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1. Introduction

In a remarkable contribution, the meteorologist E. N. Lorenz [27] exhibited
numerical evidence for the existence of a strange attractor in a quadratic
system of ordinary differential equations in three variables. Some time later
Afrajmovich, Bykov and Shilnikov( [1], [2]) and Guckenheimer, Williams(
[15], [40], [16]) proposed the so called geometrical models for the behavior
observed by Lorenz. An important feature of these models is the existence
of a(partial) cross-section to the flow, as well as a smooth invariant foli-
ation by curves. Using this, one can reduce the dynamics of the flow to
that of an interval transformation with a discontinuity.These transforma-
tion, generically, divide into two disjoint classes: the expanding ones(those
whose derivative, from both sides, at the discontinuity is infinity) and the
contracting ones(those whose derivative, from both sides, at the disconti-
nuity is zero). As observed in [16] and [2],there exist uncountably many
conjugacy classes of such transformations. In fact the moduli space is essen-
tially 2-dimensional and can be parameterized by the admissible kneading
sequences(forward itineraries of the discontinuity).

In view of these results, it is natural to look for a bifurcation theory of
these transformations and flows using symbolic dynamics([5, 21, 24]. In this
direction, de Melo and Martens showed([9]) the existence of parameterized
families of contracting Lorenz flows that are topologically universal in the
sense that given any geometric Lorenz flow, its dynamics is “essentially”
the same as the dynamics of some element of the family. In the present
work we describe in ”almost” complete way the bifurcation diagram for an
explicit natural choice of such an essentially universal family, namely the
quadratic family

—p+z?, >0

F’*"’(m)_{ v—a?, <0 }’

That is, for this family we give a complete description of the subsets of
the plane associated with kneading sequences (a,b) € LW (see section 2.4
for the definition of the set LW). In other word, in the present paper we give
the combinatorial bifurcation pattern associated to our quadratic family(see
also [21, 22, 23].In the way of doing this we first gave the structure of the
lexicographical world which seems to be the natural space of parameters
for discontinuous maps like the one’s that we consider here( see [25], [26]).

Our geometrical construction has several important consequences.One
of them is that axiom A maps are dense in this family (this is also proved in
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[9]; see [14] for similar result for the logistic family and [19] for contracting
singular cycles). It also follows that the set of parameters whose corres-
ponding Lorenz map has entropy zero is arc connected( see section 4.6)

Also, the combinatorial bifurcation diagram allow us to reobtain, in a
constructive way, the result of the Melo and Martens on the universality
of the quadratic family. Moreover, we completely describe the exceptional
combinatorics not realized in the model(a countable set)provided by de
Melo and Martens([9]). Also, as lemma 4 in section 3.1 shows,secondary

bifurcations do not appear for injective Lorenz maps( as defined in section
2.1)

After this paper had been completed we became aware of the work
of St. Pierre( [37])about the bifurcation diagram associated to periodic
kneading sequences, which obtains, in an independent way, some of the
results presented here. Also, Hubbard and Sparrow defined, in [18], a set
of pair of sequences which model all the topological expanding dynamics
exhibited by Lorenz maps.

On the other hand, starting with Arnold ([3]) there has been consi-
derable interest in the bifurcation theory of the canonical family( see for
instance [6] and the references there in). The most common approach,
based on the notion of rotation number, is very useful when applied to
homeomorphism of the circle, but it seems delicate to apply it to non injec-
tive maps. In fact, a bifurcation diagram for the canonical family beyond
the injectivity domain is still unknown. The best approximation seems to
be the work by Boyland([6]).

In [21, 22, 23], we extended the Hubbard-Sparrow model for expanding
maps to an universal model for the “essential dynamics” of Lorenz maps
and we called it the Lexicographical World (in the sequel denoted by LW ).
This model includes the dynamics of all the interpolated maps used by
Boyland ([6], page 359 ) in his construction.

It is clear that the structure of the lexicographical world has to reflect
in the bifurcation theory associated to any parameterized family of allowed
maps. This is an extremely interesting problem focused for several authors
in this and other contexts, see for instance [28],[8],[7],[11], [3], [6] .

This paper is organized as follows : In section 2 we state our results. In
section 3 we describe the lexicographical world, in Section 4 we prove our
results about the quadratic family F), , , in section 5 we extend our results
to more general contracting families and, finally, in section 6 we will relate
them to three dimensional geometric vector fields.
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2. Statement of the results

2.1. The Set DM,.
In the sequel DMy will denote the set of maps f : (R\ {0}) — R such that:

(1) The restriction maps f|(_oo0) : (—00,0) — R and f[(0,00) : (0,00) —
R are continuous and non-decreasing maps.

@
£(0*) = lim f (z) €] = 0,0

x|

and
0 ) = lim x) € Q1.

An element in DM, will be called injective if its restriction to the
interval |f(0%), f(07)[is an injective map.

We will say that f € DMy is increasing if the restriction maps f|(_uo o) :
(—=00,0) = R and fl(g0) : (0,00) — R are increasing.

We call the elements in DMy Lorenz maps.

2.2. The Lexicographical Order

Let X5 denote the set of sequences § : N — {0,1} endowed with the
topology given by the metric

d(aaﬁ) :Zd(a;i;ﬁl)a

=0

where

= 0,0; =pi
dlos, i) = { L,a; # 6
Let 0 : ¥3 — Xy be the shift map o(6y,01,602,...) = (01,62,...).
Let Yo andX; denote the sets {§ € X3 ; 6p = O}and{f € Xy ; 6y =
1} respectively. It is clear that Yo = Yo U X .
In X9 we consider the lexicographical order: 8 < a foranyf € Ypand o €
Y1 or 6 < «if there is n € Nsuch that 6, = «; fori =0,1,2,...,n —
landf, =0 and oo, = 1.
For a < b in X9 let [a,b] denote the interval {f € 3sla < 6 <
b}. X, pwill denote the set NoZgo "([a,b]).
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2.3. The Set Yasbye

For f € DMy let I'y = (R\ U5, f£77(0)) denote the set of “continuity” of
the map f.
For x € I'y we define Iy(x) € X3 by

Ip(x)(@) =0 if fi(z) <0and Iy(z)(i) =1 if fi(z) >0
For x = 0 we define:

10 = Jim | Iy(@)

and
Ip(07) = i I
H00) =, Jim 1y(o)
In the same way: to any x € ;2 f77(0) such that fi(z) #0,0 <i<mn;
f™(x) = 0 we associate the sequences :

Ip(z") = (If(2)(0),. .., I(z)(n — 1), I;(07))
and
Ip(x™) = (I5(@)(0),..., Ip(x)(n = 1), Ir(07)).
For z € T'y we define If(x+) = If(z7) = If(z).
Let Iy = {If(z"); = €[f(0%), f(0" )[}U{If(x )i @ €lf(07), f(07)]}.
Clearly o(If) C Iy. Let us denote ay = Ip((f(07))")and by = I;((f(07))")
Lemma 1. ([20], [18]) Iy = oo "(laf, bf]) = Bag by
We observe that associated to any f € DMy we can define a continuous
map

h [f(0F), F(07)]NTy — Sa, by C Do,

af by
such that ho f = o o h. The map h is given by h(x) = I¢(x)and collapses
intervals into points. This map cannot be extended, continuously, to the set
UXo f 7i(0). There are two kinds of intervals that the map h can collapses:
The wandering intervals and the intervals that are contained in the stable
manifold of periodic sinks. An interval I C [f(0"), f(07)] is called a
wandering interval , for the map f, if for any © € I we have that z is a
wandering point. We will call a point x a nonwandering point if for any
neighborhood U, of z and any positive integer N we can find n > N such
that f"(U,) N U, # 0. The set of nonwandering points of the map f is
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denoted by €f. A point x ¢ Qy is called a wandering point. We call a
periodic point x € I, a _sink if there is a neighborhood V, C I of x such
that |f"(x) — f"(y)| — 0 as n — oo for any y € V.

Given any interval ,I, the orbit of this interval is the sequence of itera-
tions (f™(I),n € N). Concerning the existence of wandering intervals we
have the following;:

Lemma 2. ([23]) Let {px,\ € R} C DMjbe a one parameter family of
C? increasing maps such that for each )\ there are sequences A\, — A and
pn — X with @y, () > pa(z) and ¢, () < @a(z),Ve then there is a
residual set of parameters \ for which ) has no wandering intervals.

We observe that for our two parameter family of contracting maps,
F(.), we have the following: for any fixed p = pg > O(orv = 1y > 0) the

one parameter family o, = F{,, ) (07" Pu = F(u,uo)) satisfies the property
of Lemma 2.

Definition 1. Given f,g € DMy. We will say that f has essentially the
same dynamics as g if Iy = 1.

We note that in this situation, up to the existence of some intervals
where the itineraries of the points are the same, the dynamics of the maps
fand g are topologically equivalent(see [10]).

2.4. The Lexicographical World
Let Ming = {a € X¢ ; Uk(a) >a,k€N}tand Mazg = {be€ ¥ ; ok (b) <
b,keN}.

Definition 2. Theset LW = {(a,b) € MingxMaxy ;{a,b} C X4} will
be called the lexicographical world.

For a € Ming its LW-fiber is the set LWy(a) = {b € Maxs ; (a,b) €
LW} . For b€ Mazxy its LW-fiber is the set LW;(b) = {a € Ming ; (a,b) €
LW},

Remark 1. It is clear that given (a,b) € LW then X, # (.
Let us now consider (a,b) € LW.

Lemma 3. There is f € DMy such that Iy = X,.
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Proof: Let us consider the map g : (R\ {0}) — R given by

() = 22 -1, z>0
IE=Y 2241, <0

In this case Iy = Y. Let z, < 0 and x, > 0 be the points such that
Iy(z}) = a, Iy(z, ) =b.
Let f: (R\{0}) — R be the map defined by:

9(@), T < Ty
_ Tp, Ty <z <0
Jz) = Tq, 0<z<T,
g(x), To<ux

here T < 0 < T, are given by g(Tp) = xp and ¢(T,) = x4-

We will call this result the realization lemma. 1t is clear that the maps,
in this construction, are non-decreasing but we want a realization lemma
with increasing maps. In section 3 we prove a realization lemma with
increasing maps.

Therefore, we have a surjective map I : DMo — LW, I(f) = (af,by)
and DMo = U(ap)erw I71({(a,b)}). Also, using C° proximity on compact
sets, this map is continuous.

In this context the next definition is natural.

Definition 3. Let o : U C R* — DM be a map.

1) We will say that « is an a-surjective family if Va € Ming there is a
nonempty set , A(a) C U, such that ay = a,Vf € a(A(a)).

2) We will say that « is an b-surjective family if Vb € Mazy there is a
nonempty set , B(b) C U, such that by =b,Vf € a(B(b)) .

3) We will say that o is an LW -surjective family if V (a,b) € LW there
exists a nonempty set A(a,b) C U such that I o a(A(a,b)) = (a,b).

It is clear that associated to any map «, as above, we have an a(b, LW )-
decomposition of its domain. We will call this a(resp. b, LW )-decomposition
the a(resp. b, LW ) bifurcation theory defined by .

Open Problem: Are there LW-surjective families?.

Certainly, this is a very hard problem and we believe that there is not
a finite £k € N with this property. In the present paper we prove the
following
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Theorem 1. The given two parameter family of quadratic contracting
Lorenz maps is a-surjective, is b-surjective but it is not LW -surjective.
Moreover, the respective a,b, LW -bifurcation diagramme are given.

3. Symbolic Dynamics and the Lexicographical World

Here we introduce some results and notations that are necessary for our
results. The results which we do not prove in this section are proved in
[21, 22, 23]. In the sequel we will denote by a = ag,a1,...a, the peri-
odic sequence (ag, a1, ..., Gp, G0, A1, -, Gy, --..) € Lo. Assume that we have a
countable set of sequences, A. We will say that two elements a < b € A
are consecutive in A( or consecutive if the context is clear) if there does
not exist an element ¢ € A such that a < c <b

3.1. Dynamical properties for sequences in LW

Let a1, ag be two periodic sequences in Xg. The periodic sequence m(ay , az) =
a1 az will be called the average of the sequences a; and as.
Example: For a; =01,az = 011 we have m(ay,a2) = 01011.

Let Ag ={0,1,01,, ;n,m € N\{0} } and A,41 = A,U{ m(a1,a2); a1,az €
Ay, are consecutive sequences }. Set Ao = Uo>gAn. The elements in
Ay will be called primary sequences. As we will see in the next section,
primary sequences are associated with primary bifurcations.

The elements in A, are characterized by the following property:

Lemma 4. (see [25, 26]) a € A, if and only if
(%) a € Ming and o(a) > o(b),
for b = sup{c*(a);k € N}.
Let us denote A% = A, and define, for any a € A% the set:
Al(a) ={c€Xo;c = a_bia" orc = a_b"by forn,me N}.

Here, for b = bgb; ...b;0 we denote by = byb;y ...bx1l and for a = agay ...arl we
denote a_ = agai...ai0 .

Observe that if ¢, = a_bya™ then ¢, — a_bya and if d,,, = a_b"b4
then d,, — a_b.

Set

Ad(a) = {m(ay,a2); a1,as € A}(a)are consecutive sequences} U Aj(a)
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and in general
Al 1(a) = {m(a1,a2); a1,az € A}(a)are consecutive sequences} UA; (a) ,n > 2.

Lot AL () = UI=3® Al(a) and AL, = A% UU,eaq Aly(0)

At this stage we have to point out the following: Assume a € A%
Let @ = sup{c¥(a);k € N and o%(a) € o} and b :jnf{ak(a);k‘ €
N and o%(a) € ¥;}. Consider Y5 = {0,N — {a,b}} be the set
of sequences of the two symbols @ and b. Replace 0 = @ and b = 1
and define Ap(a) = {0,1,01,,;n,m € N\ {0}} and A,41(a) = Ap(a) U
{m(a1,a2);a1,a2 € Ap(a) are consecutive sequences}. Set Ax(a) = U Ap(a)

n=0

and A% (a) = {inf{o*(a);k € N};a = R;5(n);n € Ax(a)}.
Lemma 2 A% (a) = Al (a).

As before, let Oab: Ea,é — E&’B be the shift map. We have
Lemma 3 « € A% (a) if and only if

(%) a € Miny(a,b) and oz5(a) = 0, 5(8) for B = sup{ag,g(a); ke N}
Inductively, for any a € AZ (a) ,let

ATt (a) = {c€ Xo; ¢ = a_biddor ¢ = a_b"b, for j,k e N}

Now , we define

AT (a) = {m(a1,az); ai,as € AT (a) are consecutive sequences} U At (q)

and

A%ﬂl(a) = {m(a1,az); ai,as € A% (a) are consecutive sequences} UAQLH(Q) ,m > 2.

As before, define A% (a) = Un—y Af(a) 3 AL = Uzean AL (@)U
A%, and finally, AR = U7 Al
Note A similar construction; as we did in Lemma 2 and Lemma 3, for
a € A2, we can do for any a € AZ.

The elements in (AX \ A%) will be called secondary sequences. As
we will see in the next section secondary sequences are associated with
secondary bifurcations.

Let denote by B the set {sup{c*(a),k € N},a € AZ}. We will de-
note by b(a) the sequence sup{c*(a),k € N} for a € ¥ and by a(b), the
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sequence inf{c*(b), k € N} for b € ¥;. Clearly, b(a) € Mazxy anda(b) €
Mi?’LQ .

It is clear that ¥, # ¢ for any a € ¥y . Hence we can define maps
w,Y,x 20— X1 by:

pla) = inf{be X1|Xqp # 0},

P(a) = inf{b € ¥1; £, contains co -elements}

and
x(a) = inf{b € 31 ; X, is uncountable}.

Clearly, a1 < ag imply ¢(a1) < ¢(a2) ,¥(a1) < ¥(az) and x(a1) <
X(az) and for all ¢ € ¥; such that ¢ < ¢(a) we have %, .= ®.
Examples : For any 001 < a < 01 we have ¢(a) = 10 ,%(01) = x(01) =
110. Also ¢(0) = ¥(0) = x(0) = 105¢(01) = ¥(01) = 1;0(0nl) =
10, ,$(0,1) = x(041) = 110, and ¢(0Ly) = 10, $(0Ly) = 1(01y) =
11,,0.

3.2. The Morse-Smale and the Entropy Zero cases
Definition 4. a.- We will call a map f € DMy Morse-Smale if ay € A%
and by = ¢(ay).

b.- We will call a map f € DM essentially Morse-Smale if ay € A3 and
bf = p(af).

We will denote by M Sy C DMy the set of Morse-Smale and essentially
Morse-Smale maps . We call these maps Morse-Smale because its dynamics
essentially reduces to a periodic orbit.

Examples

a.- Any f € DMy such that ay = 0"1,by = 10" or ay = 01",b; = 170
are Morse-Smale maps.

b.- Any f € DMy such that ay = 0011(01)",b; = 11(01)"00 are essen-
tially Morse-Smale maps.

Lemma 5. ([23]) Given f € DMy be a “Morse-Smale” map we have that

[f(0T), f(07)] = Uper (ar)= 'T;, where x € Iy implies If(z) = ay and If|y
is constant and equal to a; = o (as) for 0 < j < per(ay) — 1.
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Lemma 6. Let a € AY,. There is an injective f € DMy such that af = a
and by = p(a).Moreover, this map satisty f(f(07)) = f(f(17)).

Proof: Let a = ap < a1 < ... < (aa5t = ap) < 01 < 10 < (bt =
bpr1) < bpya < ... < by = b(a), denote the consecutive elements in
{07(a); j € N}. Let £ < 0 < r and I = [{,7]. Consider closed in-
tervals Lo, L1, ..., Ly such that U, L; = [¢,7]; left(Lg) = ¢, right(Lg) =
left(L1),...,right(L,) = 0 = left(Lp4t1),. .., right(Lx_1) = left(Ly); right(Ly) =
r. Here left[x, y] = x and right[z,y] = y.

Now, define an injective map f that sends Ly11 — Lo, Lpy2 — L1,..., L —
Ly_p—1and Lo — Ly—p, L1 — Ly—p41,..., L, — Li. This map satisfy the
lemma. O

The next result follows immediately from this lemmas:

Corollary 1. Let a € A%\ A%, . There is an injective map f € DMy such
that ay = a andb; = ¢(a) O.

We note that these maps can be considered as bijective maps on the
circle.

Lemma 7. Let a € AR . Thereis f € DMy an increasing map, such that
ar =aandyp(a) =by.

Proof: Let
a:a0<a1<...<ap<Ol<1Q<ap+1<...<ak.

denote the consecutive elements in {0’(a),j € N}. Associated with
as,0 < s <k ,consider closed intervals Lg,s=0,...k, such that

Lo<IL1<...<Ly <Ly <. < Ly,

L;N L;y1 = one point or L; N L;;1 = (), otherwise.

Let n: {0,1,... .k} — {0,1,...,k}be the permutation defined by
o(aj) = ay;y. Clearly, n(p) = kand n(p +1) = 0. Now, define an
increasing map f € DMy which satisfies f(L;) = L,; and is increasing
between L;and L;;1 when L, N L;11 = 00O

In a similar way we obtain

Lemma 8. Associated to any a € Ming there is an increasing map [ €
DMy such that af = a and by = p(ay).
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In general we get

Lemma 9. For a € AY and d € B N LWy(a). There is an increasing
map f € DMy such that ay =a,by =d.

As a consequence of these lemmas we have

Proposition 1. Given (a,b) € LW there is an increasing map f € DM
such that I(f) = (ay,bf) = (a,b).

This result is a generalization of a similar result obtained for expansive
maps in [18].

Definition 5. We will call a map f € DMy an entropy zero map if by <
x(ay) -

One of the most interesting problems related with the bifurcation theory
associated to a parameterized family of dynamical systems {fy; A€ U C
RF} . is to describe the set {\ € U; fy is an entropy zero map } (see for
instance [30], [4] and the references there in ). For our quadratic family of
Lorenz maps we will prove some results, in this direction, in section 4.6.

We observe that any Morse-Smale or essentially Morse-Smale map is an
entropy zero map(see [23] where we characterized the entropy zero set in
the Lexicographical World).

Remark We announce that in some forthcoming works, with Lau-
taro Vésquez and Solange Aranzubia, we will provide many of the proofs
that here we left for the reader or were we quote it is easy to see among
other news results.

4. Proof of the Results.

4.1. The Contracting Family.
Let us consider the two parameter family F,,) : (R\{0}) — R, p >
0, v>0, of maps in DM,

—p+z?, x>0
F“’”(x)_{ v—2?,2<0

In this section we will provide the bifurcation theory associated to this
family.
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Injective Maps
Let us define

IM = {(1.0); Fluml_puis[=1,v] = [=p,v] s an injective map}.

1
It is not hard to see that IM = {(u,v) : (u—1/2)> + (v —1/2)? < 5}
We observe the following: let (u,v) € IM such that p > 0,v > 0. We
have that F, ,)(—p) > F,.,)(v) and, consequently, if a(u,v) denotes the
itinerary associated to (—u)™ and b(u,v) denotes the itinerary associated
to (v)~ then a(p,v) € Ao and b(p,v) = sup{c*(a(p,v)); k € N}.

4.2. Primary Bifurcations.

We call the bifurcations in this section primary bifurcations because they
appears as bifurcation curves for injective maps in DM, and can be studied
by using rotation numbers( see for instance [6], [3], [13] and [17]).

4.2.1 Fixed points:
The fixed points of the map F{, , are given by

(a)
—1++1+4+4v

y+(v) = 5 for —1/4<v <0
y () = S VItd \;1+4V for v>0

—1+/1+4

ra(p) = = for —1/4<p<0
1+/14+4p

x4 (1) =795 for =0

We have y_(v) < 4 (1) < 0 < 2 (1) < 24 ().

4.2.2 Preimages of Zero

(a) v—a® =0imply 2 = —/v =1 (v), ¥ > 0
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v—2?=—\vimply z = —\/v + /U = 1o(V)

v — _q;2 = yn(y) 1mply T = —\/V— yn(V) = yn-i-l(y)a n > 27

(b) —p+2*=0imply x = /i = z1(p), p >0
—p+a*= /@ imply z = \/m = x9(p)
—p+ 22 = yn(p) imply 2 = /u+ 2, (1) = Tny1,n>2.
4.2.3 Curves of bifurcation (first generation)

(a) The equation: F(0~) = fixed point of the right hand side; is solved

by:
1+ 1I+4p
vV=——
2

(b) The equation: F(0") = fixed point of the left hand side; is solved by:

11+ 4v
2

See the figure 1.

We note (see figure 2 and 3) that:

1+/14+4p

(1, v) € R? such that v > 5 ,

u=>0 lmply b(F(u,V)) =1
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and

() € R? such that pu > , v 2> 0imply a(F,,)) =0

1++14+4v
2

-
st

Figure 2:

Figure 3:

Given a € Ming and b € Maxs let denote by

Ry ={(1,v) € R§ x Rg; b(Fu)) = b}
L, = {(M>V) € Ro+ x RJ? a(F(;L,u)) = CL}
(c) F(0") = n-th preimage of zero = y,(v).

These equation define the curves py,(v) = —y,(v) that satisfies:

(1, v) € {(pn(v);v); v 2 0F  imply  a(F{,,,)) = Onl.
These curves converges to the curve (u(v), v) (see figure 4) where pu(v)
is given by
1+vV1+4v

w(v) = f,yzo.
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Figure 4:

In fact, we note that ui(v) = Vv, ua(v) = —y2(v) =
\/V‘I'\/;v'-- nun—‘rl(V) = —yn+1(y) - VV—F/Ln(V).

Hence, taking the limit when n — oo, we get u(v) = v+ u(v), so
14+v1+4v
2

2

u® = v+ u and, consequently, u(v) = as announced.

We also observe that the curves (u,(v),, v) transversally intersect the

14+ 1+4p
2

curve (u, ,any n € N.
!

(d) F(07) = n-th preimage of zero = x, ().

These equation define the curves v, (p) = x, (1) that satisfies:
(1 v) € {(psvn(p));  p =0} imply  b(F(,,.)) = 1a0.

These curves converges to the curve (1, s(u)) (see figure 5 ) where s(u)
is given by

1+/14+4p
s(u) = — k20
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T s(v)

Vlw)
Vi)

Figure 5:
Let us now prove the following

Proposition 2. The curve Cig = {(1,v1(pn)), p €]0,00[} transversally

intersect the curve Co,1 = {pin(v),v), v >0} ,¥n € N.

Proof: For Cip we have Cig = {(1, /11); ¢ > 0}. Hence Clg is described
by pu(v) =v?, v >0.
Now Cy; is described as p11(v) = /v. We have Cp1 NCio = {(1,1)}. and

py(v) = 2—\1/;; (¥ =2v. So pi(v) is transversal to pu(v) = 12 at v = 1.
Note py(v) < % and ¢/ (v) >2,allv > 1=u,.

Inductively, assume that Cjg transversally intersect Cp,1 at a point
(V2,vy,) with g, (v) <1/2 and /7(1/) >2 all v>uy, > Vn,r

For the curve Cy,,,1 we have p,41(v) = /v + pa(v) and 4 (v) =
1+ p,(v) -
24tn11(v)

Let (v2,1,vn41) € Co,,q1 N Crg. We have () =20 > 2w, >
Lt py(v) _ 3/2

20, > 2Up1 > -+ > 2 and :UJ;HI(V) = 20 1(1/) = 7
n+

< 1/2, any

V > Upy1 > Up. S0, we get the result. O
Let us now prove

Proposition 3. The curve C1,,0 = {(1, vm(p)); p €J0,00[ } transversally
intersect the curve Cp,1 ,Yn € N.

1
14—

N

Proof: For m = 2 wehave 1o(p) = /p+ /fthen v5(p) = 502 0)
2\
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1+ vy ()
2v(p) X
14—
2
Since J

<1 we get v4(p) < 1. Let denote by fia(v) its inverse
2vp(p)

map. We have ix'(v) > 1. Since ! () <1 we obtain the result in this
case.

Inductively, assumer), (n) < 1 and that {(u,vm(n))} transversally
intersect the curve Cp,1.

1+ v, (1) 1+1
2Vm+1(,u) 2Vm+l(,u)

Since I/;n+1(/~6) = < 1, we get the result. O

(e) Let us now assume that F(07) < y1(v).

In this situation there is Z7(u, v) such that —u + 772 =

= y1(v); that is
Ti(p, v) =\ — V.

If we ask for the condition F'(07) = Z1(u,v) we get the curve fip(v) =
v? + /v (see figure 6). This curve is tangent to ui(v) at v = 0 and
transversally intersect p,(v), n > 2 and u(v).

KA V)=V
BV

)

Figure 6:

In the same way: if we assume that F(0") < y,(v), n > 2 we will find
Zn(, v) such that —u + 7,2 = yn(v) that is T, (1, v) = /it + yn (V).
If we look for the condition F(0~) = T, (i, v) we get a curve o, (v) =
2

v* — y,(v). This curve is tangent to p,(r) at v = 0 and transversally
intersect pj(v), j > n+ 1.

We note that (u,v) € {(7In(v),v); v >0} imply b(F{,,,)) = 10n41.
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(f) In a similar way if we assume F(07) > z1(u) we will find 77 (p, v)

such that v — 772 = x1(p) that is: Tr(u,v) = —/v — 21(1).

The condition F(0") = 71(u,v) imply the existence of a curve, 77 (u),
such that 77(p) = p? 4+ 21(p) = p? + /B, p > 0. This curve (see figure 7)
is tangent to v1(u) at v = 0 and transversally intersect v,(u); n > 2 and

v(p).

V5(1)
V(1)
Vi (W

Figure 7:

In a similar way, if we assume that F(07) > x,(u), n > 2 we will find

Tn (11, v) such that v — 7,2 = 2, (1), that is T (i, v) = /v — 20 ().

If we ask for the condition F(01) = (i, v) we get the curve 7, (u) =
w242, (1), p > 0. This curve is tangent to v, () at v = 0 and transversally
intersect v;(p); j > n+ 1.

We note that (u,v) € {(1,7n(p)); > 0} imply a(F,,)) = 0lny1.

Note : In this section we have proved :

1) That associated to any sequence a € Ag = {0,1; 01,/n € N}, we
have two curves, C(a)and C(b(a)), such that (u,v) € C(a) imply

a(Fiu)) = a and (u,v) € C(b(a)) imply b(F(,,)) = b(a).

Moreover, C(a) and C(b(a)) transversally intersect at the point
{P(a;b)} = C(a) N C(b(a)).

2) For (pu,v) € C(a) we have that 0 is a fixed point of F(ﬁpf;(a) that
attracts a small right neighborhood of it.

3) For (u,v) € C(b(a)) we observe that x = v is a fixed point of

F (ﬁpye; (@) that attracts a small left neighborhood of it.
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4.2.4 Transversality of the bifurcation curves.
In this section we will prove that any curve of the form Cy,1, is transver-
sal to any curve of the form C1,,0, any n>1,p>1, m > land ¢ > 1.

Assume that we have smooth maps. ¥(v);p(p) such that G(p,v) =
—p +(v) and H(p,v) = v — p(p) satisfy G71(0) = Co; H'(0) =
Coi¢'(v) S Lv 2 wo; @ (1) <102 po and Ca N Cp = {(ko, 0)}

Lemma: Let L(p,v) = —p + (G(u,v))% M(p,v) = v — (H(p,v))? then
the curve L~1(0) is transversal to the curves M~ ( ) and H~1(0). Moreover
the curve M —1(0) is transversal to the curve G—1(0).

Proof: In fact.
oL

oG
oL oG
5 =26 V)a—u
oL oG oG
oL oG 0G oG
5 2G(, l/)% M 2G(, Z/)E
. 0G oG ,
Since o = -1, ri ¢'(v) and for L(p,v) = 0 we have G(u,v) = /1t
oL
ou 1 1 1 1
then = -+ = + >1
oL '(v)  2v)-p Y(v) 2\/!7}

ov
therefore L1(0) is transversal to H~1(0) at any point {(u1,11)} C
_1(0) ﬂH_l(O) such that puy > pg,v1 > 1g.
For M~1(0) we have

OH
o 2H ”>a_,5H 2 () (0 ()
=21
o L= 2H(mv) 57 v
_ 29 (VY
“dt2r <F

Hence M ~1(0) is transversal to L=1(0).
A consequence of this Lemma is the following
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Corollary Let ¢1(v), -, ¥n(v); p1(1),- -, wn(p); be smooth maps such
that ¥;(v) < 1,v > w; goj( ) < 1, u > po; and such that G;(u,v) =
—p +1pi(v) and
Hj(p,v) = v—p;(p) satisty G;(0) = Cu;; H; '(0) = Gy, and Co, N Cy, =
{(ag, )} then for L, v) = —pu-+ (Gl )2, My(1,) = v — (H ()2
we have that the curves L;!(0) are transversal to the curves H i 1(0) and
Mjfl(O). Moreover M]-*I(O) is traversal to G;l(O).

This result apply to the curves Cp,1 = G, '(0) and H,,}(0) = C1,,0
since

h1(v) = Vi, ha(v) = \Jv + 1 (v), - hna (V) = \Jv + a (V).

and

e1(p) = Vi, p2(p) =\ +@1(p), - enr1(p) = /1 + o).

In particular we conclude that

(i) Co,1 is transversal to Cy,,o for all n > 1, m > 1.
(ii) Cy,1and Cy, 11 are transversal to C1, 0and, Cy, 00 any n > 1, m > 1.

(iii) Co,1,Co,11and , Cp,111 are transversal to C1,,0, C1,,00and C1,,000 any
n > 1, m > 1 and in general

(iv) Co,1, is transversal to Cy,,0, any n>1,p>1, m>1andqg > 1 as
we announced.

4.2.5 Primary saddle-nodes.
In this section we will prove

Proposition 4. Associated with any a € Ay and b = b(a) there is a curve
SN (a,b) C R? such that:

F(#IJET(G)
/’La 7 a
with derivative equal to 1 and (tap, Vap) € SN(a,b);

(i) there are values v, and fi,, such that ) has a fixed point

(ii) SN(a,b) \ {(ftap,Vap)} = SN(a) USN(b) are two curves which satis-
fies:
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(a) SN(a) transversally intersects C(b) at a point {(Tigp,Vap)} =
SN(a) N C(b). SN(b) transversally intersects C(a) at a point
{(Rap,Pap)} = SN(b) N C(a);

(b) For any (u,v) € SN(a) there is a saddle-node periodic point

which correspond to an unfolding of the fixed point of F| (ﬁ P ;)T (@

(n,v) € Ca).

(c) For any (u,v) € SN(b) there is a saddle-node periodic point
#per (b)
F

which correspond to an unfolding of the fixed point of (o)

(n,v) € C(b).

Proof: Initially, let us consider a = 01. In this situation the curve C, =
Cor = {(p, pu?), u > 0} represent the fact that F(0%) = y;(v) hence
F(F(0T)) = F(y1(v)) = 0 that is, 707" is a periodic point whose period
is #(a). Also, for b = 10 thecurve C, = Coy = {(1, /1), 1 > 0} repre-
sent the fact that F(07) = z1(u) and, then, F(F(07)) = F(z1(n)) =0,
that is 707" is a periodic point (of the map F') whose period is #(b) .
Let us consider the point (1, 1) € Cp1 N Cip. The graph of the map
F{1,1)is as in left hand side of figure 8 and the graph of the restriction of
the map F(Ql’l) is as in the right hand side of figure 8 ( in the sequel, in this

section, the restriction F(ZM V)|[07,,] will be called the first return map to the
interval [o,v] or simply the first return map).

—f 0/ i

—1

Figure ¥:

Now, let H = {(p,v); > 0,v > 0}. We have that H\ Cy1 =
{(w,v), ,p* <viU{(p,v), p* >v} = AjlUAsand H\Cy = {(, v), /i <
viU{(p,v), /it > v} = B1UDBs. So, we have the following components
of the set H\(CaUCb) = A1 NBiUA; N By U Ay N By U Ay N By where
AiNBy = {(p,v),v>p*and v > /u}, AiNBy = {(p,v), Ja>v>
p?}, AonNBy = {(p,v), B2 >v>/p} and AN By = {(p, v), p* >
vand /i > v}. The next figures (see figures 9, 10 and 11) displays the
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first return map, to the interval [0,v] for (pn,v) € AiNBj,i=j=1,2
and located near the point (1,1).

Figure 9: Ay N By Ay N Bs.

Figure 10: 45N By A M Ba.

z

Figure 11:

Now, it is clear that we can find, in the interior of the set A; N Bs,
a point (iap, Vap) such that the first return map to the interval [0, V]
looks like in figure 11.

Figures 12 and 13 shown the bifurcation in the phase space, of the
saddle node.
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Figure 12:

Figure 13:

Figures 14, 15 and 16 shown the essential facts of the curves Sn(a) and
Sn(b) in the parameter plane.

Let us now consider the family F(, ,2,,,p € R. Clearly, there is a
unique p = pgpsuch that, for p = p,pwe have v,; = u? + p. Now it
is not hard to prove, for the one-parameter family Fi, .2, ,pfixed, the
following

Figure 14:
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Hag

Figure 15:

sN() ©®@

CE)
SNib)

Figure 16:

Lemma 10. (i) Assume p < p,pand near pqyp. In this case the first
return map has the generic unfolds showed in figure 12 :

(ii) Assume p > pqp and near p,p . In this case the first return map has
the generic unfold showed in figure 13 :

(iii) The curves SN(b) = ,u%(p) and SN(a) = u%(p) are given in
figure 15,

(iv) The curve SN (b) intersects the curve {(u, p>+p), p > 0},p < pay
fixed , in a unique point.

(v) The curve SN(a) intersects the curve {(p, u*>+p), 1> 0},p > pasp
fixed , in a unique point (see figure 16). O
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This complete the proof in the case a = 01. The other cases follows
in a similar way.

Figures 14, 15 and 16 displays the essential facts concerning the po-
sitions of the curves SN(a); SN(b); C(a),C(b) and the region L, and Ry.
O

Remark 2. Given a € Ag, b = b(a) we define L, = {(p,v); a(F{,,)) = a}
and Ry = {(i1,v);  0(F(u.)) = b}.

It is not hard to prove that the global picture of the sets L, and Ry
looks like as in figure 17.

Figure 17:

4.2.6 Bifurcation curves associated with averages
Let us consider

A1 = {m(a1,a2); a1,a2 € Agare consecutive sequences } U Ay.

In a similar way as we did in section 4.2.4, we can prove that associated
with a = m(a1,a2), b = b(a) we can find two curves C(a),C(b), tangent to
C(ag2) and C(b(ag)) respectively, such that:

(u,v) € C(a) imply a(F(u,/\)) =gand (u,v) € C(b) imply b(F(%)\)) =b.

Also, there are saddle-nodes associated to C(a) and C(b) as in 4.2.5.
The geometry of the sets Ry and L, is similar to the geometry of the sets
described in the remark in 4.2.5. (see figure 18).

¥ Cs,) C@
g C(b(a))
SN(b)
C(b(=,))
n

Figure 1s:
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Co
Cooto1
Cio
Cont
Chooe
G
0

010 | 10

Similarly, we consider the set
Apt1 = A, U{m(a1,a2);a1 < ag are consecutive sequences inAy }.

As before associated with a € A,,1+1, a = m(a1, az),we are able to find
the curves C(a), C(b(a)) and SN (a,b) (see figure 19).

In fact, without loss of generality, let us consider the sequences a; = 01
and as = 001.
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We have that Co1 = {(y/v + Vv, v));v > 0} and Coo1 = {((1/v + Vv, v)v >
0)}

Let us denote ¢(v) = (/v + v,G(u,v) = —pu +¢(v), L(p,v) = —p +
(G(p,v))? and M (p,v) = v — (L(p,v))?. Now it is not hard to see that

M~1(0) = Cgoio1- In this situation L(u,v)) = /v and G(u,v) = \/pu — /v
Moreover
oM

oC
_8?\47 T _2L(M,V)8_5LL -
. 1—2L(w; V)E
—2L(p,v) {—1 +2G(p,v) - g—i]
1—-2L(p,v) 2G(p,v) - g—f
27 -1+ 2= o (-1)]
LR V)
_ WA u VY
L+ 45— v ()
So,
oM

o
if and any if (2 v —1)+4/v(p— V)1 -9 (v)) >0
Hence

oM

—=+=>1 for v>1/2

Consequently Cipigo transversally intersects Cyoig1 since the intersec-
tion Cio100 () Coo101 occurs for v > 1/2,,& < 1/2.
For the curves involved we get the following picture
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As we announced before.
With rescgect to the saddle note bifurcation let us consider the graph
of the map Copo101 () C1o100- The next figure displays the graph of the map

Fusuch that {(p, )} = Cooio1 N Cro100-

4

010 | 10

Now, it not hard to see that the first return map F : IgioJJlio —
Io1o0U T1o has a graph as in the previous figure. Applying the results
proved at the section 4.25, to this return map, we get the announced saddle-
node. Here Iy ...q, denotes the interval {x € [—pu,v]; Io(x) = ag, [1(x) =
ar, -, Ip(z) = ap}.

4.2.7 Let Aoo = o2y An- Assume a € A is a sequence which is not
periodic nor eventually periodic. Let b = sup{c¥(a); k € N} and a, €
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Ao, @, — a. let by, = b(ay). Tt is clear that we have b, — b.

In this situation we can find values of the parameter (i, v,) and curves
C(a), C(b) such that: Cla) ={(p,v); v =pa(p)}; C(b) ={(p,v); v=
p(p) where @q @ (0,00) — R, 9y, : (0,00) — R satisfies

- walp) = p(p), 0 < < pra

- The maps @al(y,,00) a0d Pb(4,,00) are tangent at pig.

Moreover

(i) the curves C(a,) converges to C(a) and the curves C(b,) converges
to C(b) (see figure 19) ;

(ii) the intersections C(ay) N C(by,) converges to {(ta, Va)};
(iii) (p,v) € C(a)imply a(F(, x)) = aand(u,v) € C(b) imply b(F(, »)) = b.

: C(an)

Figure 19:

Maybe, the unique point which is not easy to agree in this result is
related with the coincidence of the curves C(a) and C(b) along {(u, pa(n));
0 < < g}, but this is an easy consequence of the next result.

Let 7 > 0 be a small number. Let B}f = {(u,v) € R%, /2 +v2 <,
wo> 027 v > 0}. Let m(A) denotes the Lebesgue measure of the set
ACR.

Lemma 11. m({(p,v) € Bf; F(,.) ¢ MSo}) = 0.

Proof: In fact, the proof can be done in a similar way as was done in [19]
or in [34].

Remark 3. 1) In fact, Arnold $[3 and Boyland ( [61]), obtained a sim-
ilar result for the structure of the irrational Arnold’s Tongues of the

b
canonical family fy p(x) = v+ A+ o sin(27z) .
s

2) A similar result(as in lemma 13) was proved by Swiatek in [38] with
respect to parameterized families of homeomorphisms of the circle.



Bifurcation of the essential dynamics of Lorenz maps on the ... 277

4.3. Secondary Bifurcations

We call the bifurcations in this section secondary because this kind of
changes in the dynamic cannot appear for injective maps in DM . Also, it
is not possible to understand this scenario only by using rotation numbers
as it is possible to see by comparing our results with those of [6].

The main idea on what follows is the following: Let a € A.,b =
b(a) and C, N Cy = {(po,v0)}. Let @ = sup{c®(a);c¥(a) € Sy}, b =
inf{o*(b)o"(b) € Xy}

Associated with @ and b we can find intervals_

I, Iy I = [a, 0], Iy = [0, )
such that the first return map F(uo,uo) = F5M07V0)|[&UIE UL — IGU T
looks like in the following picture.
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As in the case for elements in Ao, we can find, in set Cyp = {(11,v); 0 >
Ya(v);v > @p(p)}, an injectivity region I(a,b) for the map F{,, ,y. As before
we can find a curve, v C Cyp, which define the boundary of the injectivity
region(see next figure). Now we can proceed as before using 0 = a,1 = b
as the new symbols to obtain the previous constructions. That is, we will
work with a renormalization map F(, ,; to obtain the results which we

announce in the section below. .
4.3.1 Let By = f a); a € Asx}. Let us now consider a € Ay, b € By

such that C'(a) N C(b) # 0.1t is not hard to prove that ( see section 4.2.3)
that:

a) CyNCy = {P(a,b)} is a unique point.

b) define A(a,b) ={c€ Xy; c=a_bya™ ne€ Norc=a_b"by;mée
N} and
B(a,b) ={de€Xi; d=bsa"a_, ne Nord=>byra_b"; me N}.

((i) Associated with ¢ = a_by there is a curve C., tangent to Cp;
P(a,b) € Ce and such that (u,v) € C, imply a(F(,,)) = ¢ (see
figure 20);

((ii) Associated with d = bya there is a curve Cy, tangent to Cg;
P(a,b) € Cg and such that (u,v) € Cy imply b(F,,)) = d (see
figure 20);

Ca

Co

Figure 20: (b)(i) and (b)(ii)



Bifurcation of the essential dynamics of Lorenz maps on the ... 279

(iii) Associated with ¢ = a_bya™, n > 1, there is a curve C, tangent
to Cq; P(a,b) € C, and such that (p,v) € C. imply a(F,,)) = ¢
(see figure 21);

(iv) Associated with d = bya™a_, n > 1, there is a curve Cj, tangent
to Cq; P(a,b) € C. and such that (u,v) € Cy imply b(F(, x)) = d
(see figure 21);

Cab.s
Chsa
Cb+n a
Co
Figure 21: (h)(iil) and (b){iv)

(v) Associated with ¢ = a_b"b,, n > 1, there is a curve C., tangent
to Cy; P(a,b) € Ce and such that (u, \) € C. imply a(F{,, 5) = ¢
(see figure 22);

(vi) Associated with d = bia_b", n > 1, there is a curve,Cy, tangent
to Cy; P(a,b) € C4 and such that (i, A) € Cy imply b(F(, »)) = d
(see figure 22);

Cebb, Cat'b,

Figure 22: (h)(v) and (b)(vi)

In fact, let denote by &, : [up, oo[— Rand &g : [pte, 00— R the maps
that satisfies:
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;& (1)}; > pp} is the curve which represents the fact that
v is a periodic point with itinerary b;
;&

a()}; p > pia} is the curve which represents the fact that
— b is a periodic point with itinerary a.
Let denote C, N Cy, = {(w, 7p) }-

Now, associated with ¢, = b;a"a—_, n > 0 we can obtain maps &, :
[y, 0o[— R such that

(i) &.(m) = &a(1) — & (1); &n (M) =0

(1) {(;&(p) + &n(p)); p > Mo} is the curve which represents the fact
that t =vis a peI'IOdlC point with itinerary c,.

In a similar way, associated with d,,, = bya_b™, m > 1, there are
maps ¢, : [y, 0o[— R such that

(i) om () = 0; dm (M) =

(ii) é(u & () + dm(p));  p > Jip} is the curve which represents the
ha t & = v 1s a periodic point with itinerary d,,

(c) Associated with ¢ = a_b there is a curve C¢, tangent to SN (b) at the
point P, € C,, transversal to Cy at the point @, such that (u, A) € C.
imply a(F(, ) = c (see figure 23).

Moreover let L. be the open rectangle bounded by C,, SN (b), C. and
Cy. We have L. C Ry and (u,v) € L imply a(Fy, ) = c. Also,
(:u, /\) €L:.N [Cb U SN(b) \Ca} imply a(F(u,)\)) =G

Ca
SN(a)

|| Real[lThy,

e Shts

Figure 23: (c) and (e)

(d) Associated with d = bia_b there is a curve Cg, tangent to C,_j at the
point Qq_p € CqaNC,_p and such that (u,v) € Cg imply b(Fy, \)) = d
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(see figure 24);

Ca Cors
SN(a) Cos

Cos

Cors

Cy
SN(b)

Figure 24: {d) and (f)

(e) Associated with d = bya there is a curve, Cy, tangent to SN(a)
at the point P; € Cy, transversal to C, at the point @4 such that
(1, v) € Cg imply b(F(, \) = d (see figure 23). Moreover, let Ry
be the open rectangle bounded by C,, SN(a), C, and C;. We have
R4 C Lg and (p,v) € Ry imply b(F(,, »)) = d. Also,

(1;A) € RgN [Ca U SN(a) \ Cy] imply b(F{,,5) = d;

(f) Associated with ¢ = a_b,a there is a curve C;, tangent to Gy, 4at the
point Q4 € CcNCh, 4, and such that (u,v) € C. imply a(F, y)) = c.

Figures (20),(21),(22),(23) and (24) displays the properties in 4.3.1.

Remark 4. (i) Let v(a,a_bya) be the curve which start in P(a,b), follows
Ca up to Qp, 4 and then follows C,_p, 4. We have that the sequence of curves

{Ca_b,am; me N} converges to  ~y(a,a_bia);

gi) Let ~(a,bia) be the curve which start in P(a,b), follows C, up
to Qp,q and then follows Cjy, .. We have that the sequence of curves

{Chyama_, m € N} converges to v(a,bia);

gii) Let ~v(b,a_b) be the curve which start in P(a,b), follows Cj up
to QQ,_p and then follows C, . We have that the sequence of curves

{Ca_tpmp,; m € N} converges to y(b,a_b);

CSiv) Let v(b,bya_b) be the curve which start in P(a,b), follows Cy up
to Qq,p and then follows Cy, q_p. We have that the sequence of curves
{Ch,a_vm, m € N} converges to (b, bya_b);

(v) The same construction that we did here can be done for any a € A%,
b € B such that C, N Cy, # 0.

4.3.2 We will say that f € DMy satisfy the axiom A if:
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(i) All the attracting periodic point of f are hyperbolic and
(ii) The complement of the stable manifolds of the attracting periodic
orbits, in [f(07), f(07)], is an hyperbolic set.

Lemma 12. Let a € A and b € L such that C, N Cy # 0. There is a
neighborhood U(a,b) C R? of the point P(a,b) such that

m({(u,A) € U(a,b); F,,) do not satisfy axiomA}) = 0.
That is; the measure of the bifurcation in U(a,b) in zero.

Proof This result follows as similar results in [19] or [34].

4.4. Doubling Periods

Let us consider a € AL and b € 5 such that C, N Cj, # 0.
We will use ag = a, by = b. Let us construct the following sequences:

ant1 = (an)—(bn)y ; and byy1 = (bn) 4 (an) .

We have )
ag >a1 >ag>...> lim a, =c
n—oo

b0<b1<b2<...<7}Lrgobn:d

We will call the sequence (ay,, b,) the doubling period sequence with starting
point (ag, bg). The pair (¢, d) will be called the target of the doubling period
with starting point (ag, bo).

Lemma 13. Associated with ¢ (resp. d ) there is a curve C, ( resp. Cqy)
which is the limit of the curves C,,, (resp. Cy, ). Moreover C.NCy contains
a unique point P(c,d).

For (u,\) € C. we have a(F(, ) = c and for (u,\) € Cyg we have
b(Fun) = d.

For instance for ag = 01, by = 10, we have:
a; =0011,a = 00101101, a3 = 0010110011010011,

as =00101100110100101101001100101101, abd

by = 1100, b = 11010010, b3 = 1101001100101100,

by =1101001100101101010110011010010, Cop1p1101.
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Associated to this doubling period we have the following picture.

Ca

g

Chipinoto

S

4.5. Tails

Lemma 14. a) Assume a € A and d € Mazy is a non-periodic se-
quence such that C, N Cy # ﬁ?see figre 25).

There is a curve C,_gq, which “born” in {P(a,d)} = C, N Cy, tangent
to Cy such that P(a,d) € Cy_gq and (1, \) € Cy_q imply a(F{, ) =
a_d.

b) Assume b € L and ¢ € Maxs Is a non-periodic sequence such that
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C.NCy # 0.

There is a curve Cy_ ., which “born” in {P(c,d)} = C. N Cy, tangent
to C. at this point such that P(c,d) € Cy, . and (u, \) € Cy, . imply
b(Fu,4)) = byc (see figure 26).

We let the proof of this lemma to the reader.

Ca_li
Ca
Figure 25:
C.
Ces
P(c.d) /
7 Cs
SN(b)
Figure 26:

The figures (26)and (27) displays these facts.

4.6. Entropy zero
In this section we will make (following [23]) some remarks concerning the
set

EZ = {(,\); h(Fiun) =0}

Here, h(f) means the topological entropy of the map f € DMj.
a) Assume a € AL, b = b(a). We have

int(L, N Ry) C int(EZ)
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In fact, in this situation the set 3, is formed by the iterations o*(a) ,i =

1,-+-,#per(a) — 1 and their preimages under the map o.
b) Assume a € AL, b = b(a) and {P(a,b)} = C, N Cy then P(a,b) €
int(EZ).

In fact, there is a neighborhood of the point P(a, b), which is covered by
the union L,UL,_yU{L.;c € A(a,b)UB(a,b)}U{C,;c € A(a,b) U B(a,b)}.
( here A(a,b) and B(a,b) where defined in 4.3.1. It is clear that for any
c € A(a,b) U B(a,b)} we have that the set X, 4 is formed by the iterations
o'(c)i =1, -+ ,#per(c) — 1 and their preimages under the map o, here
d = sup{o’(c);i € N}.

c) Assume a € AL, b = b(a) then

)

int(La7Q U Rb+2) C int(EZ).

In fact, if (u,v) € int(L, p) we have that a(u,v) = a and b(p,v) =
sup{c’(a)i € N}.
d) Assume a € AL, b = b(a) then

LoNCy,q CEZ\int(EZ)

and —
RyN Ca,l_) c FEZ \ int(EZ)

In fact, given any (u,v) € Ly N Cy,a we have that there is a small
neighborhood V' (u,v) of the point (u,r) which is divided by the curve
Ch,q in two disjoint pieces, one of them, included in int(FZ) and the
other included in the interior of the positive entropy set.

All the next results, in this section, follows in a similar way.

e) Let a € AL, b = b(a) and (P(a,b),Qq_p) C Cp be the open interval
whose boundary points are P(a,b) and Q,_p then

(P(a,b),Qq,_p) C int(EZ).

f) Let a € AZ, b = b(a) and (P(a,b),Qp,q) C Cq be the open in-
terval whose boundary points are P(a,b) and Qy, o then (P(a,b),Qp,qa) C
int(EZ).

g) Also, we have

{(1,0); 0 < p <1} Cint(EZ)

d
o {(0,v); 0<v <1} Cint(EZ).
M :

oreover (1,0) € [EZ \ int(EZ)]
and

(0,1) € [EZ \ int(EZ)).
h) Let a € A, b =b(a). For any (i, v) such that

a(F(,u’)\)) <a_b and b(F(,u’/\)) >b
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or
(F(,u ) <a- b and b(F(‘u’)\)) >b

)
we have that (u, \) € int{(u, \); h(F(,») >0}
i) Let a € A°° b=b(a). For any (u,r) such that

a(Fiun) <a and  b(Fy)) > bia

or
a(Fun) <a and  b(F(, ) > bia

We have that (p, A) € int{(p, A); h(F(,.x)) # 0}.

j) Let a € AZ, b = b(a). Denote by B(a,b) € R? the point where the
curves C, and Cj, born. Let SN (a,b) = C,NSN(b); SN(a,b) = C,NSN(a).
We have that the intervals [B(a,b), SN(a,b)[C C, and [B(a,b), SN(a,b)|
are contained in int({(x, A); h(F,n) =

k) Let
Cg_{<1+_ V;ﬁ) M}
and
1+4/14+4
o ().l
We have,

(Co\{(1,0)}) U (CL\{(0,1)}) € int({(u, 2); h(Fpn)) 7 03)-
1) Let

1++/14+4v
Lo = {(uv); n> Y sy,
1++/14+4v
Rl:{(ﬂvl/)a’/vaﬂzo}n
Loy = {(p,v), a(p,v) = 01},
and
Rig = {(p,v), b(u,v) = 10}.
‘We have

int(Lo \ Rug) Uint(Ry \ Log) € int({(1,1); h(Fly) # 0}).

From al] of the abovi rem]llts it is cle%ir that EZ is an arc-connected set.
We do not know if it 1s ocal y connecte
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4.7. Non-zero measure for the Bifurcation

The result in this subsection is a consequence of a result proved by Rovella
in [36]. We established it here only for the sake of completness.

Let a € Ming and b € Maxo be eventually periodic sequences such that
CoNCy #0. Let CoNCp ={P(a,b)} and U(a,b) be any neighborhood of
P(a,b). We have

Lemma 15. m({(y,v) € U(a,b); F{,,) is not AzA}) > 0.

As a consequence of this result we get

Corollary 2. Let (u,v) € (EZ \ int(EZ)) and U(u,\) be any neighbor-
hood of (1, \). We have

m({(a, B) € U(u, A); Flap) is not Az.A}) > 0.

Proof: (i, \) can be approximated by a sequences (pn, V5, ) as in the Lemma
15.

4.8. Tales in Ly and R;

a) Associated to b = 10 there is a curve Cig C Lo such that (1,0) €
Chg ;this curve is tangent to Cp at (1,0) and (u,v) € Cig imply b(F(, x)) =
10.

__b) Associated to a = 01 there is a curve Co; C Ry that satisfy (0,1) €
Coy ; it is tangent to C1 and (0, 1); (u,v) € Cop imply a(F{,,5)) = 01;

c) Let ¢ig :]1,00[— R denote the map that satisfy Graph(¢19) = Cip.
We have

{(v); b(Frun) =10} = {(1,v); 0 <v < ig(p); p> 1}

d) Let o1 :]1, 00[— R denote the map that satisfy Graph(yo1) = Co;.
We have

{(,v); alFun) =01} = {(p,v); 0<p <por(v), v>1}

e) Let b € BY and {P(Q, b)} = Cgﬂ Cp.

There is a curve Cp g C Lg such that P(0,b) € %; Cy, o is tangent
to Cp at P(0,b) and (p, A) € Cp, o imply b(F{, ) = b+0.

f) Let P(0,b) = (o, Yuop) and @p. g :Jpop, 0o[— R be the map that
satisfy Graph(gp, o) = Cp,0-

Let ¢p : (g, 00[— R be the map that satisfy Graph(ys) = Lo N Cy.

Clearly ¢y(1t) < pp,0(1), 1> pop-
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W () M) =0t} = (10 ) <0 % )
g) Let a € A and {P( } 2N Cy. There is a curve C,_1 C Ry

a,
such that P(a,1) € C,_1; Cq_1 is tangent to Cy at P(a,1) and (1, \) €
Co_1 imply a(F,) =a-1.

-1
a—

h) Let P(a,1) = (fa1,Va,1) and @q_1 :|Va,1,00[— R, @4 : [Va1,00[— R
be the maps that satisfies:

Graph(¢q_1) =Cs_1  and  Graph(p,) = R1 N C,.

Clearly ¢q(v) < pq_1(v)for any v > v,_ ;.

;Nehave{(u, v); a(Fup) = a-1} = {(n.v); ¢a(v) <p < ga1(v), v>
Va,1g-

4.9. Bifurcations in 1 U Ly

In the same way as was proved in [19] or as in [34] we can prove.

Lemma 16. m({(p,v) € R1 U Lo; F(,,,) do not satisfy Az.A}) = 0.

4.10. Density of Axiom A Systems.

A consequence of our’s and Rovella’s result is:

Lemma 17. {(p,v); F|,,) satisfy Az.A} is a dense set in Rj x Ry .

4.11. The Global Picture

Taking together all the results in this section the global picture of the
bifurcation diagramme is as in figure 27.

&
1 ‘-u.}hIL y
Ligy JI Li' R!
Koo
Ry
0
Fy

Figure 27:
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5. The general case

Let us consider the five parameter family of maps Fiq ¢, ¢y ) (R\{0}) —
Ru>0,v>0a >1,¢c0>0,c0>01in DMy given by:

. —H + Clxav z>0
Fllaser,co ) (T) = { v—c(-2)% x<0

We have to observe that all the previous results, for the quadratic family,
are (still) true when we fix generic values of the parameter a,c; and ;.
That is, the bifurcation diagramme associated to any generic two parameter

family F,, ) = Fla,c;,cz,u,,)i8Up to an homeomorphism, the same as the

given for the quadratic family.

6. Application to Geometric Vector fields

Assume Xo: U C R® — R3 is a three dimensional vector field that satisfies:

a) 0 € U is an hyperbolic singularity of the vector field X, whose eigen-
values satisfies — A1 < —Xo < 0 < Ag;

b) The components, v; and 2, of the set (W' \ {0}) satisfies v C W,
72 C W

c¢) There is a transversal section, ¥ C U, such that: ¥ is transversal to
Wi and ¥\ W5 = £1 U Xg are two disjoint sets in ¥ that satisfies:

7T1(21) C X1 and 7T2(22) C X9

where 7;:%; — X ,i = 1,2 is the first return map associated to the
respective cross section.

Let Uy C X" (U, R?) be a neighborhood of the vector field Xg in X" (U, R?) =
{X:U C R® — R? X is C"} with the usual C"-topology.

In the above conditions there are codimension one submanifold, N7, N C
Up; such that:

a) Y € N if and only if 7(Y) C Wy here o(Y) is the hyperbolic
singularity, near 0, that correspond to the vector field Y. Also,
(Woryy \ {o(Y)}) = m(Y) Un2(Y), where v;(Y) is the natural ex-
tension of the component ~;;

b) (U \ N;) = U UUS where Y € U] if and only if 71(31) € 31 and
Y € U2 if and only if mo(X2) C X and

¢) N is transversal to N3 .
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Finally we will assume that X can be foliated by one-dimensional sub-
manifolds {F,; « € X} such that

(i) z € Wy NYE imply F, = Wy N3 and

(ii) 7T1(.7:x) C .7:,”(95), T €.

In this situation the interesting part of the bifurcation theory, for el-
ements in Uy, is located in L{lz N Z/{ZI. In this set we can apply the results
in Sections 3,4 and 5 to obtain, bis a bis, similar results for generic two
parameter families of vector fields in Uj.
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