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Abstract

In this article we study the existence of positive periodic solutions
for a dynamic equations on time scales. The main tool employed here
is the Schauder’s fixed point theorem. The results obtained here extend
the work of Olach [12]. Two examples are also given to illustrate this
work.
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1. Introduction

In 1988, Stephan Hilger [8] introduced the theory of time scales (measure
chains) as a means of unifying discrete and continuum calculi. Since Hilger’s
initial work there has been significant growth in the theory of dynamic
equations on time scales, covering a variety of different problems; see [6, 7,
11] and references therein.

Let T be a periodic time scale such that t0 ∈ T. In this article, we
are interested in the analysis of qualitative theory of positive periodic solu-
tions of delay dynamic equations. Motivated by the papers [1]-[5], [9], [10],
[12] and the references therein, we consider the following delay dynamic
equation

x4 (t) + p (t)xσ (t) + q (t)x (τ (t)) = 0, t ≥ t0,(1.1)

Throughout this paper we assume that p, q : [t0,∞) ∩ T → R are rd-
continuous, τ : T→ T is increasing so that the function x (τ (t)) is well
defined over T. We also assume that τ : [t0,∞) ∩ T → [0,∞) ∩ T is rd-
continuous, τ(t) < t and limt→∞ τ(t) = ∞. To reach our desired end we
have to transform (1.1) into an integral equation and then use Schauder’s
fixed point theorem to show the existence of positive periodic solutions.

The organization of this paper is as follows. In Section 2, we introduce
some notations and definitions, and state some preliminary material needed
in later sections. We will state some facts about the exponential function
on a time scale as well as the Schauder’s fixed point theorem. For details
on Schauder theorem we refer the reader to [13]. In Section 3, we establish
our main results for positive periodic solutions by applying the Schauder’s
fixed point theorem. In Section 4, we present two examples to illustrate
our results. The results presented in this paper extend the main results in
[12].

2. Preliminaries

A time scale is an arbitrary nonempty closed subset of real numbers. The
study of dynamic equations on time scales is a fairly new subject, and
research in this area is rapidly growing (see [1]-[5], [9], [10], [12] and papers
therein). The theory of dynamic equations unifies the theories of differential
equations and difference equations. We suppose that the reader is familiar
with the basic concepts concerning the calculus on time scales for dynamic
equations. Otherwise one can find in Bohner and Peterson books [6, 7, 11]
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most of the material needed to read this paper. We start by giving some
definitions necessary for our work. The notion of periodic time scales is
introduced in Kaufmann and Raffoul [9]. The following two definitions are
borrowed from [9].

Definition 2.1. We say that a time scale T is periodic if there exist a
p > 0 such that if t ∈ T then t± p ∈ T. For T 6= R, the smallest positive
p is called the period of the time scale.

Example 2.2. The following time scales are periodic.

1. T =
S∞
i=−∞[2(i− 1)h, 2ih], h > 0 has period p = 2h.

2. T = hZ has period p = h.

3. T = R.

4. T = {t = k − qm : k ∈ Z, m ∈ N0} where, 0 < q < 1 has period
p = 1.

Remark 2.3 ([9]). All periodic time scales are unbounded above and be-
low.

Definition 2.4. Let T 6= R be a periodic time scale with period p. We
say that the function f : T→ R is periodic with period ω if there exists a
natural number n such that ω = np, f(t± ω) = f(t) for all t ∈ T and ω is
the smallest number such that f(t± ω) = f(t).

If T = R, we say that f is periodic with period ω > 0 if ω is the smallest
positive number such that f(t± ω) = f(t) for all t ∈ T.

Remark 2.5 ([9]). If T is a periodic time scale with period p, then σ(t±
np) = σ(t)±np. Consequently, the graininess function µ satisfies µ(t±np) =
σ(t ± np) − (t ± np) = σ(t) − t = µ(t) and so, is a periodic function with
period p.

Definition 2.6 ([6]). A function f : T → R is called rd-continuous pro-
vided it is continuous at every right-dense point t ∈ T and its left-sided
limits exist, and is finite at every left-dense point t ∈ T. The set of rd-
continuous functions f : T→ R will be denoted by

Crd = Crd(T) = Crd(T,R).
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Definition 2.7 ([6]). For f : T → R, we define f∆(t) to be the number
(if it exists) with the property that for any given ε > 0, there exists a
neighborhood U of t such that¯̄̄

(f(σ(t))− f(s))− f∆(t) (σ(t)− s)
¯̄̄
< ε |σ(t)− s| for all s ∈ U.

The function f∆ : Tk → R is called the delta (or Hilger) derivative of
f on Tk.

Definition 2.8 ([6]). A function p : T → R is called regressive provided
1 + µ(t)p(t) 6= 0 for all t ∈ T. The set of all regressive and rd-continuous
functions p : T → R will be denoted by R = R(T,R). We define the set
R+ of all positively regressive elements of R by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀t ∈ T}.

Definition 2.9 ([6]). Let p ∈ R, then the generalized exponential func-
tion ep is defined as the unique solution of the initial value problem

x∆(t) = p(t)x(t), x(s) = 1, where s ∈ T.

An explicit formula for ep(t, s) is given by

ep(t, s) = exp

µZ t

s
ξµ(v)(p(v))∆v

¶
, for all s, t ∈ T,

with

ξh(v) =

(
log(1+hv)

h if h 6= 0,
v if h = 0,

where log is the principal logarithm function.

Lemma 2.10 ([6]). Let p, q ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1,

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

(iii) 1
ep(t,s)

= eªp(t, s) where, ªp(t) = − p(t)
1+µ(t)p(t) ,

(iv) ep(t, s) =
1

ep(s,t)
= eªp(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),
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(vi)
³

1
ep(·,s)

´∆
= − p(t)

eσp (·,s)
.

Lemma 2.11 ([1]). If p ∈ R+, then

0 < ep(t, s) ≤ exp
µZ t

s
p(v)∆v

¶
, ∀t ∈ T.

The proof of the main results in the next section is based upon an
application of the following Schauder’s fixed point theorem.

Theorem 2.12 (Schauder’s fixed point theorem [13]). Let Ω be a closed,
convex and nonempty subset of a Banach space X. Let S : Ω→ Ω be a con-
tinuous mapping such that SΩ is a relatively compact subset of X. Then
S has at least one fixed point in Ω. That is there exists an x ∈ Ω such that
Sx = x.

3. The existence of periodic solutions

In this the section we will study existence of positive ω-periodic solution
of Eq. (1.1). In the next lemma and theorem we choose T ∈ T sufficiently
large that τ(t) ≥ t0 for t ≥ T .

Lemma 3.1. Suppose that there exists a rd-continuous function k : [T,∞)∩
T→ (0,∞) such that

p+ qk ∈ R+,
Z t+ω

t
ξµ(s) [ª (p(s) + q(s)k(s))]∆s = 0, t ≥ T.(3.1)

Then the function

f(t) = exp

µZ t

T
ξµ(s) [ª(p(s) + q(s)k(s))]∆s

¶
, t ≥ T,

is ω-periodic.

Proof. For t ≥ T we obtain f(t+ω)

= exp
³R t+ω

T ξµ(s) [ª(p(s) + q(s)k(s))]∆s
´

= exp
³R t

T ξµ(s) [ª(p(s) + q(s)k(s)]∆s
´
exp

³R t+ω
t ξµ(s) [ª(p(s) + q(s)k(s))]∆s

´
= f(t).

Thus the function f is ω-periodic. 2
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Theorem 3.2. Suppose that there exists a rd-continuous function k :
[T,∞) ∩T→ (0,∞) such that (3.1) holds andZ τ(t)

σ(t)
ξµ(s) [ª(p(s) + q(s)k(s))]∆s = log(k(t)), τ(t) ≥ T.(3.2)

Then Eq. (1.1) has a positive ω-periodic solution.

Proof. Let X = Crd([t0,∞)∩T,R) be the Banach space with the norm
kxk = supt≥t0 |x(t)|. With regard to Lemma 3.1 we define

M = max
t∈[T,∞)∩T

½
exp

µZ t

T
ξµ(s) [ª(p(s) + q(s)k(s))]∆s

¶¾
,

m = min
t∈[T,∞)∩T

½
exp

µZ t

T
ξµ(s) [ª(p(s) + q(s)k(s))]∆s

¶¾
.

(3.3)

We now define a closed, bounded and convex subset Ω of X as follows
Ω = {x ∈ X : x(t+ ω) = x(t), t ≥ T,

m ≤ x(t) ≤M, t ≥ T,

k(t)xσ(t) = x(τ(t)), t ≥ T,

x(t) = 1, t0 ≤ t ≤ T} .
Define the operator S : Ω −→ X as follows

(Sx)(t) =

⎧⎨⎩ exp

µR t
T ξµ(s)

∙
ª
µ
p(s) + q(s)

x(τ(s))

xσ(s)

¶¸
∆s

¶
, t ≥ T,

1, t0 ≤ t ≤ T.

We will show that for any x ∈ Ω we have Sx ∈ Ω. For every x ∈ Ω and
t ≥ T we get

(Sx)(t) = exp
³R t

T ξµ(s)
h
ª
³
p(s) + q(s)x(τ(s))xσ(s)

´i
∆s
´

= exp
³R t

T ξµ(s) [ª(p(s) + q(s)k(s))]∆s
´
≤M.

Furthermore for x ∈ Ω and t ≥ T we obtain

(Sx)(t) = exp

µZ t

T
ξµ(s) [ª(p(s) + q(s)k(s))]∆s

¶
≥ m.
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For t ∈ [t0, T ] ∩T we have (Sx)(t) = 1, that is (Sx)(t) ∈ Ω.

Further for every x ∈ Ω and τ(t) ≥ T we get

(Sx)(τ(t)) = exp
³R τ(t)

T ξµ(s)
h
ª
³
p(s) + q(s)x(τ(s))xσ(s)

´i
∆s
´

= (Sx)σ(t) exp
³R τ(t)

σ(t) ξµ(s)
h
ª
³
p(s) + q(s)x(τ(s))xσ(s)

´i
∆s
´
.

With regard to (3.2) and (3) for τ(t) ≥ T it follows that

(Sx)(τ(t)) = (Sx)σ(t) exp

ÃZ τ(t)

σ(t)
ξµ(s) [ª(p(s) + q(s)k(s))]∆s

!
= k(t)(Sx)σ(t).

Finally we will show that for x ∈ Ω, t ≥ T the function Sx is ω-periodic.
For x ∈ Ω, t ≥ T and according to (3.1) we have

(Sx)(t+ ω)

= exp
³R t+ω

T ξµ(s) [ª(p(s) + q(s)k(s))]∆s
´

= exp
³R t

T ξµ(s) [ª(p(s) + q(s)k(s))]∆s
´
exp

³R t+ω
t ξµ(s) [ª(p(s) + q(s)k(s))]∆s

´
= (Sx)(t).

So Sx is ω-periodic on [T,∞) ∩T. Thus we have proved that Sx ∈ Ω
for any x ∈ Ω.

We now show that S is completely continuous. Let xi ∈ Ω be such that
xi −→ x ∈ Ω as i −→∞. For t ≥ T , we have

|(Sxi)(t)− (Sx)(t)| =
¯̄̄
exp

³R t
T ξµ(s)

h
ª
³
p(s) + q(s)xi(τ(s))xσi (s)

´i
∆s
´

− exp
³R t

T ξµ(s)
h
ª
³
p(s) + q(s)x(τ(s))xσ(s)

´i
∆s
´
.

By applying the Lebesgue dominated convergence theorem we obtain
that

lim
i−→∞

kSxi − Sxk = 0.

For t ∈ [t0, T ] ∩T the relation above is also valid. This means that S
is continuous.

We now show that SΩ is relatively compact. It is sufficient to show
by the Arzela-Ascoli theorem that the family of function {Sx : x ∈ Ω} is
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uniformly bounded and equicontinuous on [t0,∞)∩T. The uniform bound-
edness follows from the definition of Ω. With regard to (3.3) for t ≥ T ,
x ∈ Ω we get¯̄̄

(Sx)∆(t)
¯̄̄

=
¯̄̄
−
³
p(t) + q(t)x(τ(t))xσ(t)

´¯̄̄
exp

³R σ(t)
T ξµ(s)

h
ª
³
p(s) + q(s)x(τ(s))xσ(s)

´i
∆s
´

= |p(t) + q(t)k(t)| exp
³R σ(t)

T ξµ(s) [ª(p(s) + q(s)k(s))]∆s
´

≤M1,

For t ∈ [t0, T ] ∩T, x ∈ Ω, we have

¯̄̄
(Sx)∆(t)

¯̄̄
= 0.

This shows the equicontinuity of the family SΩ. Hence SΩ is relatively
compact and therefore S is completely continuous. By Theorem 2.12 there
is an x0 ∈ Ω such that Sx0 = x0. We see that x0 is a positive ω-periodic
solution of Eq. (1.1). The proof is complete. 2

4. Two examples

In this section, we give two examples to illustrate the applications of The-
orem 3.2.

Example 4.1. Consider the delay dynamic equation on T with µ(t) 6= 0,

x4 (t)− 1

µ(t)
xσ (t) +

e(cosσ(t)−cos(t))

µ(t)
x (σ (t)− 2π) = 0, t ≥ 0.(4.1)

We take k(t) = 1. Then for conditions (3.1), (3.2) and ω = 2π we obtain
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R t+ω
t ξµ(s) [ª (p(s) + q(s)k(s))]∆s

=
R t+2π
t

1
µ(s) log [ª (p(s) + q(s)k(s))µ(s) + 1]∆s

=
R t+2π
t

1
µ(s) log

h
−(p(s)+q(s)k(s))

1+µ(s)(p(s)+q(s)k(s))µ(s) + 1
i
∆s

=
R t+2π
t

1
µ(s) log

h
−(p(s)+q(s))

1+µ(s)(p(s)+q(s))µ(s) + 1
i
∆s

=
R t+2π
t

1
µ(s) log

h
1

1+µ(s)(p(s)+q(s))

i
∆s

=
R t+2π
t − 1

µ(s) log [1 + µ(t) (p(s) + q(s))]∆s

=
R t+2π
t − (cosσ(s)−cos(s))µ(s) ∆s

= − cos s |t+2πt

= 0,

and

R τ(t)
σ(t) ξµ(s) [ª(p(s) + q(s)k(s))]∆s

=
R σ(t)−2π
σ(t) ξµ(s) [ª(p(s) + q(s)k(s))]∆s = 0, t ≥ 0.

All conditions of Theorem 3.2 are satisfied. Thus Eq. (4.1) has a
positive ω = 2π-periodic solution

x(t) = exp

µZ t

T
−(cosσ(s)− cos(s))

µ(s)
∆s

¶
= ecos(T )−cos(t), t ≥ T.

Example 4.2. Consider the delay differential equation on T = R,

x0 (t)− (1
2
sin t+ e−t)x (t) + e−t−cos tx (t− π) = 0, t ≥ 0.(4.2)

We choose k(t) = ecos t. Then for conditions (3.1), (3.2) and ω = 2π we
haveR t+ω

t [p(s) + q(s)k(s)] ds = −12
R t+2π
t sin(s)ds = 0,R t

τ(t) [p(s) + q(s)k(s)] ds = −12
R t
t−π sin(s)ds = cos t, t ≥ 0.
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All conditions of Theorem 3.2 are satisfied. Thus Eq. (4.2) has a
positive ω = 2π-periodic solution

x(t) = exp

µZ t

T

µ
1

2
sin s

¶
ds

¶
= e

1
2
(cos(T )−cos(t)),

for t ≥ T .
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