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Abstract

In the present paper we characterize, in terms of characters, multi-
plicative functions, the continuous solutions of some functional equa-
tions for mappings defined on a monoid and taking their values in a
complex Hilbert space with the Hadamard product. In addition, we
investigate a superstability result for these equations.
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1. Introduction

Let M be a monoid i.e., is a semigroup with an identify element that we
denote by e and σ, τ :M →M are two involutive automorphisms. That is
σ(xy) = σ(x)σ(y), τ(xy) = τ(x)τ(y) and σ(σ(x)) = x, τ(τ(x)) = x for all
x, y ∈M. By a variant of Wilson’s functional equation on M we mean the
functional equation

f(xσ(y)) + f(τ(y)x) = 2f(x)g(y), x, y ∈M,(1.1)

where f, g :M → C are the unknown functions. A special case of Wilson’s
functional equation is d’Alembert’s functional equation:

f(xσ(y)) + f(τ(y)x) = 2f(x)f(y), x, y ∈M,(1.2)

The solutions of equation (1.2) are known [2]. Further contextual and
historical discussion on the functional equation (1.1) and (1.2) can be found,
e.g., in [6.2].

The present paper studies an extension to a situation where the un-
known functions f, g map a possibly non-abelian group or monoid into a
complex Hilbert space H with the Hadamard product. Our considerations
refer mainly to results by Rezaei [4], Zeglami [11]. It has been proved [3]
that the functional equation (1.2) with σ = id is superstable in the class of
functions f : G→ C, if every such function satisfies the inequality

|f(xy) + f(τ(y)x)− 2f(x)f(y)| ≤ for all x, y ∈ G,

where is a fixed positive real number. Then either f is a bounded function
or

f(xy) + f(τ(y)x) = 2f(x)f(y), x, y ∈ G.

Let H be a separable Hilbert space with a orthonormal basis {en, n ∈
N}. For two vectors x, y ∈ H, the Hadamard product, also known as the
entrywise product on the Hilbert space H is defined by

x ∗ y =
∞X
n=0

hx, enihy, enien, x, y ∈ H.(1.3)

The Cauchy-Schwarz inequality together with the Parseval identity en-
sure that the Hadamard multiplication is well defined. In fact,

kx ∗ yk ≤ (
∞X
n=0

|hx, eni|2)
1
2 (

∞X
n=0

|hy, eni|2)
1
2 = ||x||||y||.(1.4)
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The purpose of this work is first to give a characterization, in terms of
multiplicative functions, the solutions of the Hilbert space valued functional
equation by Hadamard product:

f(xσ(y)) + f(τ(y)x) = 2g(x) ∗ f(y), x, y ∈M.(1.5)

When f we determine the solutions of the functional equation

f(xσ(y)) + f(τ(y)x) = 2f(x) ∗ g(y), x, y ∈M,(1.6)

where f, g : M → H are the unknown functions. Second, we determine
a characterization of the following d’Alembert-Hilbert-valued functional
equation:

f(xσ(y)) + f(τ(y)x) = 2f(x) ∗ f(y), x, y ∈M.(1.7)

Throughout the paper, N, R and C stand for the sets of positive inte-
gers, real numbers and complex numbers, respectively. We let G denote a
group and S denote a semigroup i.e., a set with an associative composition
rule.

A function A : M → C is called additive, if it satisfies A(xy) =
A(x) +A(y) for all x, y ∈M.

A multiplicative function on M is a map χ : M → C such that
χ(xy) = χ(x)χ(y) for all x, y ∈M.

A monoid M is generated by its squares if for every x ∈ Iχ, x =
x21x

2
2 · · ·x2n for some x1, x2, · · · , xn ∈M.

A character on a group G is a homomorphism from G into the mul-
tiplicative of non-zero complex numbers. While a non-zero multiplicative
function on a group can never take the value 0, it is possible for a multiplica-
tive function on a monoid M to take the value 0 on a proper, non-empty
subset of M. If χ :M → C is multiplicative and χ 6= 0, then

Iχ = {x ∈M/χ(x) = 0}

is either empty or a proper subset of M. The fact that χ is multiplicative
establishes that Iχ is a two-sided ideal inM if not empty (for us an ideal is
never the empty set). It follows also that M \ Iχ is a subsemigroup of M.

Let C(M) denote the algebra of continuous functions from M into C.
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2. Solutions of (1.5) and (1.6)

In this section, we solve the functional equation (1.5) by expressing its
solutions in terms of multiplicative functions.

Theorem 2.1. Let M be a monoid, let σ, τ :M →M be involutive auto-
morphisms. Assume that the functions f, g : M → H satisfy (1.5). Then,
there exists a positive integer N such that

f(x) =
PN

n=1hf(x), enien and x→ hg(x), eN+ki is arbitrary

for all x ∈M and k > 0. Furthermore, for every k ∈ {1, 2, ...., N}, we have
the following possibilities:(
hg(x), eki = χk(x)+χk◦σ◦τ(x)

2

hf(x), eki = αk(χk(x)+χk◦σ◦τ(x))
2

;

(
hg(x), eki is an arbitrary function,
hf(x), eki = 0

for all x ∈ M, where χk is a non-zero multiplicative function of M such
that χk ◦ σ ◦ τ = χk ◦ τ ◦ σ and αk ∈ C\{0}. If M is a topological monoid
and f ∈ C(M), then χk, χk ◦ σ ◦ τ ∈ C(M).

Proof. For every integer k ≥ 0, consider the functions fk, gk : M → C
defined by

fk(x) = hf(x), eki and gk(x) = hg(x), eki for all x ∈M.

Since (f, g) satisfies (1.5), for all x, y ∈M, we have

+∞X
k=0

{hf(xσ(y)), eki+ hf(τ(y)x), eki}ek =
+∞X
k=0

h{f(xσ(y)) + f(τ(y)x)}, ekiek

= f(xσ(y)) + f(τ(y)x)

= 2g(x) ∗ f(y)

= 2
+∞X
k=0

hg(x), ekihfi,

This yields for all k ∈ N,

fk(xσ(y)) + fk(τ(y)x) = 2gk(x)fk(y) for all x, y ∈M.(2.1)
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If we put y = e in (2.1), we find that fk(x) = fk(e)gk(x). So, if we take
αk = fk(e), equation (2.1) can be written as follows:

αkgk(xσ(y)) + αkgk(τ(y)x) = 2αkgk(x)gk(y) for all x, y ∈M.

Then, either αk = 0 or gk is a solution of equation (1.6). In view of [2,
Theorem 3.2], one of the following statements holds:
(a) We have that

fk = 0 and gk is an arbitrary function.

(b) There exists a multiplicative function χk such that

gk(x) =
χk(x)+χk◦σ◦τ(x)

2 and fk(x) =
αk(χk(x)+χk◦σ◦τ(x))

2 for x ∈M.

If H is infinite-dimensional, then

hg(x), eki = gk(x)→ 0 as k → +∞
for every x ∈M. Since gk(e) = 1, statement (b) is not possible for infinitely
many positive integers k. Hence, there exists some positive integer N such
that fk = 0 for every k > N. Thus, gk is an arbitrary function for any
k > N, f can be represented as

f(x) =
NX
n=1

hf(x), enien,

and the expressions of the component functions fn and gn, 1≤ n ≤ N,
of f and g come from statements (a) and (b) above. In the case where H is
finite- dimensional, the proof is clear.

As a consequence of Theorem 2.1 we derive formulas for the solutions
of d’Alembert’s Hilbert space valued functional equation (1.7). 2

Corollary 2.2. Let M be a monoid, let σ, τ : M → M be involutive
automorphisms. Assume that the functions g : M → H satisfy (1.7).
Then, there exists a positive integer N such that

f(x) =
PN

n=1hf(x), enien and x→ hg(x), eN+ki is arbitrary

for all x ∈M and k > 0. Furthermore, for every k ∈ {1, 2, ...., N}, such that

g(x) =
1

2

NX
k=1

k(χk(x) + χk ◦ σ ◦ τ(x))ek, x ∈M,
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where k = 1 or 0 for every k ∈ {1, 2, ....., N}. for all x ∈M, where χk is a
non-zero multiplicative function of M such that χk ◦ σ ◦ τ = χk ◦ τ ◦ σ

IfM is a topological monoid and f ∈ C(M), then χk, χk◦σ◦τ ∈ C(M).

Proof. The proof follows by putting f = g in Theorem 2.1. 2

Corollary 2.3. Let M be a monoid, let τ : M → M be involutive auto-
morphisms. Assume that the functions f, g :M → H satisfy

f(xy) + f(τ(y)x) = 2g(x) ∗ f(y).

Then, there exists a positive integer N such that

f(x) =
PN

n=1hf(x), enien and x→ hg(x), eN+ki is arbitrary

for all x ∈M and k > 0. Furthermore, for every k ∈ {1, 2, ...., N}, we have
the following possibilities:(
hg(x), eki = χk(x)+χk◦τ(x)

2

hf(x), eki = αk(χk(x)+χk◦τ(x))
2

;

(
hg(x), eki is an arbitrary function,
hf(x), eki = 0

for all x ∈ M, where χk is a non-zero multiplicative function of M and
αk ∈ C\{0}.

If M is a topological monoid and f ∈ C(M), then χk, χk ◦ τ ∈ C(M).

Proof. The proof follows by putting σ = id in Theorem 2.1. 2

We complete this section with a result concerning Wilson Hilbert space
valued functional equation (1.6).

Theorem 2.4. Let M be a monoid which is generated by its squares,
let σ, τ : M → M be involutive automorphisms. Assume that the pair
f, g : M → C, satisfy Wilson’s Hilbert valued functional equation (1.6).
Then, there exists a positive integer N such that

f(x) =
NX
n=1

hf(x), enien and hg(x), eN+ki is arbitrary

for all x ∈M and k > 0. Furthermore, for every k ∈ {1, 2, ...., N}, we have
the following possibilities:
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(i)(
hg(x), eki is an arbitrary function,
hf(x), eki = 0

;

(
hg(x), eki = χk(x)+χk◦σ◦τ(x)

2 ,
hf(x), eki = αkχk ◦ σ(x)

where χk : M → C is a non-zero multiplicative function with χk ◦ σ ◦ τ =
χk ◦ τ ◦ σ. and for some αk ∈ C\{0}.

(ii) There exists a non-zero multiplicative function χk : M → C with
χk ◦ σ ◦ τ = χk ◦ τ ◦ σ such that

gk =
χk + χk ◦ σ ◦ τ

2
.

Furthermore, we have
(1) If χk 6= χk ◦ σ ◦ τ, then

fk = αkχk ◦ σ + βkχk ◦ τ

for some αk, βk ∈ C\{0}.
(2) If χk = χk ◦ σ ◦ τ, then there exists a non-zero additive function

Ak :M \ Iχk◦σ → C with Ak ◦ τ = −Ak ◦ σ such that

fk(x) =

(
(αk +Ak(x))χk(σ(x)) for x ∈M \ Iχk◦σ
0 for x ∈ Iχk◦σ

for some αk,∈ C.
Conversely, if f and g have the forms described above, then the pair

(f, g) is a solution of equation (1.6). Moreover, ifM is a topological monoid
generated by its squares, and f, g ∈ C(M), then χk, χk◦σ, χk ◦τ, χk ◦σ◦τ ∈
C(M), while Ak ∈ C(M \ Iχk◦σ).

Proof. We proceed as in the proof of Theorem 2.1. For every integer
k ≥ 0, we consider the functions fk, gk :M → C, defined by

fk(x) = hf(x), eki and gk(x) = hg(x), eki for x ∈M.

Since the pair (f, g) satisfies (1.6), for all k ∈ N we have

fk(xσ(y)) + fk(τ(y)x) = 2fk(x)gk(y) for all x, y ∈M.(2.2)

By [6,Theorem 3.4] we infer that there are only the following cases
(a)

fk = 0 and gk is an arbitrary function.
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(b) There exists a non -zero multiplicative function χk :M → C such that

fk = αkχk ◦ σ and gk =
χk + χk ◦ σ ◦ τ

2

for some αk ∈ C\{0}.
(c) There exists a non-zero multiplicative function χk : M → C with

χk ◦ σ ◦ τ = χk ◦ τ ◦ σ such that

gk =
χk + χk ◦ σ ◦ τ

2
.

Furthermore, we have.

(i) If χk 6= χk ◦ σ ◦ τ, then

fk = αkχk ◦ σ + βkχk ◦ τ

for some αk, βk ∈ C\{0}.
(ii) If χk = χk ◦ σ ◦ τ, then there exists a non-zero additive function

Ak :M \ Iχk◦σ → C with Ak ◦ τ = −Ak ◦ σ such that

fk(x) =

(
(αk +Ak(x))χk(σ(x)) for x ∈M \ Iχk◦σ
0 for x ∈ Iχk◦σ

for some αk ∈ C. Conversely, the functions given with properties satisfy
the functional equation (2.2). The continuation of the proof depends on
the dimension of H. In fact, if H is infinite-dimensional, then

hg(x), eki = gk(x)→ 0 as k → +∞

for every x ∈ M. Statements (b) and (c) are not possible for infinitely
positive integers n. Hence, there exists some positive integer N such that
fk = 0 for every k > N. Thus, f can be represented as

f(x) =
NX
n=1

hf(x), enien,

gk is an arbitrary function for any k > N, and expressions of the compo-
nent functions fn and gn, 1≤ n ≤ N of f and g follow from the previous
discussion. In the case where H is a finite-dimensional space, the proof is
clear. 2
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Corollary 2.5. Let M be a monoid which is generated by its squares, let
τ :M →M be an involutive automorphism, and let the pair f, g :M → H
satisfy the functional equation

f(xy) + f(τ(y)x) = 2f(x) ∗ g(y), x, y ∈M.

Then, there exists a positive integer N such that

f(x) =
PN

n=1hf(x), enien and x→ hg(x), eN+ki is arbitrary

for all x ∈M and k > 0. Furthermore, for every k ∈ {1, 2, ...., N}, we have
the following possibilites:

(i)

(
hg(x), eki is an arbitrary function,
hf(x), eki = 0

(ii) There exists a non-zero multiplicative function χk : M → C such
that

gk =
χk + χk ◦ τ

2
.

Furthermore, we have.

(1) If χk 6= χk ◦ τ, then

fk = αkχk + βkχk ◦ τ,

for some αk, βk ∈ C\{0}.
(2) If χk = χk◦τ, then there exists an additive functionAk :M\Iχk → C

with Ak ◦ τ = −Ak such that

fk(x) =

(
(αk +Ak(x))χk(x) for x ∈M \ Iχk
0 for x ∈ Iχk

for some αk ∈ C.
Conversely, if f and g have the forms described above, then the pair

(f, g) is a solution. Moreover, ifM is a topological monoid generated by its
squares, and f, g ∈ C(M), then χk, χk ◦ τ ∈ C(M), while Ak ∈ C(M \ Iχk).

Proof. The proof follows by putting σ = id in Theorem 2.4. 2
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3. Superstability of Hilbert valued cosine type functional equa-
tions

The main result of this section is Theorem 3.3 that contains a superstability
result for the functional equation (1.6). For the proof of our result we will
begin by pointing out a superstability result for the equation

f(xy) + f(σ(y)x) = 2f(x)g(y)(3.1)

where f, g : G→ C are the unknown functions.

Proposition 3.1. Let δ > 0 be given, let M be a monoid and let σ is
an involutive morphism of M . Assume that the functions f, g : M → C
satisfies the inequality

|f(xy) + f(σ(y)x)− 2f(x)g(y)| ≤ δ for all x, y ∈M,

and that g is unbounded. Then, the ordered pair (f, g) satisfies equation
(3.1).

Proof. The proof is part of the proof of [3,Theorem 2.1 and Theorem
3.7] if we put χ = 1 that deals with M being a group. 2

Corollary 3.2. Let δ > 0 be given and let G be a monoid. Assume that
the function f : G→ C satisfies the inequality

|f(xy) + f(σ(y)x)− 2f(x)f(y)| ≤ δ for all x, y ∈ G.

Then, either

|f(x)| ≤ 1 +
√
1 + 2δ

2
for all x ∈ G,

or f has the form

f =
µ+ µ ◦ σ

2
,

where µ is a multiplicative function.

Proof. The proof follows immediately from Propositon 3.1 and Theorem
[1, Theorem 4]. 2
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Theorem 3.3. Let δ > 0 be given and let M be a monoid. Assume that
the functions f, g :M → H satisfy the inequality

||f(xy) + f(σ(y)x)− 2f(x) ∗ g(y)|| ≤ δ for all x, y ∈M.(3.2)

Then, either

(i) there exists k ≥ 1 such that the function x 7→ hg(x), eki is bounded,
or

(ii) the pair (f, g) is a solution of the functional equation:

f(xy) + f(σ(y)x) = 2f(x) ∗ g(y).(3.3)

Proof. Suppose that the pair (f, g) satisfies (3.2). By applying the Par-
seval identity and the definition of Hadamard product with the inequality
(3.2), we find that the scalar valued functions fk, gk defined by

fk(x) = hf(x), eki and gk(x) = hg(x), eki for x ∈M,

satisfy the inequality

|fk(xy) + fk(σ(y)x)− 2fk(x)gk(y)| ≤ δ for all x, y ∈M.

According to Proposition 3.1, for all k ∈ N, we have that either the
function x 7→ hg(x), eki is bounded or the pair (fk, gk) is a solution of (3.1).
Then, we conclude that the pair (f, g) satisfies equation (3.3) if assertion
(i) fails. 2

In [4] it was proved that if g : H → H is surjective, then every com-
ponent function x 7→ hg(x), eni is unbounded. By applying Theorem (3.3),
this leads to the following result.

Corollary 3.4. Let δ > 0 be given. Assume that functions f, g : H → H,
where g is surjective, satisfy the inequality

||f(xy) + f(σ(y)x)− 2f(x) ∗ g(y)|| ≤ δ for all x, y ∈ H.

Then, the pair (f, g) satisfies the equation

f(xy) + f(σ(y)x) = 2f(x) ∗ g(y) for all x, y ∈ H.
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Proof. Since g is surjective, then every component function x 7→ hg(x), eni
is unbounded. Thus, the proof follows immediately from Theorem 3.3. 2

Corollary 3.5. Let δ > 0 be given and let G be a topological group.
Assume that the function g : G→ H satisfies the inequality

||g(xy) + g(σ(y)x)− 2g(x) ∗ g(y)|| ≤ δ for all x, y ∈ G.

Then, either there exists k ≥ 1 such that

|hg(x), eki| ≤
1 +
√
1 + 2δ

2
for all x ∈ G

or there exist a multiplicative function χk : M → C\{0} and a positive
integer N such that

g(x) =
1

2

NX
n=1

n(χk(x) + χk ◦ σ(x))en, for all x ∈ G,

where n = 1 or 0 for every n ∈ {1, 2, ....., N}.

Proof. If we put f = g in Theorem 3.3, we immediately have that either
there exists k ≥ 1 such that the function x 7→ hg(x), eki is bounded or g is
a solution of the equation

g(xy) + g(σ(y)x) = 2g(x) ∗ g(y), x, y ∈ G.

The remainder of the proof follows if we put χ = 1 from Corollary [3,
Corollary 3.8] and Corollary 2.3. 2

Corollary 3.6. Let δ > 0 be given and let G be a group with identity
element. Let g : G→ H such that

||g(xy) + g(yx)− 2g(x) ∗ g(y)|| ≤ δ for all x, y ∈ G.

Then either g is bounded or g is multiplicative.

Proof. From Corollary 2.2 and Corollary 2.5 and then using [3, Corollary
3.9]. 2
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