Corrigendum

Corrigendum to "An Extension of Sheffer Polynomials"

[Proyecciones Journal of Mathematics, Vol. 30, No 2, pp. 265 - 275, 2011]

A. K. Shukla, S. J. Rapeli

Department of Mathematics,

S. V. National Institute of Technology, Surat-395 007, India

E-mail: ajayshukla2@rediffmail.com, shrinu0711@gmail.com

We regret to announce that there are some mathematical errors in theorem 2.3 and theorem 2.4. Our aim to correct and modify the theorem 2.3 and theorem 2.4.
Brown [1] stated that $\left\{B_{n}(x)\right\}$ is a polynomial sequence which is simple and of degree precisely n . $\left\{B_{n}(x)\right\}$ is a binomial sequence if

$$
B_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k}(x) B_{k}(y) \quad n=0,1,2, \ldots
$$

and a simple polynomial sequence $\left\{P_{n}(x)\right\}$ is a Sheffer sequence if there is a binomial sequence $\left\{B_{n}(x)\right\}$ such that

$$
P_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k}(x) P_{k}(y) \quad n=0,1,2, \ldots
$$

Theorem 2.3: Let $p_{n}(x, y)$ be symmetric, a class of polynomials in two variables and Sheffer A-type zero which belong to the operator $J(D)$ and have the generating function as equation (1.11) of theorem 2.1 (See [2]). There exist sequences $\alpha_{k}^{(s)}, \mu_{k}$ and η_{k}, independent of x, y and n, such that for all $n \geq 1$,

$$
\begin{equation*}
n p_{n}(x, y)=\sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\alpha_{k}^{(i)}+x \varepsilon_{i}^{k+1} \mu_{k}+y \varepsilon_{i}^{k+1} \eta_{k}\right) p_{n-k-1}(x, y), \tag{1.15}
\end{equation*}
$$

where $\mu_{k}=(k+1) g_{k}$ in terms of g_{k} of equation (1.8) and $\eta_{k}=(k+1) h_{k}$, in terms of h_{k} of equation (1.9).

Proof: Let (See [2])

$$
\begin{gathered}
\sum_{n=0}^{\infty} n p_{n}(x, y) t^{n}=t\left[\sum_{i=1}^{r}\left\{A_{i}^{\prime}(t)+x \varepsilon_{i} G^{\prime}\left(\varepsilon_{i} t\right) A_{i}(t)+y \varepsilon_{i} H^{\prime}\left(\varepsilon_{i} t\right) A_{i}(t)\right\}\right. \\
\left.\quad \exp \left(x G\left(\varepsilon_{i} t\right)\right) \exp \left(y H\left(\varepsilon_{i} t\right)\right)\right] \\
=t\left[\sum_{i=1}^{r}\left\{\frac{A_{i}^{\prime}(t)}{A_{i}(t)}+x \varepsilon_{i} G^{\prime}\left(\varepsilon_{i} t\right)+y \varepsilon_{i} H^{\prime}\left(\varepsilon_{i} t\right)\right\}\right. \\
\left.A_{i}(t) \exp \left(x G\left(\varepsilon_{i} t\right)\right) \exp \left(y H\left(\varepsilon_{i} t\right)\right)\right] \\
=\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\alpha_{k}^{(i)}+x \varepsilon_{i}^{k+1} \mu_{k}+y \varepsilon_{i}^{k+1} \eta_{k}\right) p_{n-k-1}(x, y) t^{n} .
\end{gathered}
$$

Thus we get

$$
n p_{n}(x, y)=\sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\alpha_{k}^{(i)}+x \varepsilon_{i}^{k+1} \mu_{k}+y \varepsilon_{i}^{k+1} \eta_{k}\right) p_{n-k-1}(x, y)
$$

This gives the proof of statement.
Theorem 2.4: A necessary and sufficient condition that $p_{n}(x, y)$ be of Sheffer A-type zero, there exists sequence g_{k} and h_{k}, independent of x, y and n, such that

$$
\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) p_{n}(x, y)=\sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\varepsilon_{i}^{k+1} g_{k}+\varepsilon_{i}^{k+1} h_{k}\right) p_{n-k-1}(x, y),
$$

where $p_{n}(x, y)$ is symmetric and a class of polynomials in two variables.
Proof: Let (See [2])

$$
\sum_{n=0}^{\infty}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) p_{n}(x, y) t^{n}=\sum_{i=1}^{r}\left\{G\left(\varepsilon_{i} t\right)+H\left(\varepsilon_{i} t\right)\right\} A_{i}(t) \exp \left(x G\left(\varepsilon_{i} t\right)\right) \exp \left(y H\left(\varepsilon_{i} t\right)\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{r} \sum_{k=0}^{\infty}\left(\varepsilon_{i}^{k+1} g_{k}+\varepsilon_{i}^{k+1} h_{k}\right) t^{k+1} \sum_{n=0}^{\infty} p_{n}(x, y) t^{n} \\
& =\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\varepsilon_{i}^{k+1} g_{k}+\varepsilon_{i}^{k+1} h_{k}\right) p_{n-k-1}(x, y) t^{n} .
\end{aligned}
$$

Thus

$$
\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) p_{n}(x, y)=\sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\varepsilon_{i}^{k+1} g_{k}+\varepsilon_{i}^{k+1} h_{k}\right) p_{n-k-1}(x, y) .
$$

This is the proof of theorem 2.4.

References:

1. J. W. Brown, On multivariable Sheffer sequences, J. Math. Anal. Appl., Vol. 69, (1979), pp.398-410.
2. A. K. Shukla and S. J. Rapeli, An Extension of Sheffer Polynomials, Proyecciones Journal of Mathematics, Vol. 30, No. 2 (2011), pp. 265275.
