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1. Introduction

In a remarkable contribution, the meteorologist E. N. Lorenz [27] exhibited
numerical evidence for the existence of a strange attractor in a quadratic
system of ordinary di erential equations in three variables. Some time later
Afrajmovich, Bykov and Shilnikov( [1], [2]) and Guckenheimer, Williams(
[15], [40], [16]) proposed the so called geometrical models for the behavior
observed by Lorenz. An important feature of these models is the existence
of a(partial) cross-section to the flow, as well as a smooth invariant foli-
ation by curves. Using this, one can reduce the dynamics of the flow to
that of an interval transformation with a discontinuity.These transforma-
tion, generically, divide into two disjoint classes: the expanding ones(those
whose derivative, from both sides, at the discontinuity is infinity) and the
contracting ones(those whose derivative, from both sides, at the disconti-
nuity is zero). As observed in [16] and [2],there exist uncountably many
conjugacy classes of such transformations. In fact the moduli space is essen-
tially 2-dimensional and can be parameterized by the admissible kneading
sequences(forward itineraries of the discontinuity).

In view of these results, it is natural to look for a bifurcation theory of
these transformations and flows using symbolic dynamics([5, 21, 24]. In this
direction, de Melo and Martens showed([9]) the existence of parameterized
families of contracting Lorenz flows that are topologically universal in the
sense that given any geometric Lorenz flow, its dynamics is “essentially”
the same as the dynamics of some element of the family. In the present
work we describe in ”almost” complete way the bifurcation diagram for an
explicit natural choice of such an essentially universal family, namely the
quadratic family

( ) =

(
+ 2 0
2 0

)

That is, for this family we give a complete description of the subsets of
the plane associated with kneading sequences ( ) (see section 2.4
for the definition of the set LW). In other word, in the present paper we give
the combinatorial bifurcation pattern associated to our quadratic family(see
also [21, 22, 23].In the way of doing this we first gave the structure of the
lexicographical world which seems to be the natural space of parameters
for discontinuous maps like the one’s that we consider here( see [25], [26]).

Our geometrical construction has several important consequences.One
of them is that axiom A maps are dense in this family (this is also proved in
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[9]; see [14] for similar result for the logistic family and [19] for contracting
singular cycles). It also follows that the set of parameters whose corres-
ponding Lorenz map has entropy zero is arc connected( see section 4.6)
. Also, the combinatorial bifurcation diagram allow us to reobtain, in a
constructive way, the result of the Melo and Martens on the universality
of the quadratic family. Moreover, we completely describe the exceptional
combinatorics not realized in the model(a countable set)provided by de
Melo and Martens([9]). Also, as lemma 4 in section 3.1 shows,secondary
bifurcations do not appear for injective Lorenz maps( as defined in section
2.1)

After this paper had been completed we became aware of the work
of St. Pierre( [37])about the bifurcation diagram associated to periodic
kneading sequences, which obtains, in an independent way, some of the
results presented here. Also, Hubbard and Sparrow defined, in [18], a set
of pair of sequences which model all the topological expanding dynamics
exhibited by Lorenz maps.

On the other hand, starting with Arnold ([3]) there has been consi-
derable interest in the bifurcation theory of the canonical family( see for
instance [6] and the references there in). The most common approach,
based on the notion of rotation number, is very useful when applied to
homeomorphism of the circle, but it seems delicate to apply it to non injec-
tive maps. In fact, a bifurcation diagram for the canonical family beyond
the injectivity domain is still unknown. The best approximation seems to
be the work by Boyland([6]).

In [21, 22, 23], we extended the Hubbard-Sparrow model for expanding
maps to an universal model for the “essential dynamics” of Lorenz maps
and we called it the Lexicographical World (in the sequel denoted by ).
This model includes the dynamics of all the interpolated maps used by
Boyland ([6], page 359 ) in his construction.

It is clear that the structure of the lexicographical world has to reflect
in the bifurcation theory associated to any parameterized family of allowed
maps. This is an extremely interesting problem focused for several authors
in this and other contexts, see for instance [28],[8],[7],[11], [3], [6] .

This paper is organized as follows : In section 2 we state our results. In
section 3 we describe the lexicographical world, in Section 4 we prove our
results about the quadratic family , in section 5 we extend our results
to more general contracting families and, finally, in section 6 we will relate
them to three dimensional geometric vector fields.
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2. Statement of the results

2.1. The Set 0.

In the sequel 0 will denote the set of maps : ( \{0}) such that:

(1) The restriction maps |( 0) : ( 0) 7 and |(0 ) : (0 )
are continuous and non-decreasing maps.

(2)

(0+) = lim
0
( ) ] 0]

and

(0 ) = lim
0
( ) [0 [

An element in 0 will be called injective if its restriction to the
interval ] (0+) (0 )[ is an injective map.

We will say that 0 is increasing if the restriction maps |( 0) :
( 0) 7 and |(0 ) : (0 ) are increasing.

We call the elements in 0 Lorenz maps.

2.2. The Lexicographical Order

Let 2 denote the set of sequences : {0 1} endowed with the
topology given by the metric

( ) =
X
=0

( )

2

where

( ) =

(
0 =
1 6=

Let : 2 2 be the shift map ( 0 1 2 ) = ( 1 2 ) .
Let 0 and 1 denote the sets { 2 ; 0 = 0} and { 2 ; 0 =
1} respectively. It is clear that 2 = 0 1 .

In 2 we consider the lexicographical order: for any 0 and

1 or if there is such that = for = 0 1 2
1 and = 0 and = 1 .

For in 2 let [ ] denote the interval { 2|
} will denote the set

T
=0 ([ ]) .
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2.3. The Set .

For 0 let = ( \
S

=0 (0)) denote the set of “continuity” of
the map .

For we define ( ) 2 by

( )( ) = 0 if ( ) 0 and ( )( ) = 1 if ( ) 0

For = 0 we define:

(0+) = lim
0

( )

and
(0 ) = lim

0
( )

In the same way: to any
S

=0 (0) such that ( ) 6= 0, 0 ;
( ) = 0 we associate the sequences :

( +) = ( ( )(0) ( )( 1) (0+))

and
( ) = ( ( )(0) ( )( 1) (0 ))

For we define ( +) = ( ) = ( ).
Let = { ( +); [ (0+) (0 )[} { ( ); ] (0+) (0 )]}.
Clearly ( ) . Let us denote = (( (0+))+) and = (( (0 )) )

Lemma 1. ([20], [18]) =
T

=0 ([ ]) = .

We observe that associated to any 0 we can define a continuous
map

: [ (0+) (0 )] 2

such that = . The map is given by ( ) = ( )and collapses
intervals into points. This map cannot be extended, continuously, to the set

=0 (0). There are two kinds of intervals that the map can collapses:
The wandering intervals and the intervals that are contained in the stable
manifold of periodic sinks. An interval [ (0+) (0 )] is called a
wandering interval , for the map , if for any we have that is a
wandering point. We will call a point a nonwandering point if for any
neighborhood of and any positive integer we can find such
that ( ) 6= . The set of nonwandering points of the map is
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denoted by . A point is called a wandering point. We call a
periodic point , a sink if there is a neighborhood of such
that | ( ) ( )| 0 as for any .

Given any interval , , the orbit of this interval is the sequence of itera-
tions ( ( ) ). Concerning the existence of wandering intervals we
have the following:

Lemma 2. ([23]) Let { } 0 be a one parameter family of
2 increasing maps such that for each there are sequences and

with ( ) ( ) and ( ) ( ) then there is a
residual set of parameters for which has no wandering intervals.

We observe that for our two parameter family of contracting maps,

( ), we have the following: for any fixed = 0 0( = 0 0) the

one parameter family = ( 0 )

³
= ( 0)

´
satisfies the property

of Lemma 2.

Definition 1. Given 0. We will say that has essentially the
same dynamics as if = .

We note that in this situation, up to the existence of some intervals
where the itineraries of the points are the same, the dynamics of the maps
and are topologically equivalent(see [10]).

2.4. The Lexicographical World

Let 2 = { 0 ; ( ) } and 2 = { 1 ; ( )
}.

Definition 2. The set = {( ) 2× 2 ; { } } will
be called the lexicographical world.

For 2 its -fiber is the set 0( ) = { 2 ; ( )
} . For 2 its -fiber is the set 1( ) = { 2 ; ( )
} .

Remark 1. It is clear that given ( ) then 6=

Let us now consider ( ) .

Lemma 3. There is 0 such that = .
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Proof: Let us consider the map : ( \ {0}) given by

( ) =

(
2 1 0
2 + 1 0

In this case = 2. Let 0 and 0 be the points such that
( +) = , ( ) = .
Let : ( \ {0}) be the map defined by:

( ) =

( )
0

0
( )

here 0 are given by ( ) = and ( ) = .
We will call this result the realization lemma. It is clear that the maps,

in this construction, are non-decreasing but we want a realization lemma
with increasing maps. In section 3 we prove a realization lemma with
increasing maps.

Therefore, we have a surjective map : 0 , ( ) = ( )
and 0 =

S
( )

1({( )}). Also, using 0 proximity on compact
sets, this map is continuous.

In this context the next definition is natural.

Definition 3. Let : 0 be a map.

1) We will say that is an -surjective family if 2 there is a
nonempty set , ( ) , such that = ( ( )) .

2) We will say that is an -surjective family if 2 there is a
nonempty set , ( ) , such that = ( ( )) .

3) We will say that is an -surjective family if ( ) there
exists a nonempty set ( ) such that ( ( )) = ( ).

It is clear that associated to any map , as above, we have an ( )-
decomposition of its domain. We will call this (resp. )-decomposition
the (resp. ) bifurcation theory defined by .

Open Problem: Are there -surjective families?.
Certainly, this is a very hard problem and we believe that there is not

a finite with this property. In the present paper we prove the
following
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Theorem 1. The given two parameter family of quadratic contracting
Lorenz maps is -surjective, is -surjective but it is not -surjective.
Moreover, the respective -bifurcation diagramme are given.

3. Symbolic Dynamics and the Lexicographical World

Here we introduce some results and notations that are necessary for our
results. The results which we do not prove in this section are proved in
[21, 22, 23]. In the sequel we will denote by = 0 1 the peri-
odic sequence ( 0 1 0 1 ) 2. Assume that we have a
countable set of sequences, . We will say that two elements
are consecutive in ( or consecutive if the context is clear) if there does
not exist an element such that

3.1. Dynamical properties for sequences in LW

Let 1 2 be two periodic sequences in 0. The periodic sequence ( 1 2) =

1 2will be called the average of the sequences 1 and 2.
Example: For 1 = 01 2 = 011 we have ( 1 2) = 01011 .

Let 0 = {0 1 01 ; \{0} } and +1 = { ( 1 2); 1 2

are consecutive sequences }. Set =
S

=0 . The elements in
will be called primary sequences. As we will see in the next section,

primary sequences are associated with primary bifurcations.
The elements in are characterized by the following property:

Lemma 4. (see [25, 26]) if and only if

( ) 2 and ( ) ( )

for = sup{ ( ) ; } .

Let us denote 0 = and define, for any 0 the set:

1
1( ) = { 0 ; = + or = + for }

Here, for = 0 1 0 we denote + = 0 1 1 and for = 0 1 1 we
denote = 0 1 0 .

Observe that if = + then + and if = +

then .
Set

1
2( ) = { ( 1 2) ; 1 2

1
1( )are consecutive sequences}

1
1( )
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and in general

1
+1( ) = { ( 1 2) ; 1 2

1 ( )are consecutive sequences} 1 ( ) 2

Let 1 ( ) =
S =

=1
1 ( ) and 1 = 0 S

0
1 ( )

At this stage we have to point out the following: Assume 0 .
Let ˜ = sup{ ( ); and ( ) 0} and ˜ = inf { ( );

and ( ) 1}. Consider ˜ ˜ = { {˜ ˜}} be the set

of sequences of the two symbols ˜ and ˜. Replace 0 = ˜ and ˜ = 1
and define 0( ) = {0 1 01 ; \ {0}} and +1( ) = ( )

{ ( 1 2); 1 2 ( ) are consecutive sequences}. Set ( ) =
[
=0

( )

and ( ) = {inf{ ( ); }; = ˜ ˜( ) ; ( )}.

Lemma 2 ¯ ( ) = ¯1 ( )
As before, let ˜ ˜ : ˜ ˜ ˜ ˜ be the shift map. We have

Lemma 3 ¯ ( ) if and only if

( ) 2(˜ ˜) and ˜ ˜( ) ˜ ˜( ) for = sup{
˜ ˜
( ); }

Inductively, for any ( ) ,let

+1
1 ( ) = { 0 ; = + or = + for }

Now , we define

+1
2 ( ) = { ( 1 2) ; 1 2

+1
1 ( ) are consecutive sequences}

[
+1
1 ( )

and

+1
+1( ) = { ( 1 2) ; 1 2

+1( ) are consecutive sequences}
[

+1( ) 2

As before, define +1( ) =
S

=1
+1( ) ; +1 =

S +1( )

and finally, =
S

=0 .
Note A similar construction; as we did in Lemma 2 and Lemma 3, for

we can do for any .
The elements in ( \ 0 ) will be called secondary sequences. As

we will see in the next section secondary sequences are associated with
secondary bifurcations.

Let denote by the set {sup{ ( ) } }. We will de-
note by ( ) the sequence sup{ ( ) } for 0 and by ( ) the
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sequence inf{ ( ) } for 1 . Clearly, ( ) 2 and ( )

2 .

It is clear that 1 6= for any 0 . Hence we can define maps
: 0 1 by :

( ) = inf{ 1| 6= }

( ) = inf{ 1 ; contains -elements}

and

( ) = inf{ 1 ; is uncountable}

Clearly, 1 2 imply ( 1) ( 2) ( 1) ( 2) and ( 1)
( 2) and for all 1 such that ( ) we have = .

Examples : For any 001 01 we have ( ) = 10 (01) = (01) =
110. Also (0) = (0) = (0) = 10 ; (01) = (01) = 1 ; (0 1) =
10 (0 1) = (0 1) = 110 and (01 ) = 1 0 (01 ) = (01 ) =
11 0.

3.2. The Morse-Smale and the Entropy Zero cases

Definition 4. a.- We will call a map 0 Morse-Smale if
0

and = ( ).

b.- We will call a map 0 essentially Morse-Smale if and
= ( ).

We will denote by 0 0 the set of Morse-Smale and essentially
Morse-Smale maps . We call these maps Morse-Smale because its dynamics
essentially reduces to a periodic orbit.

Examples

a.- Any 0 such that = 0 1 = 10 or = 01 = 1 0
are Morse-Smale maps.

b.- Any 0 such that = 0011(01) = 11(01) 00 are essen-
tially Morse-Smale maps.

Lemma 5. ([23]) Given 0 be a “Morse-Smale” map we have that

[ (0+) (0 )] =
Sper( ) 1
=0 , where 0 implies ( ) = and |

is constant and equal to = ( ) for 0 per( ) 1.
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Lemma 6. Let 0 . There is an injective 0 such that =
and = ( ).Moreover, this map satisfy ( (0+)) = ( (1 )).

Proof: Let = 0 1 ( last = ) 01 10 ( first =

+1) +2 = ( ), denote the consecutive elements in
{ ( ); }. Let 0 and = [ ]. Consider closed in-
tervals 0 1 such that

S
=0 = [ ]; left( 0) = , right( 0) =

left( 1) right( ) = 0 = left( +1) right( 1) = left( ); right( ) =
. Here left[ ] = and right[ ] = .
Now, define an injective map that sends +1 0, +2 1

1 and 0 , 1 +1 . This map satisfy the
lemma.2

The next result follows immediately from this lemma:

Corollary 1. Let 0 \ 0 There is an injective map 0 such
that = and = ( ) 2

We note that these maps can be considered as bijective maps on the
circle.

Lemma 7. Let . There is 0 an increasing map, such that
= and ( ) = .

Proof: Let

= 0 1 01 10 +1

denote the consecutive elements in { ( ) } . Associated with
0 consider closed intervals = 0 such that

0 1 +1

+1 = one point or +1 = , otherwise.
Let : {0 1 } {0 1 }be the permutation defined by

( ) = ( ) . Clearly, ( ) = and ( + 1) = 0 . Now, define an
increasing map 0 which satisfies ( ) = ( ) and is increasing
between and +1 when +1 = 2

In a similar way we obtain

Lemma 8. Associated to any 2 there is an increasing map

0 such that = and = ( ) .
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In general we get

Lemma 9. For and 0( ) . There is an increasing
map 0 such that = = .

As a consequence of these lemmas we have

Proposition 1. Given ( ) there is an increasing map 0

such that ( ) = ( ) = ( ) .

This result is a generalization of a similar result obtained for expansive
maps in [18].

Definition 5. We will call a map 0 an entropy zero map if
( ) .

One of the most interesting problems related with the bifurcation theory
associated to a parameterized family of dynamical systems { ;
} , is to describe the set { ; is an entropy zero map } (see for

instance [30], [4] and the references there in ). For our quadratic family of
Lorenz maps we will prove some results, in this direction, in section 4.6.

We observe that any Morse-Smale or essentially Morse-Smale map is an
entropy zero map(see [23] where we characterized the entropy zero set in
the Lexicographical World).

Remark We announce that in some forthcoming works, with Lau-
taro Vásquez and Solange Aranzubia, we will provide many of the proofs
that here we left for the reader or were we quote it is easy to see among
other news results.

4. Proof of the Results.

4.1. The Contracting Family.

Let us consider the two parameter family ( ) : ( \ {0}) ,
0 0 of maps in 0

( ) =

(
+ 2 0
2 0

In this section we will provide the bifurcation theory associated to this
family.
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Injective Maps

Let us define

= {( ); ( )|[ ] [ ] [ ] is an injective map}

It is not hard to see that = {( ) : ( 1 2)2 + ( 1 2)2
1

2
}.

We observe the following: let ( ) such that 0 0 We
have that ( )( ) ( )( ) and, consequently, if ( ) denotes the
itinerary associated to ( )+ and ( ) denotes the itinerary associated
to ( ) then ( ) and ( ) = sup{ ( ( )); }

4.2. Primary Bifurcations.

We call the bifurcations in this section primary bifurcations because they
appears as bifurcation curves for injective maps in 0 and can be studied
by using rotation numbers( see for instance [6], [3], [13] and [17]).

4.2.1 Fixed points:

The fixed points of the map ( ) are given by

(a)

±( ) =
1± 1 + 4

2
1 4 0

( ) =
1 1 + 4

2
0

(b)

±( ) =
1± 1 + 4

2
1 4 0

+( ) =
1 + 1 + 4

2
0

We have ( ) +( ) 0 ( ) +( ).

4.2.2 Preimages of Zero

(a) 2 = 0 imply = = 1( ), 0
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2 = imply =
q

+ = 2( )

2 = ( ) imply =
p

( ) = +1( ), 2;

(b) + 2 = 0 imply = = 1( ), 0

+ 2 = imply =
q

+ = 2( )

+ 2 = ( ) imply =
p

+ ( ) = +1 2.

4.2.3 Curves of bifurcation (first generation)

(a) The equation: (0 ) = fixed point of the right hand side; is solved
by:

=
1± 1 + 4

2

(b) The equation: (0+) = fixed point of the left hand side; is solved by:

=
1± 1 + 4

2

See the figure 1.

We note (see figure 2 and 3) that:

( ) 2 such that
1 + 1 + 4

2
0 imply ( ( )) = 1
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and

( ) 2 such that
1 + 1 + 4

2
0 imply ( ( )) = 0

Given 2 and 2 let denote by

= {( ) +
0 ×

+
0 ; ( ( )) = }

= {( ) +
0 ×

+
0 ; ( ( )) = }

(c) (0+) = -th preimage of zero = ( ).

These equation define the curves ( ) = ( ) that satisfies:

( ) {( ( ); ); 0} imply ( ( )) = 0 1

These curves converges to the curve ( ( ) ) (see figure 4) where ( )
is given by

( ) =
1 + 1 + 4

2
0
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In fact, we note that 1( ) = 2( ) = 2( ) =q
+ +1( ) = +1( ) =

p
+ ( ) .

Hence, taking the limit when , we get ( ) =
p

+ ( ) , so

2 = + and, consequently, ( ) =
1 + 1 + 4

2
as announced.

We also observe that the curves ( ( ) ) transversally intersect the

curve (
1 + 1 + 4

2
) , any .

(d) (0 ) = -th preimage of zero = ( ).

These equation define the curves ( ) = ( ) that satisfies:

( ) {( ( )); 0} imply ( ( )) = 1 0

These curves converges to the curve ( ( )) (see figure 5 ) where ( )
is given by

( ) =
1 + 1 + 4

2
0
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Let us now prove the following

Proposition 2. The curve 10 = {( 1( )) ]0 [ } transversally
intersect the curve 0 1 = { ( ) ) 0 }

Proof: For 10 we have 10 = {(
p

); 0} Hence 10 is described
by ( ) = 2 0

Now 01 is described as 1( ) = We have 01 10 = {(1 1)} and
0

1( ) =
1

2
; ( 2)

0

= 2 . So 1( ) is transversal to ( ) = 2 at = 1

Note
0

1( )
1

2
and 0( ) 2 all 1 = 1

Inductively, assume that 10 transversally intersect 0 1 at a point

( 2 ) with
0

( ) 1 2 and
0

( ) 2 all 1 .
For the curve 0 +11 we have +1( ) =

p
+ ( ) and

0

+1( ) =

1 + 0 ( )

2 +1( )

Let ( 2
+1 +1) 0 +11 10 . We have

0

( ) = 2 2 +1

2 2 1 · · · 2 and
0

+1( ) =
1 +

0

( )

2 +1( )

3 2

4
1 2, any

+1 . So, we get the result. 2
Let us now prove

Proposition 3. The curve 1 0 = {( ( )) ; ]0 [ } transversally
intersect the curve 0 1 .

Proof: For = 2 we have 2( ) =
q

+ then
0

2( ) =

1 +
1

2

2 2( )
=
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1 +
0

1( )

2 2( )
.

Since

1 +
1

2

2 2( )
1 we get 0

2( ) 1 . Let denote by 2̃( ) its inverse

map. We have 2̃
0( ) 1 . Since 0 ( ) 1 we obtain the result in this

case.

Inductively, assume 0 ( ) 1 and that {( ( )) } transversally
intersect the curve 0 1.

Since
0

+1( ) =
1 +

0

( )

2 +1( )

1 + 1

2 +1( )
1, we get the result. 2

(e) Let us now assume that (0+) 1( ).

In this situation there is 1( ) such that + 1
2 = 1( ); that is

1( ) =
q

.

If we ask for the condition (0 ) = 1( ) we get the curve 1( ) =
2 + (see figure 6). This curve is tangent to 1( ) at = 0 and
transversally intersect ( ), 2 and ( ).

In the same way: if we assume that (0+) ( ), 2 we will find
( ) such that + 2 = ( ) that is ( ) =

p
+ ( ).

If we look for the condition (0 ) = ( ) we get a curve ( ) =
2 ( ). This curve is tangent to ( ) at = 0 and transversally
intersect ( ), + 1.

We note that ( ) {( ( ) ); 0} imply ( ( )) = 10 +1.
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(f) In a similar way if we assume (0 ) 1( ) we will find 1( )
such that 1

2 = 1( ) that is: 1( ) =
p

1( ).

The condition (0+) = 1( ) imply the existence of a curve, 1( ),
such that 1( ) =

2 + 1( ) =
2 + , 0. This curve (see figure 7)

is tangent to 1( ) at = 0 and transversally intersect ( ); 2 and
( ).

In a similar way, if we assume that (0 ) ( ), 2 we will find
( ) such that 2 = ( ), that is ( ) =

p
( ).

If we ask for the condition (0+) = ( ) we get the curve ( ) =
2+ ( ), 0. This curve is tangent to ( ) at = 0 and transversally
intersect ( ); + 1.

We note that ( ) {( ( )); 0} imply ( ( )) = 01 +1.

Note : In this section we have proved :

1) That associated to any sequence 0 = {0 1; 01 }, we
have two curves, ( ) and ( ( )) , such that ( ) ( ) imply
( ( )) = and ( ) ( ( )) imply ( ( )) = ( ).

Moreover, ( ) and ( ( )) transversally intersect at the point
{ ( )} = ( ) ( ( )).

2) For ( ) ( ) we have that 0 is a fixed point of
# ( )
( ) that

attracts a small right neighborhood of it.

3) For ( ) ( ( )) we observe that = is a fixed point of
# ( ( ))
( ) that attracts a small left neighborhood of it.
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4.2.4 Transversality of the bifurcation curves.
In this section we will prove that any curve of the form 0 1 is transver-

sal to any curve of the form 1 0 any 1 1 1 and 1.

Assume that we have smooth maps. ( ); ( ) such that ( ) =
+ ( ) and ( ) = ( ) satisfy 1(0) = ; 1(0) =
; 0( ) 1 0;

0

( ) 1 0 and = {( 0 0)}

Lemma: Let ( ) = + ( ( ))2; ( ) = ( ( ))2 then
the curve 1(0) is transversal to the curves 1(0) and 1(0) Moreover
the curve 1(0) is transversal to the curve 1(0).

Proof: In fact.

= 1 + 2 ( ) ·

= 2 ( )

=
2 ( ) 1

2 ( )
= +

1

2 ( )

Since = 1 = 0( ) and for ( ) = 0 we have ( ) =

then =
1
0( )

+
1

2 0 ) ·
=

1
0( )

"
1 +

1

2

#
1

therefore 1(0) is transversal to 1(0) at any point {( 1 1)}
1(0)

T 1(0) such that 1 0 1 0

For 1(0) we have

=

2 ( )

1 2 ( )
=
2 · ( ) · (

0

( ))

1 2( ) · 1

=
2 0( )

1 + 2
1

Hence 1(0) is transversal to 1(0).
A consequence of this Lemma is the following
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Corollary Let 1( ) · ( ); 1( ) · · · ( ) ; be smooth maps such

that
0

( ) 1 0;
0

( ) 1 0; and such that ( ) =
+ ( ) and
( ) = ( ) satisfy 1(0) = ; 1(0) = and

T
=

{( )} then for ( ) = + ( ( ))2 ( ) = ( ( ))2

we have that the curves 1(0) are transversal to the curves 1(0) and
1(0) Moreover 1(0) is traversal to 1(0).

This result apply to the curves 0 1 =
1(0) and 1(0) = 1 0

since

1( ) = 2( ) =
q

+ 1( ) · · · ; +1( ) =
q

+ ( )

and

1( ) = 2( ) =
q

+ 1( ) · · · +1( ) =
q

+ ( )

In particular we conclude that

(i) 0 1 is transversal to 1 0 for all 1 1

(ii) 0 1and 0 11 are transversal to 1 0and 1 00 any 1 1

(iii) 0 1 0 11and 01111 are transversal to 1 0 1 00and 1 000 any
1 1 and in general

(iv) 0 1 is transversal to 1 0 any 1 1 1 and 1 as
we announced.

4.2.5 Primary saddle-nodes.
In this section we will prove

Proposition 4. Associated with any 0 and = ( ) there is a curve
( ) 2 such that:

(i) there are values and such that
# ( )
( ) has a fixed point

with derivative equal to 1 and ( ) ( );

(ii) ( ) \ {( )} = ( ) ( ) are two curves which satis-
fies:
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(a) ( ) transversally intersects ( ) at a point {( )} =
( ) ( ). ( ) transversally intersects ( ) at a point

{(˜ ˜ )} = ( ) ( );

(b) For any ( ) ( ) there is a saddle-node periodic point

which correspond to an unfolding of the fixed point of
# ( )
( ) ,

( ) ( ).

(c) For any ( ) ( ) there is a saddle-node periodic point

which correspond to an unfolding of the fixed point of
# ( )
( ) ,

( ) ( ).

Proof: Initially, let us consider = 01 In this situation the curve =

01 = {( 2) 0} represent the fact that (0+) = 1( ) ,hence
( (0+)) = ( 1( )) = 0 that is, ”0+” is a periodic point whose period

is #( ) . Also, for = 10 the curve = 01 = {( ) 0} repre-
sent the fact that (0 ) = 1( ) and, then, ( (0 )) = ( 1( )) = 0 ,
that is ”0 ” is a periodic point (of the map ) whose period is #( ) .

Let us consider the point (1 1) 01 10 . The graph of the map

(1 1) is as in left hand side of figure 8 and the graph of the restriction of
the map 2

(1 1) is as in the right hand side of figure 8 ( in the sequel, in this

section, the restriction 2
( )|[0 ]will be called the first return map to the

interval [ ] or simply the first return map).

Now, let = {( ) ; 0 0} . We have that \ 01 =
{( ) 2 } {( ) 2 } = 1 2 and \ 10 = {( )
} {( ) } = 1 2 . So, we have the following components
of the set \ ( ) = 1 1 1 2 2 1 2 2 where

1 1 = {( ) 2 and } 1 2 = {( )
2} 2 1 = {( ) 2 } and 2 2 = {( ) 2

and } . The next figures (see figures 9, 10 and 11) displays the
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first return map, to the interval [0 ] for ( ) = = 1 2
and located near the point (1 1) .

Now, it is clear that we can find, in the interior of the set 1 2 ,
a point ( ) such that the first return map to the interval [0 ]
looks like in figure 11.

Figures 12 and 13 shown the bifurcation in the phase space, of the
saddle node.
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Figures 14, 15 and 16 shown the essential facts of the curves ( ) and
( ) in the parameter plane.
Let us now consider the family ( 2+ ) . Clearly, there is a

unique = such that, for = we have = 2 + . Now it
is not hard to prove, for the one-parameter family ( 2+ ) fixed, the
following
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Lemma 10. (i) Assume and near . In this case the first
return map has the generic unfolds showed in figure 12 :

(ii) Assume and near . In this case the first return map has
the generic unfold showed in figure 13 :

(iii) The curves ( ) =
10
( ) and ( ) =

01
( ) are given in

figure 15,

(iv) The curve ( ) intersects the curve {( 2+ ) 0}
fixed , in a unique point.

(v) The curve ( ) intersects the curve {( 2+ ) 0}
fixed , in a unique point (see figure 16). 2
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This complete the proof in the case = 01 . The other cases follows
in a similar way.

Figures 14, 15 and 16 displays the essential facts concerning the po-
sitions of the curves ( ); ( ); ( ) ( ) and the region and .
2

Remark 2. Given 0, = ( ) we define = {( ); ( ( )) = }
and = {( ); ( ( )) = }.

It is not hard to prove that the global picture of the sets and
looks like as in figure 17.

4.2.6 Bifurcation curves associated with averages
Let us consider

1 = { ( 1 2); 1 2 0 are consecutive sequences } 0

In a similar way as we did in section 4.2.4, we can prove that associated
with = ( 1 2), = ( ) we can find two curves ( ) ( ), tangent to
( 2) and ( ( 2)) respectively, such that:

( ) ( ) imply ( ( )) = and ( ) ( ) imply ( ( )) =

Also, there are saddle-nodes associated to ( ) and ( ) as in 4.2.5.
The geometry of the sets and is similar to the geometry of the sets
described in the remark in 4.2.5. (see figure 18).
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Similarly, we consider the set

+1 = { ( 1 2); 1 2 are consecutive sequences in }

As before associated with +1, = ( 1 2),we are able to find
the curves ( ), ( ( )) and ( ) (see figure 19).

In fact, without loss of generality, let us consider the sequences 1 = 01
and 2 = 001.



274 Rafael Labarca and Carlos Moreira

We have that 01 = {(
q

+ )); 0} and 001 = {((
q

+ )

0)}

Let us denote ( ) =
q

+ ( ) = + ( ) ( ) = +

( ( ))2 and ( ) = ( ( ))2 Now it is not hard to see that
1(0) = 00101. In this situation ( )) = and ( ) =

q
.

Moreover

=
2 ( )

1 2 ( ; )
=

=

2 ( ) 1 + 2 ( ) ·

¸

1 2 ( ) · 2 ( ) ·

=
2 1 + 2

q
· ( 1)

¸

1 + 4
q

0( )

=
2 + 4

q
1 + 4

q
0( )

So,

1

if and any if (2 1) + 4
q
( )(1 0( )) 0

Hence,

1 for 1 2

Consequently 10100 transversally intersects 00101 since the intersec-
tion 10100

T
00101 occurs for 1 2 1 2.

For the curves involved we get the following picture
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As we announced before.
With respect to the saddle note bifurcation let us consider the graph

of the map 00101
T

10100. The next figure displays the graph of the map

( )such that {( )} = 00101
T

10100.

Now, it not hard to see that the first return map : 010
S

10
010
S

10 has a graph as in the previous figure. Applying the results
proved at the section 4.25, to this return map, we get the announced saddle-
node. Here

0 ··· denotes the interval { [ ]; 0( ) = 0 1( ) =
1 · · · ( ) = }.

4.2.7 Let =
S

=0 . Assume is a sequence which is not
periodic nor eventually periodic. Let = sup{ ( ); } and
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, . let = ( ). It is clear that we have .
In this situation we can find values of the parameter ( ) and curves

( ), ( ) such that: ( ) = {( ); = ( )}; ( ) = {( ); =
( ) where : (0 ) , : (0 ) satisfies

- ( ) = ( ), 0 .

- The maps |( ) and |( ) are tangent at .

Moreover

(i) the curves ( ) converges to ( ) and the curves ( ) converges
to ( ) (see figure 19) ;

(ii) the intersections ( ) ( ) converges to {( )};

(iii) ( ) ( ) imply ( ( )) = and( ) ( ) imply ( ( )) = .

Maybe, the unique point which is not easy to agree in this result is
related with the coincidence of the curves ( ) and ( ) along {( ( ));
0 }, but this is an easy consequence of the next result.

Let 0 be a small number. Let + = {( ) 2,
p

2 + 2 ,
0 0}. Let ( ) denotes the Lebesgue measure of the set
2.

Lemma 11. ({( ) +; ( ) 0}) = 0.

Proof: In fact, the proof can be done in a similar way as was done in [19]
or in [34].

Remark 3. 1) In fact, Arnold ([3] and Boyland ( [6]), obtained a sim-
ilar result for the structure of the irrational Arnold’s Tongues of the

canonical family ( ) = + +
2
sin(2 ) .

2) A similar result(as in lemma 13) was proved by Swiatek in [38] with
respect to parameterized families of homeomorphisms of the circle.
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4.3. Secondary Bifurcations

We call the bifurcations in this section secondary because this kind of
changes in the dynamic cannot appear for injective maps in 0 . Also, it
is not possible to understand this scenario only by using rotation numbers
as it is possible to see by comparing our results with those of [6].

The main idea on what follows is the following: Let =
( ) and = {( 0 0)} Let ˜ = { ( ); ( )

P
0}
˜ =

{ ( ); ( )
P
1}.

Associated with ˜ and ˜ we can find intervals
˜ ˜; ˜ = [˜ 0] ˜ =

h
0 ˜
i

such that the first return map (̃ 0 0) = ( 0 0)
| ˜ ˜ : ˜ ˜ ˜ ˜

looks like in the following picture.
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As in the case for elements in 0, we can find, in set = {( );
( ); ( )}, an injectivity region ( ) for the map (̃ ). As before

we can find a curve, , which define the boundary of the injectivity
region(see next figure). Now we can proceed as before using 0 = ˜ 1 = ˜
as the new symbols to obtain the previous constructions. That is, we will
work with a renormalization map (̃ ); to obtain the results which we
announce in the section below.
4.3.1 Let = { ( ); }. Let us now consider ,
such that ( ) ( ) 6= .It is not hard to prove that ( see section 4.2.3)
that:

a) = { ( )} is a unique point.

b) define ( ) = { 0 ; = + ; or = +;
} and
( ) = { 1; = + or = + ; }.

((i) Associated with = + there is a curve , tangent to ;

( ) and such that ( ) imply ( ( )) = (see
figure 20);

((ii) Associated with = + there is a curve , tangent to ;

( ) and such that ( ) imply ( ( )) = (see
figure 20);
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(iii) Associated with = + , 1, there is a curve , tangent

to ; ( ) and such that ( ) imply ( ( )) =
(see figure 21);

(iv) Associated with = + , 1, there is a curve , tangent

to ; ( ) and such that ( ) imply ( ( )) =
(see figure 21);

(v) Associated with = +, 1, there is a curve , tangent

to ; ( ) and such that ( ) imply ( ( )) =
(see figure 22);

(vi) Associated with = + , 1, there is a curve, , tangent

to ; ( ) and such that ( ) imply ( ( )) =
(see figure 22);

In fact, let denote by : [ [ and : [ [ the maps
that satisfies:
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(i) {( ; ( )}; } is the curve which represents the fact that
= is a periodic point with itinerary ;

(ii) {( ; ( )}; } is the curve which represents the fact that
= is a periodic point with itinerary .

Let denote = {( )}.

Now, associated with = + , 0 we can obtain maps :
[ [ such that

(i) 0 ( ) = 0 ( ) 0 ( ); ( ) = 0

(ii) {( ; ( ) + ( )); } is the curve which represents the fact
that = is a periodic point with itinerary .

In a similar way, associated with = + , 1, there are
maps : [ [ such that

(i) ( ) = 0; ( ) = 0.

(ii) {( ( )+ ( )); } is the curve which represents the
fact that = is a periodic point with itinerary .

(c) Associated with = there is a curve , tangent to ( ) at the
point , transversal to at the point , such that ( )
imply ( ( )) = (see figure 23).

Moreover let be the open rectangle bounded by ( ), and
. We have and ( ) imply ( ( )) = . Also,

( ) [ ( ) \ ] imply ( ( )) = ;

(d) Associated with = + there is a curve , tangent to at the
point and such that ( ) imply ( ( )) =
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(see figure 24);

(e) Associated with = + there is a curve, , tangent to ( )
at the point , transversal to at the point such that
( ) imply ( ( )) = (see figure 23). Moreover, let
be the open rectangle bounded by , ( ), and . We have

and ( ) imply ( ( )) = . Also,

( ) [ ( ) \ ] imply ( ( )) = ;

(f) Associated with = + there is a curve , tangent to
+
at the

point
+ +

, and such that ( ) imply ( ( )) = .

Figures (20),(21),(22),(23) and (24) displays the properties in 4.3.1.

Remark 4. (i) Let ( + ) be the curve which start in ( ), follows
up to

+
and then follows

+
. We have that the sequence of curves

{
+

; } converges to ( + );

(ii) Let ( + ) be the curve which start in ( ), follows up
to

+
and then follows

+
. We have that the sequence of curves

{
+

} converges to ( + );

(iii) Let ( ) be the curve which start in ( ), follows up
to and then follows . We have that the sequence of curves
{

+
; } converges to ( );

(iv) Let ( + ) be the curve which start in ( ), follows up
to

+
and then follows

+
. We have that the sequence of curves

{
+

} converges to ( + );

(v) The same construction that we did here can be done for any ,
such that 6= .

4.3.2 We will say that 0 satisfy the axiom if:
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(i) All the attracting periodic point of are hyperbolic and
(ii) The complement of the stable manifolds of the attracting periodic

orbits, in [ (0+) (0 )], is an hyperbolic set.

Lemma 12. Let A and such that 6= . There is a
neighborhood ( ) 2 of the point ( ) such that

({( ) ( ); ( ) do not satisfy axiom }) = 0

That is; the measure of the bifurcation in ( ) in zero.

Proof This result follows as similar results in [19] or [34].

4.4. Doubling Periods

Let us consider and such that 6= .
We will use 0 = , 0 = . Let us construct the following sequences:

+1 = ( ) ( )+ ; and +1 = ( )+( )

We have
0 1 2 lim =

0 1 2 lim =

We will call the sequence ( ) the doubling period sequence with starting
point ( 0 0). The pair ( ) will be called the target of the doubling period
with starting point ( 0 0).

Lemma 13. Associated with (resp. ) there is a curve ( resp. )
which is the limit of the curves (resp. ). Moreover contains
a unique point ( ).

For ( ) we have ( ( )) = and for ( ) we have
( ( )) = .

For instance for 0 = 01 0 = 10, we have:
1 = 0011 2 = 00101101 3 = 0010110011010011

4 = 00101100110100101101001100101101 abd

1 = 1100 2 = 11010010 3 = 1101001100101100

4 = 1101001100101101010110011010010 00101101
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Associated to this doubling period we have the following picture.

4.5. Tails

Lemma 14. a) Assume and 2 is a non-periodic se-
quence such that 6= (see figre 25).

There is a curve , which “born” in { ( )} = , tangent
to such that ( ) and ( ) imply ( ( )) =

.

b) Assume and 2 is a non-periodic sequence such that

Marisol Martínez
24b
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6= .

There is a curve
+
, which “born” in { ( )} = , tangent

to at this point such that ( )
+
and ( )

+
imply

( ( )) = + (see figure 26).

We let the proof of this lemma to the reader.

The figures (26)and (27) displays these facts.

4.6. Entropy zero

In this section we will make (following [23]) some remarks concerning the
set

= {( ); ( ( )) = 0}

Here, ( ) means the topological entropy of the map 0 .
a) Assume , = ( ). We have

int( ) int( )

Marisol Martínez
26

Marisol Martínez
25
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In fact, in this situation the set is formed by the iterations ( ) =
1 · · · # ( ) 1 and their preimages under the map .

b) Assume , = ( ) and { ( )} = then ( )
int( ).

In fact, there is a neighborhood of the point ( ), which is covered by
the union { ; ( ) ( )} { ; ( ) ( )} .
( here ( ) and ( ) where defined in 4.3.1. It is clear that for any

( ) ( )} we have that the set is formed by the iterations
( ) = 1 · · · # ( ) 1 and their preimages under the map , here
= sup{ ( ); }.
c) Assume , = ( ) then

( )
+
) int( )

In fact, if ( ) int( ) we have that ( ) = and ( ) =
sup{ ( ) }.

d) Assume , = ( ) then

+
\ int( )

and
\ int( )

In fact, given any ( )
+

we have that there is a small
neighborhood ( ) of the point ( ) which is divided by the curve

+
in two disjoint pieces, one of them, included in int( ) and the

other included in the interior of the positive entropy set.
All the next results, in this section, follows in a similar way.
e) Let , = ( ) and ( ( ) ) be the open interval

whose boundary points are ( ) and then
( ( ) ) int( )

f) Let , = ( ) and ( ( )
+
) be the open in-

terval whose boundary points are ( ) and
+
then ( ( )

+
)

int( ).
g) Also, we have

{( 0); 0 1} int( )

and
{(0 ); 0 1} int( )

Moreover:
(1 0) [ \ int( )]

and
(0 1) [ \ int( )]

h) Let , = ( ). For any ( ) such that

( ( )) and ( ( ))
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or
( ( )) and ( ( ))

we have that ( ) int{( ); ( ( )) 0}
i) Let , = ( ). For any ( ) such that

( ( )) and ( ( )) +

or
( ( )) and ( ( )) +

We have that ( ) int{( ); ( ( )) 6= 0}.
j) Let , = ( ). Denote by ( ) 2 the point where the

curves and born. Let ( ) = ( ); ( ) = ( ).
We have that the intervals [ ( ) ( )[ and [ ( ) ( )[
are contained in int({( ); ( ( )) = 0}).

k) Let

0 =

(Ã
1 + 1 + 4

2

!
; 0

)

and

1 =

(Ã
1 + 1 + 4

2

!
; 0

)

We have,

( 0 \ {(1 0)}) ( 1 \ {(0 1)}) int({( ); ( ( )) 6= 0})

l) Let

0 = {( );
1 + 1 + 4

2
0}

1 = {( );
1 + 1 + 4

2
0}

01 = {( ) ( ) = 01 }

and
10 = {( ) ( ) = 10 }

We have

int( 0 \ 10) int( 1 \ 01) int({( ); ( ( )) 6= 0})

From all of the above results it is clear that is an arc-connected set.
We do not know if it is locally connected.
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4.7. Non-zero measure for the Bifurcation

The result in this subsection is a consequence of a result proved by Rovella
in [36]. We established it here only for the sake of completness.

Let 2 and 2 be eventually periodic sequences such that
6= . Let = { ( )} and ( ) be any neighborhood of

( ). We have

Lemma 15. ({( ) ( ); ( ) is not }) 0.

As a consequence of this result we get

Corollary 2. Let ( ) ( \ int( )) and ( ) be any neighbor-
hood of ( ). We have

({( ) ( ); ( ) is not }) 0

Proof: ( ) can be approximated by a sequences ( ) as in the Lemma
15.

4.8. Tales in 0 and 1

a) Associated to = 10 there is a curve 10 0 such that (1 0)

10 ;this curve is tangent to 0 at (1 0) and ( ) 10 imply ( ( )) =
10.

b) Associated to = 01 there is a curve 01 1 that satisfy (0 1)

01 ; it is tangent to 1 and (0 1); ( ) 01 imply ( ( )) = 01;

c) Let 10 :]1 [ denote the map that satisfy Graph( 10) = 10.
We have

{( ); ( ( ))} = 10} = {( ); 0 10( ); 1}

d) Let 01 :]1 [ denote the map that satisfy Graph( 01) = 01.
We have

{( ); ( ( )) = 01} = {( ); 0 01( ) 1}

e) Let and { (0 )} = 0 .
There is a curve

+0 0 such that (0 )
+0; +0 is tangent

to 0 at (0 ) and ( )
+0 imply ( ( )) = +0.

f) Let (0 ) = ( 0 0 ) and +0 :] 0 [ be the map that
satisfy Graph(

+0) = +0.
Let : [ 0 [ be the map that satisfy Graph( ) = 0 .
Clearly ( )

+0( ), 0 .
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We have {( ); ( ( )) = +0} = {( ); ( )
+0( )}.

g) Let and { ( 1)} = 1. There is a curve 1 1

such that ( 1) 1; 1 is tangent to 1 at ( 1) and ( )
1 imply ( ( )) = 1.

h) Let ( 1) = ( 1 1) and 1 :] 1 [ , : [ 1 [
be the maps that satisfies:

Graph( 1) = 1 and Graph( ) = 1

Clearly ( ) 1( ),for any 1.
We have {( ); ( ( )) = 1} = {( ); ( ) 1( )

1}.

4.9. Bifurcations in 1 0

In the same way as was proved in [19] or as in [34] we can prove.

Lemma 16. ({( ) 1 0; ( ) do not satisfy }) = 0.

4.10. Density of Axiom A Systems.

A consequence of our’s and Rovella’s result is:

Lemma 17. {( ); ( ) satisfy } is a dense set in +
0 ×

+
0 .

4.11. The Global Picture

Taking together all the results in this section the global picture of the
bifurcation diagramme is as in figure 27.

Marisol Martínez
27
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5. The general case

Let us consider the five parameter family of maps ( 1 2 ): ( \ {0})
, 0 0 1, 1 0 2 0 in 0 given by:

(( 1 2 )( ) =

(
+ 1 0

2( ) 0

We have to observe that all the previous results, for the quadratic family,
are (still) true when we fix generic values of the parameter 1 and 2 .
That is, the bifurcation diagramme associated to any generic two parameter
family ( ) = ( 1 2 )is,up to an homeomorphism, the same as the
given for the quadratic family.

6. Application to Geometric Vector fields

Assume 0:
3 3 is a three dimensional vector field that satisfies:

a) 0 is an hyperbolic singularity of the vector field , whose eigen-
values satisfies 1 2 0 3;

b) The components, 1 and 2, of the set ( 0 \ {0}) satisfies 1 0 ,
2 0 ;

c) There is a transversal section, , such that: is transversal to
0 and \ 0 = 1 2 are two disjoint sets in that satisfies:

1( 1) 1 and 2( 2) 2

where : = 1 2 is the first return map associated to the
respective cross section.

Let U0 ( 3) be a neighborhood of the vector field 0 in ( 3) =
{ : 3 3; is } with the usual -topology.

In the above conditions there are codimension one submanifold,N1 N2
U0; such that:

a) N if and only if ( ) ( ) here ( ) is the hyperbolic
singularity, near 0, that correspond to the vector field . Also,
( ( ) \ { ( )}) = 1( ) 2( ), where ( ) is the natural ex-
tension of the component ;

b) (U0 \ N ) = U1 U2 where U11 if and only if 1( 1) 1 and
U22 if and only if 2( 2) 2 and

c) N1 is transversal to N2 .
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Finally we will assume that can be foliated by one-dimensional sub-
manifolds {F ; } such that

(i) imply F = and

(ii) (F ) F ( ), .

In this situation the interesting part of the bifurcation theory, for el-
ements in U0, is located in U21 U12 . In this set we can apply the results
in Sections 3,4 and 5 to obtain, bis a bis, similar results for generic two
parameter families of vector fields in U0.
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[30] Mañé R. Ergodic Theory and Di erentiable Dynamics. Springer Verlag.
(1987).

[31] Martens M., Tresser Ch. Forcing of periodic orbits for interval maps
and renormalization of piecewise a ne maps Proc. Am. Math. Soc. Vol.
124, Number 9, pp. 2863-2870, (1996).

[32] Sands D., Nowicki T. Non-uniform hiperbolicity and universal bounds
for S-unimodal maps Inven. Math. 132, pp. 633-680, (1998).

[33] Otero-Espinar M. V., Tresser Ch. Global Complexity and Essential
Simplicity: A conjectural picture of the boundary of chaos for smooth
endomorphisms of the interval Physica D 39, pp. 163-168, (1989).

[34] Pacifico, M. J., Rovella A. Unfolding Contracting Singular Cycles Ann.
Scient. Ec. Norm. Sup. 4serie t.26, pp. 691-700, (1993).

[35] Ringland J., Tresser Ch. A genealogy for finite kneading sequences
of bimodal maps on the intervalTAMS, Vol. 347, #12, pp 4599-4624,
(December 1995).

[36] Rovella A. The dynamics of the perturbations of the contracting Lorenz
Attractor Bull. Soc. Bras. Mat. Vol 2, pp. 233-259 )(1993).



Bifurcation of the essential dynamics of Lorenz maps on the ... 293

[37] Saint Pierre M. Topological and measurable dynamics of Lorenz maps
Dissertationes Mathematicae 1999, POLSKA AK. NAUK, INST. MAT.

[38] Swiateck G. Rational Rotation Numbers for mapps of the circle Comm.
Math. Phys. 119, pp. 109-128, (1988), .

[39] Tresser Ch. Nouveaux types de transitions vers une entropie topologique
positive CRAS, t 296, Serie I, pp. 729-732, (1983).

[40] Williams R. F. The structure of Lorenz Attractors. In Turbulence Sem-
inar Berkeley 1976/1977 P. Bernard, T. Ratiu (Eds.), Springer-Verlag.
New York, Heidelberg, Berlin, pp. 94-112.

R. Labarca
Departamento de Matematica y Ciencias de la Computación
Universidad de Santiago de Chile
Casilla 307 Correo 2
Santiago
e-mail : rafael.labarca@usach.cl

and

C. Moreira
I. M. P. A.
Estrada Dona Castorina 110
CEP 22460-320
Jardim Botanico
Rio de Janeiro
Brazil
e-mail : gugu@impa.br




