ◦ σ(x)µ(χ ◦ σ)],

for all x ∈ G. Since γ 6= 0, we can write the last equation as follows

[α− µ(χ)]χ(x) + [µ(χ ◦ σ)− β]χ ◦ σ(x) + θ(x) = 0,

for all x ∈ G. Using Lemma 3.2(a), we get that α = µ(χ) and β = µ(χ◦σ).
From this, we see that g = µ(χ)χ+µ(χ ◦σ)χ ◦σ and arrive at the solution
in case (a) with c = γ.
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Case 2: There exist a continuous character χ of G with χ = χ◦σ, constants
α, β ∈ C, a continuous additive function A : G→ C with A ◦ σ = −A, and
a continuous function θ ∈ N(G,σ) such that

g = αχ+ βχA,

f = χA,

F = αχA+
1

2
βχA2 + θ.

Since F (x) = 2
R
G f(xt)dµ(t) for all x ∈ G, then a small computation

shows that

αχ(x)A(x) +
1

2
βχ(x)A2(x) + θ(x) = 2µ(χ)χ(x)A(x) + 2χ(x)µ(Aχ),

for all x ∈ G. We reformulate the last equation as follows

βA2 + 2[α− 2µ(χ)]A+ θ1 = 0,

where θ1 := 2(
θ
χ)− 4µ(Aχ). Since χ is even we have θ1 ∈ N(G,σ).

Subcase 2.1: Suppose that β = 0. Hence [α− 2µ(χ)]A ∈ N(G,σ), which
implies that [α − 2µ(χ)]A = 0. Since f 6= 0 we have A 6= 0, and hence
α− 2µ(χ) = 0, i.e., α = 2µ(χ). Therefore g = 2µ(χ)χ and we arrive at the
solution in case (b).

Subcase 2.2: We now suppose that β 6= 0. According to Lemma 3.2(b),
we get that A = 0. Hence f = 0. This subcase does not apply, because
f 6= 0 by assumption. This finishes the proof. 2

As a consequence of Theorem 4.2, we have the following result on the
solution of the functional equation

f(xyz0)− f(σ(y)xz0) = 2g(x)f(y), x, y ∈ G,(4.3)

which contains the solution of Van Vleck’s equation on abelian groups.

Corollary 4.3. Let G be a group, z0 ∈ G be a fixed element, and σ be
an involutive automorphism on G. Let f, g : G→ C be non-zero functions
satisfying the functional equation (4.3). Then there exists a character χ of
G such that

g =
χ(z0)

2
χ+

χ ◦ σ(z0)
2

χ ◦ σ.

Furthermore, we have the following possibilities:
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(a) If χ 6= χ ◦ σ, then there exists a constant c ∈ C \ {0} such that

f = c(χ− χ ◦ σ).

(b) If χ = χ ◦ σ, then there exists an additive function A : G → C with
A ◦ σ = −A such that

f = χA.

Conversely, the formulas above for g and f define solutions of (4.3).

Proof. The proof follows on putting µ = 1
2δz0 in Theorem 4.2. 2

As another consequence of Theorem 4.2, we have the following result
on the solution of the functional equation

nX
i=0

{f(xyzi)− f(σ(y)xzi)} = 2g(x)f(y), x, y ∈ G,(4.4)

which generalizes the equation (4.3).

Corollary 4.4. Let G be a group, z0, z1, ..., zn ∈ G be fixed elements,
and σ be an involutive automorphism on G. Let f, g : G → C be non-
zero functions satisfying the functional equation (4.4). Then there exists a
character χ of G such that

g =
nX
i=0

∙
χ(zi)

2
χ+

χ ◦ σ(zi)
2

χ ◦ σ
¸
.

Furthermore, we have the following possibilities:

(a) If χ 6= χ ◦ σ, then there exists a constant c ∈ C \ {0} such that

f = c(χ− χ ◦ σ).

(b) If χ = χ ◦ σ, then there exists an additive function A : G → C with
A ◦ σ = −A such that

f = χA.

Conversely, the formulas above for g and f define solutions of (4.4).
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Proof. The proof follows on putting µ = 1
2

Pn
i=0 δzi in Theorem 4.2. 2

5. Examples

Example 5.1. Let G = (R,+), σ(x) = −x for all x ∈ R, z0 ∈ R\{0} be
a fixed element, and let µ = 1

2δz0 .

We indicate here the corresponding continuous solutions of Eqs. (1.4),
(1.5) and (1.6) by the help of Theorems 3.3 and 4.2 and Corollary 3.5.

The continuous characters on R are known to be χ(x) = eλx, x ∈ R,
where λ ranges over C (see for instance [6, Example 3.7(a)]). The condition
µ(χ◦σ) = −µ(χ), i.e. χ(2z0) = −1, of Theorem 3.3 (d) becomes e2λz0 = −1,
which reduces to λ = i (2n+1)π2z0

, where n ∈ Z. The relevant characters are
thus

χn(x) := e
i
(2n+1)π
2z0

x
, x ∈ R, and n ∈ Z.

The continuous additive functions on R are the functions of the form
A(x) = αx, x ∈ R, where the constant α ranges over C (see for instance
[6, Corollary 2.4]).

That θ ∈ N(R, σ) is equivalent to θ(x+ y) = θ(x− y) for all x, y ∈ R,
i.e., θ(x) = θ(x + 2y) for all x, y ∈ R. Since R is 2-divisible, then each
function in N(R, σ) is a constant. From this we infer that a function
f ∈ {k ∈ C(R) | x 7→ 1

2k(x+ z0) ∈ N(R, σ)} if and only if f is a constant
function.

In conclusion, by help of Theorem 3.3 we find that the continuous so-
lutions f, g : R→ C of the functional equation (1.4), which is here

f(x+ y + z0)− f(x− y + z0) = 2f(x)g(x), x, y ∈ R,

are

(a) f = 0 and g is arbitrary in C(R).

(b) f is a non-zero constant and g = 0.

(c) f(x) = αeλx and

g(x) =
eλ(x+z0) − e−λ(x−z0)

2
, x ∈ R,

for some non-zero complex numbers α, λ.
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(d)

f(x) = αe
i
(2n+1)π
2z0

x
+ βe

−i (2n+1)π
2z0

x

= (α+ β) cos

µ
(2n+ 1)π

2z0
x

¶
+ i(α− β) sin

µ
(2n+ 1)π

2z0
x

¶
,

and

g(x) = (−1)n+1 sin
µ
(2n+ 1)π

2z0
x

¶
, x ∈ R,

for some α, β ∈ C\{0} and n ∈ Z.

Now we seek the solutions f, g ∈ C(R)\{0} of the functional equation
(1.5) which is here

f(x+ y + z0)− f(x− y + z0) = 2g(x)f(x), x, y ∈ R.

According to Theorem 4.2, we see that there exists a constant λ ∈ C
such that

g(x) =
eiλ(x+z0) + e−iλ(x+z0)

2
= cos (λ(x+ z0)) , x ∈ R.

Furthermore, we have the following possibilities:

(a) If λ 6= 0, then there exists α ∈ C\{0} such that

f(x) = α
eiλx − e−iλx

2i
= α sin (λx) , x ∈ R.

(b) If λ = 0, then g = 1 and there exists α ∈ C\{0} such that

f(x) = αx, x ∈ R.

Finally, by help of Corollary 3.5 we see that the solutions f ∈ C(R)\{0}
of the functional equation (1.6), which is here Van Vleck’s equation (1.1),
are the sine functions

f(x) = (−1)n sin
µ
(2n+ 1)π

2z0
x

¶
, x ∈ R, n ∈ Z.

This result can be found e.g. in [7].
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Example 5.2. For an application of our results on a non-abelian group,
consider the 3-dimensional Heisenberg group G = H3 described in [6, Ex-
ample A.17(a)], and take as the involutive automorphism

σ

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ =
⎛⎜⎝ 1 b c
0 1 a
0 0 1

⎞⎟⎠
−1

=

⎛⎜⎝ 1 −b −c+ ab
0 1 −a
0 0 1

⎞⎟⎠ for a, b, c ∈ R.

Let Z0 =

⎛⎜⎝ 1 a0 c0
0 1 b0
0 0 1

⎞⎟⎠ be a fixed element of H3 and let µ =
1
2δZ0 .

We indicate here the corresponding continuous solutions of Eqs. (1.4), (1.5)
and (1.6).

The continuous characters on H3 are parametrized by (α, β) ∈ C2 as
follows (see, e.g., [1, Example 5.2]).

χα,β

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = eαa+βb for a, b, c ∈ R.

We compute that χα,β ◦ σ = χ−β,−α, so χα,β ◦ σ = χα,β, if and only if
β = −α, and in that case

χα,−α

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = eα(a−b) for a, b, c ∈ R.

In view of [1, Example 5.2], the continuous odd additive functions on
H3 are parametrized by γ ∈ C as follows

Aγ

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = γ(a+ b) for a, b, c ∈ R.

Now we are in the position to describe the solutions f, g ∈ C(H3)\{0}
of the functional equation (1.5), which is here

f(XY Z0)− f(σ(Y )XZ0) = 2g(X)f(Y ), X, Y ∈ H3.

By help of Theorem 4.2 we see that there exist constants α, β ∈ C such
that

g

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = eα(a+a0)+β(b+b0) + e−β(a+a0)−α(b+b0)

2
, a, b, c ∈ R.
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Furthermore, we have the following possibilities:

(a) If β 6= −α, then there exists γ ∈ C\{0} such that

f

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = γ
h
eαa+βb − e−βa−αb

i
, a, b, c ∈ R.

(b) If β = −α, then g

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = eα(a−b+a0−b0) and there exists

γ ∈ C\{0} such that

f

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = γ(a+ b)eα(a−b), a, b, c ∈ R.

Now we seek the solutions f, g ∈ C(H3)\{0} of the functional equation
(1.4) which is here

f(XY Z0)− f(σ(Y )XZ0) = 2f(X)g(Y ), X, Y ∈ H3.(5.1)

The condition µ(χα,β ◦ σ) = −µ(χα,β), i.e. χ−β,−α(Z0) = −χα,β(Z0),
of Theorem 3.3 (d) becomes e(a0+b0)(α+β) = −1, which breaks the job into
two cases: b0 = −a0 or b0 6= −a0.

Case 1: Suppose that b0 = −a0.A small computation shows that χ−β,−α(Z0) 6=
−χα,β(Z0), for all α, β ∈ C. Then, using Theorem 3.3, the solutions f, g ∈
C(H3)\{0} of Eq. (5.1) are the functions of the forms:

f

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = γeαa+βb,

g

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ =
eα(a+a0)+β(b+b0) − e−β(a−b0)−α(b−a0)

2
,

for all a, b, c ∈ R, where α, β, γ are complex numbers such that β 6= −α
and γ 6= 0.
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Case 2: Suppose that b0 6= −a0.A small computation shows that χ−β,−α(Z0) =
−χα,β(Z0) if and only if β = i (2n+1)πa0+b0

− α, where n ∈ Z. Then, using The-
orem 3.3, the solutions f, g ∈ C(H3)\{0} of Eq. (5.1) are the ones of the
forms:

(1)

f

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = γeαa+βb,

g

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ =
eα(a+a0)+β(b+b0) − e−β(a−b0)−α(b−a0)

2
,

for all a, b, c ∈ R, where α, β, γ are complex numbers such that β 6=
−α and γ 6= 0.

(2)

f

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = eα(a−b)
∙
γe

i
(2n+1)π
a0+b0

b
+ δe

−i (2n+1)π
a0+b0

a
¸
,

g

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = e
α(a−b+a0−b0)+i (2n+1)πa0+b0

b0 e
i
(2n+1)π
a0+b0

b − e
−i (2n+1)π

a0+b0
a

2
,

for all a, b, c ∈ R, where α ∈ C, γ, δ ∈ C\{0}, and n ∈ Z.

We complete this section by solving the functional equation (1.6), which
is here

f(σ(Y )XZ0)− f(XY Z0) = 2f(X)f(Y ), X, Y ∈ H3.(5.2)

By help of Corollary 3.5 and the previous discussion we see that we
have the following two possibilities:
If b0 = −a0, then the only solution of Eq. (5.2) is the function f ≡ 0.
If b0 6= −a0, then the solutions f ∈ C(H3) of Eq. (5.2) are either f ≡ 0 or

f

⎛⎜⎝ 1 a c
0 1 b
0 0 1

⎞⎟⎠ = −eα(a−b+a0−b0)+i (2n+1)πa0+b0
b0 e

i
(2n+1)π
a0+b0

b − e
−i (2n+1)π

a0+b0
a

2
,

for all a, b, c ∈ R, where α ∈ C and n ∈ Z.
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